
Copyright © 2002-2021. TIBCO Software Inc. All Rights Reserved.

TIBCO Data Virtualization®

Application Programming Interface
Guide
Version 8.5.0
Last Updated: October 26, 2021

Contents | 1
Contents

Introduction .15

Purpose of the Web Services Operations . 15

Groups of Operations . 15
Administrative Operations. 15

The archive Branch . 16
The execute Branch . 16
The resource Branch. 17
The server Branch. 22
The user Branch . 23

Utility Operations . 24
The common Branch . 24
The security Branch . 24
The session Branch. 25

Purpose of the Procedures . 25

Groups of Procedures . 26
Debug Procedures . 26
Deployment Procedures . 27
JMS Procedures . 27
Lineage Procedures . 28
Profile Procedures . 28
Resource Procedures. 28
Service Procedures . 30
Transformation Procedure . 31
User Procedures. 31
Utility Procedures . 31

Security Features. 32

Using Web Services Operations .33

Using Operations in Studio . 33
Finding and Opening Operations . 33
Preparing and Executing an Operation . 34

Using Operations from a Web Services Client. 35
Web Services Port . 35
WSDL Definitions of Operations. 36

Web Services Operations .37

Operations Reference . 37
addLicenses . 39
 TIBCO® Data Virtualization

2 | Contents
addLoginModule . 39
addPrincipalMapping . 40
addUsersToGroup . 40
addUserToGroups . 41
beginSession . 43
beginTransaction . 44
cancelArchive . 46
cancelCreateDomain . 47
cancelDataSourceReintrospect . 48
cancelResourceStatistics. 49
cancelServerTask . 50
changeResourceOwner . 51
clearIntrospectableResourceIdCache . 53
clearResourceCache . 54
clearResourceStatistics . 55
closeResult . 56
closeSession . 57
closeTransaction . 57
copyResource . 58
copyResourcePrivileges . 60
copyResources . 61
createCluster . 63
createConnector . 64
createCustomDataSourceType . 64
createDataSource . 65
createDBHealthMonitorTable. 67
createDomain . 68
createExportArchive. 69
createGroup. 72
createImportArchive. 73
createLink . 74
createLinksRecursively . 76
createResource . 78
createUser . 80
destroyConnector . 81
destroyCustomDataSourceType . 81
destroyDomain. 82
destroyGroup . 83
destroyResource . 84
destroyResources . 85
destroyUser . 86
executeNativeSql . 86
executeProcedure . 89
executeSql . 92
executePreparedSql . 95
TIBCO® Data Virtualization

Contents | 3
executeSqlScript. 98
getAllResourcesByPath . 101
getAncestorResources . 101
getArchiveContents . 102
getArchiveExportData. 104
getArchiveExportSettings . 105
getArchiveImportReport . 106
getArchiveImportSettings . 108
getAvailableLoginModuleNames . 109
getCachedResourceStatisticsConfig . 110
getChildResources . 111
getClusterConfig . 112
getConnectorGroup . 113
getConnectorGroupNames. 113
getConnectors . 114
getCreateDBHealthMonitorTableSQL . 114
getDataSourceAttributeDefs. 115
getDataSourceChildResources . 115
getDataSourceReintrospectResult . 117
getDataSourceStatisticsConfig . 118
getDataSourceTypeAttributeDefs . 119
getDataSourceTypeCustomCapabilities. 119
getDataSourceTypes . 120
getDependentResources . 120
getDomainGroups . 121
getDomains . 122
getDomainTypeAttributeDefs . 123
getDomainTypes . 124
getDomainUsers . 124
getExtendableDataSourceTypes . 125
getGeneralSettings. 126
getGroups. 127
getGroupsByUser . 127
getIntrospectableResourceIdsResult . 128
getIntrospectableResourceIdsTask . 130
getIntrospectedResourceIdsResult. 132
getIntrospectedResourceIdsTask. 134
getIntrospectionAttributeDefs . 135
getIntrospectionAttributes. 136
getLicenses . 137
getLockedResources . 137
getLoginModule . 138
getLoginModuleDefaultProperties . 138
getLoginModuleList . 139
getMostRecentIntrospectionStatus. 139
 TIBCO® Data Virtualization

4 | Contents
getParentDataSourceType . 141
getParentResource . 141
getPrincipalMapping . 142
getPrincipalMappingList. 143
getProceduralResult . 143
getResource . 145
getResourceCacheConfig . 146
getResourcePlan . 148
getResourcePrivileges. 149
getResources. 150
getResourceStatisticsConfig . 151
getResourceStatsSummary. 152
getResourceUpdates . 153
getResultSetPlan . 155
getServerActions . 156
getServerAttributeDefChildren. 156
getServerAttributeDefs. 157
getServerAttributes . 158
getServerInfo . 158
getServerName . 159
getSqlPlan . 159
getTabularResult . 161
getTransformFunctions . 163
getUsedDataSources. 163
getUsedResources . 164
getUser . 165
getUsers . 165
getUsersByGroup . 166
introspectResourcesResult . 167
introspectResourcesTask . 169
joinCluster . 171
lockResource . 172
lockResources . 173
moveResource. 173
moveResources. 175
parseSqlQuery. 176
performArchiveImport . 177
performServerAction . 178
rbsAssignFilterPolicy . 178
rbsDeleteFilterPolicy . 179
rbsGetFilterPolicy. 180
rbsGetFilterPolicyList . 180
rbsIsEnabled . 181
rbsSetEnabled . 181
rbsWriteFilterPolicy . 182
TIBCO® Data Virtualization

Contents | 5
rebindResources . 183
refreshResourceCache. 184
refreshResourceStatistics. 185
reintrospectDataSource . 185
removeFromCluster . 187
removeLicenses . 187
removeLoginModule . 188
removePrincipalMapping . 188
removeUserFromGroups . 189
removeUsersFromGroup . 190
renameResource . 190
repairCluster . 191
resourceExists . 192
syncDomainGroups . 193
testDataSourceConnection. 193
unlockResource . 194
unlockResources . 195
updateArchiveExportSettings . 196
updateArchiveImportSettings . 198
updateBasicTransformProcedure . 200
updateCachedResourceStatisticsConfig . 201
updateClusterName . 203
updateColumnAnnotation . 203
updateConnector . 204
updateCustomDataSourceType . 205
updateDataServicePort . 205
updateDataSource . 207
updateDataSourceChildInfos . 208
updateDataSourceChildInfosWithFilter. 209
updateDataSourcePort . 211
updateDataSourceStatisticsConfig . 213
updateDataSourceTypeCustomCapabilities. 214
updateDefinitionSet . 215
updateDomain . 216
updateExternalSqlProcedure . 217
updateGeneralSettings. 218
updateGroup. 219
updateImplementationContainer . 220
updateLink . 221
updateLoginModule . 222
updateLoginModuleList . 223
updatePrincipalMapping . 223
updateResourceAnnotation . 224
updateResourceCacheConfig . 225
updateResourceEnabled . 228
 TIBCO® Data Virtualization

6 | Contents
updateResourcePrivileges. 229
updateResources. 230
updateResourceStatisticsConfig . 231
updateServerAttributes . 233
updateServerName . 233
updateSqlScriptProcedure. 234
updateSqlTable . 235
updateStreamTransformProcedure . 236
updateTransformProcedure. 237
updateTrigger . 238
updateUser . 240
updateUserLockState . 241
updateXQueryProcedure . 241
updateXQueryTransformProcedure. 242
updateXSLTProcedure . 244
updateXsltTransformProcedure. 245

Recurring Element Structures . 246
Attribute Definitions Element . 247
Attributes Element . 248
Column Element . 249
Connector Element . 249
Domains Element. 250
Filter Policy Definition . 250
Groups Element . 251
Import Hints . 252
Introspection Plan Element . 252
Introspection Report Status Element . 253
Licenses Element . 254
Messages Element . 255
Parameters Element . 255
Refresh Element . 256
Reintrospect Report Element. 257
Resources Element . 257
Schedule Element . 258
User and Group Rights Mask. 259
User Element . 259
Users Element . 260

TDV Resource Types and Subtypes. 261

Built-in Procedures . 265

About TDV Built-in Procedures . 265

Naming Conflicts between User-Defined and Built-in Procedures . 266

Sample JMS Built-in Procedure . 266
TIBCO® Data Virtualization

Contents | 7
Procedures Reference. 267
AddUsernameToken. 267
CancelDataSourceReintrospect . 268
CancelResourceStatistics. 269
ClearAllDataSourceCredentials . 270
ClearAlternatePrincipal . 270
ClearMessageProperties . 271
ClearResourceCache . 271
ClearResourceStatistics . 272
CopyResource . 273
CreateElement . 275
CreateResourceCacheKey. 276
DeleteElement . 276
EncryptElement . 277
ExecuteBasicTransform . 279
ExplainAttributes. 280
ExplainPrincipals . 280
ExplainResources. 281
GenerateEvent . 282
GetClaim. 283
GetColumnDependencies . 284
GetColumnProfiles . 286
GetColumnReferences . 288
GetDataSourceReintrospectReport . 289
GetEnvironment . 290
GetPartitionClauses . 292
GetPrincipalSet. 293
GetTableProfiles . 294
GetProperty . 295
GetResourceCacheStatus . 297
GetResourceSet . 298
HasClaim . 299
ListAttributes. 299
ListPrincipals . 300
ListResources. 301
LoadResourceCacheStatus . 302
Log . 303
LogError . 304
LogMessageToFile . 304
MoveResource . 305
Pause . 306
PreviewResourceSet . 307
Print . 308
ProcessSecurityHeader . 309
RefreshResourceCache . 310
 TIBCO® Data Virtualization

8 | Contents
RefreshResourceCacheSynchronously . 311
RefreshResourceStatistics. 312
ReintrospectDataSource . 313
RenameResource . 313
ResourceExists . 314
Search . 315
SendEMail . 318
SendMapMessage. 319
SendResultsInEMail. 320
SendTextMessage. 321
SetAlternatePrincipal . 322
SetAlternateSecurityProperty. 322
SetDataSourceCredentials . 323
SetEnvironment . 324
SetEnvironmentFromNodeValue . 326
SetMessageProperties. 326
SetMessageProperty . 327
SetNodeValueFromEnvironment . 328
SignElement . 329
SqlPerf . 330
SyncDomain . 330
TestAllDataSourceConnections. 331
TestDataSourceConnection. 331
TestUserIdentity. 332
UpdateResourceCacheEnabled . 333
UpdateResourceCacheKeyStatus . 334
UpdateResourceEnabled. 335

SQL Definition Sets. 336
extendedSql SQL Definition Set . 336
Jms SQL Definition Set . 336
ResourceDefs SQL Definition Set . 337
sql SQL Definition Set . 340
System SQL Definition Set . 342
UserDefs SQL Definition Set . 346

Server Actions . 347

About Server Actions . 347

Server Actions Reference . 347
CheckLicense . 347
ClearDataSourceConnectionPools . 347
ClearRepositoryCache. 349
ClearQueryPlanCache. 349
ClearServerProfile . 349
Echo. 349
TIBCO® Data Virtualization

Contents | 9
FreeUnusedMemory. 349
GetServerProfile . 350
PurgeCompletedRequests . 350
PurgeCompletedSessions . 350
PurgeCompletedTransactions . 350
RegenerateFiles . 350
ResetSystemNamespace . 351
ShutdownServer . 351
TerminateRequests . 352
TerminateSessions. 352
TerminateTransactions. 352
TestAllDataSources . 353

DSL API .355

Data Sources . 355
DSL Syntax. 356
Relational Data Sources. 357

Creating a Relational Data Source with Native Connection Properties. 357
Creating a datasource with DSL keywords . 358

File Delimited Data Sources . 359
Considerations . 360
Examples. 360

Excel Data Sources . 361
Considerations . 361
Examples. 361

System Tables . 362
ALL_DATASOURCES. 362
ALL_RESOURCE_PROPERTIES. 364
SYS_DATASOURCE_ATTRIBUTE_DEFS. 364

Logging. 365

Data Views. 366
DSL Syntax. 366
Considerations . 367
Examples . 367
System Tables . 367
Logging. 372

SQL Script Procedures . 373
DSL Syntax. 373
Considerations . 374
Examples . 375
System Tables . 377
Logging. 379

Folders . 381
 TIBCO® Data Virtualization

10 | Contents
DSL Syntax . 381
Considerations. 381
Examples . 382
System Tables . 383
Logging . 384

Virtual Databases . 384
DSL Syntax . 385
Considerations. 385
Examples . 386
System Tables . 387

Virtual Tables and Procedures . 387
DSL Syntax . 387
Considerations. 388
Examples . 389
System Tables . 391
Logging . 391

Virtual Schemas . 391
DSL Syntax . 391
Considerations. 392
Examples . 393
System Tables . 393

Virtual Catalogs. 394
DSL Syntax . 394
Considerations. 395
Examples . 395
System Tables . 396
Logging . 396

DSL Support in SQL Scripts . 396
Examples . 396

REST API . 399

TDV Server REST APIs . 399
Catalog . 400

GET/catalog . 400
PUT/catalog . 400
POST/catalog . 402
DELETE/catalogs . 402
DELETE/catalog . 403

Column-Based Security . 404
GET /assignments . 404
POST /assignments . 406
PUT /assignments . 406
DELETE /assignments . 407
TIBCO® Data Virtualization

Contents | 11
GET /enable . 408
PUT /enable . 408
GET /policies . 409
POST /policies. 409
PUT /policies . 410
DELETE /policies . 412
GET /policyDataTypeMap . 412
GET /policyDataTypes . 412
GET /ruleDataTypeMap . 413

Datasource . 413
GET/datasource . 413
PUT/datasource . 414
POST/datasource . 416
DELETE/datasource . 418
GET/datasource/adapter/definitions . 419
GET/datasource/virtual . 420
PUT/datasource/virtual . 420
POST/datasource/virtual . 421
DELETE/datasource/virtual . 422
DELETE/datasource/virtual/dsName. 423
GET/datasource/virtual/adapter/definitions . 424

Dataview. 424
GET/dataview . 424
PUT/dataview . 425
POST/dataview . 426
DELETE/dataview . 427
DELETE/dataview/{dataviewPath} . 428

Deployment Manager . 428
POST /executeQuery . 428
POST /executeDDL. 429
POST /executePlan. 433
GET /export_dm_metadata . 433
GET /export_plan_package. 434
POST /import_dm_metadata. 434
DELETE /purgeLog . 435
GET /validateSite . 435

Execute. 436
POST/execute/query . 436
POST/execute/procedure . 439
POST/execute/cancel . 439
GET/execute/nextBatch . 440
POST/execute/DSL . 441
POST/execute/sqlscript . 442

Folders . 442
GET/folder . 443
 TIBCO® Data Virtualization

12 | Contents
PUT/folder . 443
POST/folder . 445
DELETE/folder . 445
DELETE/folder/{folderPath} . 446

Link . 447
GET/link . 447
PUT/link . 448
POST/link . 449
DELETE/link . 451
DELETE/link/{linkPath} . 452

Resource . 452
GET /children . 453
GET /custom_functions . 453
GET /columns. 454

Schema . 454
GET /schema/virtual . 455
PUT /schema/virtual . 455
POST /schema/virtual. 456
DELETE /schema/virtual. 457
DELETE /schema/virtual/{schemaPath} . 458

Script . 459
GET /script . 459
PUT /script . 460
POST /script . 461
DELETE /script . 462
DELETE /script/{scriptPath} . 463

Security . 463
GET /backup_encryption_settings . 464
POST /import_encryption_settings. 464
GET /domains. 464
GET /domains/groups. 465
POST/domains/groups/sync. 465
GET /domains/domain_users . 466
GET /generateUUID . 466
GET /systemEncryption . 466
PUT /systemEncryption . 467

Session . 467
GET /session . 468
PUT /session . 468
DELETE /session . 469

Version Control System . 469
GET /branches . 470
GET /branches/{name} . 471
POST /checkin/{name} . 472
GET /connection. 473
TIBCO® Data Virtualization

Contents | 13
GET /connection/{name} . 473
GET /content/{name}. 474
POST /discard/{name}. 474
GET /enable . 475
POST /fetch/{name} . 476
GET /history/{name} . 476
GET /latestcontent/{name} . 477
GET /localcontent/{name} . 477
GET /root . 478
GET /root/{name} . 478
POST /root/{name} . 479
DELETE /root/{name} . 479
POST /setCredential/{name} . 480
GET /status/{name} . 481
GET /vcsAdapter/{adapter_name} . 481
GET /vcsAdapters . 481
POST /vcsInstance . 482
GET /vcsInstance/{name} . 483
PUT /vcsInstance/{name} . 483
DELETE /vcsInstance/{name} . 484
GET /vcsInstances . 484

Workload Management . 485
GET /enable . 485
PUT /enable . 485
GET /rules . 486
POST /rules. 486
PUT /rules . 488
DELETE /rules. 490
GET /rules/effective. 490
GET /rules/effective/member. 491
GET /rules/effective/member/resource . 491

Auth . 492
POST/auth/refreshToken . 492
DELETE/auth/revokeToken. 493
POST/auth/requestToken . 493
POST/auth/spnegoRequestToken . 494

TIBCO Product Documentation and Support Services .495

How to Access TIBCO Documentation. 495
Product-Specific Documentation . 495

How to Contact TIBCO Support . 496
How to Join TIBCO Community . 496

Legal and Third-Party Notices .497
 TIBCO® Data Virtualization

14 | Contents
TIBCO® Data Virtualization

Introduction |15
Introduction

This topic contains an alphabetical listing of all operations available in TIBCO®
Data Virtualization (TDV), and separate descriptions of structures that occur in
multiple places among operation elements.

• Purpose of the Web Services Operations, page 15

• Groups of Operations, page 15

• Purpose of the Procedures, page 25

• Groups of Procedures, page 26

• Security Features, page 32

Purpose of the Web Services Operations

Operations let Web Services clients perform all activities to create, update,
maintain and destroy resources in TDV and execute SQL, scripts and procedures,
as though the clients were local to TDV.

Note: Web Service operations have sometimes been called, collectively, the
“Admin API.”

Groups of Operations

Operations fall into two main groups:

• Administrative Operations, page 15

• Utility Operations, page 24

Administrative Operations

Administrative operations can be found in two places in the resource tree:

• Desktop/Data Services/Web Services/system/admin/

• localhost/services/webservices/system/admin/

Administrative operations are grouped into five branches:

• The archive Branch, page 16
 TIBCO® Data Virtualization

16 | Groups of Operations
• The execute Branch, page 16

• The resource Branch, page 17

• The server Branch, page 22

• The user Branch, page 23

The archive Branch

The archive branch of administrative operations lets Web Services clients monitor
and manage archives.

The operations in this branch are:

• cancelArchive, page 46

• createExportArchive, page 69

• createImportArchive, page 73

• getArchiveContents, page 102

• getArchiveExportData, page 104

• getArchiveExportSettings, page 105

• getArchiveImportReport, page 106

• getArchiveImportSettings, page 108

• performArchiveImport, page 177

• updateArchiveExportSettings, page 196

• updateArchiveImportSettings, page 198

The execute Branch

The execute branch of administrative operations lets Web Services clients execute
SQL, SQL scripts and procedures, and get plans and results.

The operations in this branch are:

• closeResult, page 56

• executeNativeSql, page 86

• executeProcedure, page 89

• executeSql, page 92

• executeSqlScript, page 98

• getProceduralResult, page 143
TIBCO® Data Virtualization

Groups of Operations |17
• getResourcePlan, page 148

• getResultSetPlan, page 155

• getSqlPlan, page 159

• getTabularResult, page 161

• parseSqlQuery, page 176

The resource Branch

The resource branch of administrative operations lets Web Services clients
monitor and manage all TDV resources.

The operations in this branch are grouped by resource category and (in the case of
data sources and resources) subcategory:

• Caching

– clearResourceCache, page 54

– getCachedResourceStatisticsConfig, page 110

– getResourceCacheConfig, page 146

– getResourceStatsSummary, page 152

– refreshResourceCache, page 184

– updateCachedResourceStatisticsConfig, page 201

– updateResourceCacheConfig, page 225

• Connectors

– createConnector, page 64

– destroyConnector, page 81

– getConnectorGroup, page 113

– getConnectorGroupNames, page 113

– getConnectors, page 114

– testDataSourceConnection, page 193

– updateConnector, page 204

• Data services

– updateDataServicePort, page 205

– updateImplementationContainer, page 220
 TIBCO® Data Virtualization

18 | Groups of Operations
• Data sources

– createDataSource, page 65

– getUsedDataSources, page 163

– updateDataSource, page 207

– updateDataSourcePort, page 211

Attribute definitions

– getDataSourceAttributeDefs, page 115

Custom types

– createCustomDataSourceType, page 64

– destroyCustomDataSourceType, page 81

– updateCustomDataSourceType, page 205

Location and Dependencies

– getDataSourceChildResources, page 115 (deprecated)

– updateDataSourceChildInfos, page 208 (deprecated)

– updateDataSourceChildInfosWithFilter, page 209

Statistics

– getDataSourceStatisticsConfig, page 118

– updateDataSourceStatisticsConfig, page 213

Types

– getDataSourceTypeAttributeDefs, page 119

– getDataSourceTypeCustomCapabilities, page 119

– getDataSourceTypes, page 120

– getExtendableDataSourceTypes, page 125

– getParentDataSourceType, page 141

– updateDataSourceTypeCustomCapabilities, page 214

• Definition sets

– updateDefinitionSet, page 215
TIBCO® Data Virtualization

Groups of Operations |19
• Introspection

– clearIntrospectableResourceIdCache, page 53

– getIntrospectableResourceIdsResult, page 128

– getIntrospectableResourceIdsTask, page 130

– getIntrospectedResourceIdsResult, page 132

– getIntrospectedResourceIdsTask, page 134

– getIntrospectionAttributeDefs, page 135

– getIntrospectionAttributes, page 136

– getMostRecentIntrospectionStatus, page 139

– introspectResourcesResult, page 167

– introspectResourcesTask, page 169

• Links

– createLink, page 74

– createLinksRecursively, page 76

– updateLink, page 221

• Reintrospection

– cancelDataSourceReintrospect, page 48 (deprecated)

– getDataSourceReintrospectResult, page 117

– reintrospectDataSource, page 185 (deprecated)
 TIBCO® Data Virtualization

20 | Groups of Operations
• Resources

– copyResource, page 58

– copyResources, page 61

– createResource, page 78

– destroyResource, page 84

– destroyResources, page 85

– getResource, page 145

– getResources, page 150

– getResourceUpdates, page 153

– getUsedResources, page 164

– moveResource, page 173

– moveResources, page 175

– rebindResources, page 183

– renameResource, page 190

– resourceExists, page 192

– updateResourceAnnotation, page 224

– updateResourceEnabled, page 228

– updateResources, page 230

– updateResourcePrivileges, page 229

Location and Dependencies

– getAllResourcesByPath, page 101

– getAncestorResources, page 101

– getChildResources, page 111

– getDependentResources, page 120

– getParentResource, page 141
TIBCO® Data Virtualization

Groups of Operations |21
Locks

– getLockedResources, page 137

– lockResource, page 172

– lockResources, page 173

– unlockResource, page 194

– unlockResources, page 195

– updateUserLockState, page 241

Owner

– changeResourceOwner, page 51

Privileges

– copyResourcePrivileges, page 60

– getResourcePrivileges, page 149

– updateResourcePrivileges, page 229

Statistics

– cancelResourceStatistics, page 49

– clearResourceStatistics, page 55

– getResourceStatisticsConfig, page 151

– refreshResourceStatistics, page 185

– updateResourceStatisticsConfig, page 231

• SQL and SQL Script

– updateExternalSqlProcedure, page 217

– updateSqlScriptProcedure, page 234

– updateSqlTable, page 235

• Transformation

– getTransformFunctions, page 163

– updateBasicTransformProcedure, page 200

– updateStreamTransformProcedure, page 236

– updateTransformProcedure, page 237

– updateXQueryTransformProcedure, page 242

– updateXsltTransformProcedure, page 245
 TIBCO® Data Virtualization

22 | Groups of Operations
• Triggers

– updateTrigger, page 238

• XQuery

– updateXQueryProcedure, page 241

– updateXQueryTransformProcedure, page 242

• XSLT

– updateXSLTProcedure, page 244

– updateXsltTransformProcedure, page 245

The server Branch

The server branch of administrative operations lets Web Services clients manage
licenses, clusters, server actions and attributes, and other server-level activities.

The operations in this branch are:

• addLicenses, page 39

• createCluster, page 63

• createDBHealthMonitorTable, page 67

• getClusterConfig, page 112

• getCreateDBHealthMonitorTableSQL, page 114

• getLicenses, page 137

• getServerActions, page 156

• getServerAttributeDefChildren, page 156

• getServerAttributeDefs, page 157

• getServerAttributes, page 158

• getServerName, page 159

• joinCluster, page 171

• performServerAction, page 178

• removeFromCluster, page 187

• removeLicenses, page 187

• repairCluster, page 191

• updateClusterName, page 203

• updateServerAttributes, page 233
TIBCO® Data Virtualization

Groups of Operations |23
• updateServerName, page 233

The user Branch

The branch of administrative operations lets Web Services clients monitor and
manage users, groups, and domains.

The operations in this branch are:

• addUsersToGroup, page 40

• addUserToGroups, page 41

• cancelCreateDomain, page 47

• createDomain, page 68

• createGroup, page 72

• createUser, page 80

• destroyDomain, page 82

• destroyGroup, page 83

• destroyUser, page 86

• getDomainGroups, page 121

• getDomains, page 122

• getDomainTypeAttributeDefs, page 123

• getDomainTypes, page 124

• getDomainUsers, page 124

• getGroups, page 127

• getGroupsByUser, page 127

• getUser, page 165

• getUsers, page 165

• getUsersByGroup, page 166

• removeUserFromGroups, page 189

• removeUsersFromGroup, page 190

• updateDomain, page 216

• updateGroup, page 219

• updateUser, page 240
 TIBCO® Data Virtualization

24 | Groups of Operations
Utility Operations

Utility operations can be found in two places in the resource tree:

• Desktop/Data Services/Web Services/system/util/

• localhost/services/webservices/system/util/

Utility operations are grouped into three branches:

• The common Branch, page 24

• The security Branch, page 24

• The session Branch, page 25

The common Branch

The common branch of utility operations lets Web Services cancel a server task:

• cancelServerTask, page 50

The security Branch

The security branch of utility operations lets Web Services clients manage the
following aspects of security:

• General settings

– getGeneralSettings, page 126

– updateGeneralSettings, page 218

• Login module

– addLoginModule, page 39

– getAvailableLoginModuleNames, page 109

– getLoginModule, page 138

– getLoginModuleDefaultProperties, page 138

– getLoginModuleList, page 139

– removeLoginModule, page 188

– updateLoginModule, page 222

– updateLoginModuleList, page 223
TIBCO® Data Virtualization

Purpose of the Procedures |25
• Principal mapping

– addPrincipalMapping, page 40

– getPrincipalMapping, page 142

– getPrincipalMappingList, page 143

– removePrincipalMapping, page 188

– updatePrincipalMapping, page 223

• Row-based security

– rbsAssignFilterPolicy, page 178

– rbsDeleteFilterPolicy, page 179

– rbsGetFilterPolicy, page 180

– rbsGetFilterPolicyList, page 180

– rbsIsEnabled, page 181

– rbsSetEnabled, page 181

– rbsWriteFilterPolicy, page 182

The session Branch

The session branch of utility operations lets Web Services clients manage sessions.

The operations in this branch are:

• beginSession, page 43

• beginTransaction, page 44

• closeSession, page 57

• closeTransaction, page 57

• getServerInfo, page 158

Purpose of the Procedures

The built-in procedures let users with appropriate privileges perform basic server
activities, including:

• Set up log messages for debugging

• Create, update, introspect, maintain, and destroy resources

• Execute SQL, scripts and procedures
 TIBCO® Data Virtualization

26 | Groups of Procedures
• Set and clear JMS message properties

• Send JMS map and text messages

• Create and delete elements, write messages to files

• Test connections and server performance

• Execute a basic transformation on XML input

Groups of Procedures

Procedures fall into several groups:

• Debug Procedures, page 26

• Deployment Procedures, page 27

• JMS Procedures, page 27

• Lineage Procedures, page 28

• Resource Procedures, page 28

• Service Procedures, page 30

• Transformation Procedure, page 31

• User Procedures, page 31

• Utility Procedures, page 31

• Profile Procedures, page 28

Debug Procedures

The debug procedures are found in the resource tree under /lib/debug. They are:

• Log, page 303, which writes text to the log file with severity level INFO.

• LogError, page 304, which writes text to the log file with severity level
ERROR.

• Print, page 308, which writes debug messages to the console when running
from Studio.
TIBCO® Data Virtualization

Groups of Procedures |27
Deployment Procedures

The deployment procedures are found in the resource tree under /lib/resource
(and under /services/databases/system/deployment/ as published resources).
They are:

• ExplainAttributes, page 280, which retrieves the list of attributes of the data
sources included in a resource set.

• ExplainPrincipals, page 280, which retrieves the list of principals included in a
resource set.

• ExplainResources, page 281, which retrieves the list of resources in a resource
set.

• GetPrincipalSet, page 293, which retrieves the list of principals included in a
principal set.

• GetResourceSet, page 298, which retrieves the list of resources included in a
resource set.

• ListAttributes, page 299, which retrieves the attribute list for a specified
resource set on a given site.

• ListPrincipals, page 300, which retrieves the list of principals included in a
resource set.

• ListResources, page 301, which retrieves the list of resources included in a
resource set.

• PreviewResourceSet, page 307, which retrieves the list of resource changes
since the last deployment of the specified resource set, by the specified
deployment plan.

JMS Procedures

The JMS procedures are found in the resource tree under /lib/jms. They are:

• ClearMessageProperties, page 271, which clears all JMS headers and
properties that were set using SetMessageProperties, page 326.

• SendMapMessage, page 319, which sends a JMS map message based on a
ROW type variable.

• SendTextMessage, page 321, which sends a JMS text message.

• SetMessageProperties, page 326, which sets JMS headers or properties for the
subsequent JMS messages to be sent using SendTextMessage, page 321.

• SetMessageProperty, page 327, which sets a JMS header or property for the
subsequent JMS messages to be sent using SendTextMessage, page 321.
 TIBCO® Data Virtualization

28 | Groups of Procedures
Lineage Procedures

The lineage procedures are found in the resource tree under /lib/resource (and
under /services/databases/system/lineage/ as published resources). They are:

• GetColumnDependencies, page 284, which retrieves the column
dependencies of a view.

• GetColumnReferences, page 288, which retrieves the column references of a
view, table or procedure.

Profile Procedures

The profile procedures are found in the resource tree under
/services/database/system/profile. They are:

• GetTableProfiles, page 294, which retrieves statistical and data source lineage
information about a set of published tables or views.

• GetColumnProfiles, page 286, which retrieves statistical and auxiliary data
type information about a set of published table columns.

• GetPartitionClauses, page 292, which retrieves the partition SQL clauses
(predicates) for use in defining partition queries against a published table and
column.

Resource Procedures

The resource procedures are found in the resource tree under /lib/resource. They
are:

• CancelDataSourceReintrospect, page 268, which cancels an in-progress,
non-blocking reintrospection process that was started using
ReintrospectDataSource, page 313.

• ClearResourceCache, page 271, which clears the cache on a resource.

• ClearResourceStatistics, page 272, which clears the statistics on a resource.

• CopyResource, page 273, which copies a resource into a folder using a new
name.

• CreateResourceCacheKey, page 276, which creates a cache key for a given
resource.

• ExplainAttributes, page 280, which retrieves the list of attributes of the data
sources included in a resource. (This procedure is also listed with Deployment
Procedures, page 27.)
TIBCO® Data Virtualization

Groups of Procedures |29
• ExplainResources, page 281, which retrieves the list of resources in a resource
set. (This procedure is also listed with Deployment Procedures, page 27.)

• GetColumnDependencies, page 284, which retrieves the column
dependencies of a view. (This procedure is also listed with Lineage
Procedures, page 28.)

• GetColumnReferences, page 288, which retrieves the column references of a
view, table or procedure. (This procedure is also listed with Lineage
Procedures, page 28.)

• GetDataSourceReintrospectReport, page 289, which gets the report for a
reintrospection, if available.

• GetPrincipalSet, page 293, which retrieves the list of principals included in a
principal set. (This procedure is also listed with Deployment Procedures,
page 27.)

• GetResourceSet, page 298, which retrieves the list of resources included in a
resource set. (This procedure is also listed with Deployment Procedures,
page 27.)

• ListAttributes, page 299, which retrieves the attribute list for a specified
resource set on a given site. (This procedure is also listed with Deployment
Procedures, page 27.)

• ListResources, page 301, which retrieves the list of resources included in the
specified resource set. (This procedure is also listed with Deployment
Procedures, page 27.)

• LoadResourceCacheStatus, page 302, which loads the status for a resource
cache.

• MoveResource, page 305, which moves a resource into a folder using a new
name.

• PreviewResourceSet, page 307, which retrieves the list of resource changes
since the last deployment of the specified resource set, by the specified
deployment plan. (This procedure is also listed with Deployment Procedures,
page 27.)

• RefreshResourceCache, page 310, which refreshes the cache for a view or table
resource.

• RefreshResourceCacheSynchronously, page 311, which refreshes the cache on
a TABLE resource synchronously.

• RefreshResourceStatistics, page 312, which refreshes the statistics on a
resource for use by the cost-based optimizer.

• ReintrospectDataSource, page 313, which performs a reintrospection of a data
source.
 TIBCO® Data Virtualization

30 | Groups of Procedures
• RenameResource, page 313, which renames a resource.

• ResourceExists, page 314, which checks to see if a resource exists.

• SendResultsInEMail, page 320, which sends an email message with specified
headers and content, and with the results of the given view or procedure as
attachments.

• SqlPerf, page 330, which runs a SQL performance test.

• TestAllDataSourceConnections, page 331, which tests all data sources to see if
they are operational.

• TestDataSourceConnection, page 331, which tests a specific data source to see
if it is operational.

• UpdateResourceCacheEnabled, page 333, which updates the enabled state of
a resource cache.

• UpdateResourceCacheKeyStatus, page 334, which updates the cache key for a
specified resource of type TABLE, or of type PROCEDURE with zero
parameters.

• UpdateResourceEnabled, page 335, which updates the enabled state of a
DATA_SOURCE resource.

Service Procedures

The service procedures are found in the resource tree under /lib/services. They
are:

• AddUsernameToken, page 267, which adds a WS-Security UsernameToken to
a SOAP envelope.

• CreateElement, page 275, which creates a child element in an XML document
or element.

• DeleteElement, page 276, which deletes one or more element nodes from an
XML document or element.

• LogMessageToFile, page 304, which writes the contents of a message to a file
at a specified path.

• SetEnvironmentFromNodeValue, page 326, which evaluates an XPath
expression against the envelope, and stores the result in the specified
environment variable.

• SetNodeValueFromEnvironment, page 328, which sets an element or attribute
value from an environment variable.
TIBCO® Data Virtualization

Groups of Procedures |31
Transformation Procedure

The transformation procedure, ExecuteBasicTransform, page 279, performs a
basic transformation on the input XML and retrieves metadata information.

User Procedures

The user procedures are found in the resource tree under /lib/users. They are:

• ClearAlternatePrincipal, page 270, which clears all credential data previously
stored using the setDataSourceCredentials JDBC method or the
SetDataSourceCredentials, page 323 procedure.

• ExplainPrincipals, page 280, which retrieves the list of principals included in a
specified resource set. (This procedure is also listed with Deployment
Procedures, page 27.)

• ListPrincipals, page 300, which retrieves the list of principals included in the
specified resource set. (This procedure is also listed with Deployment
Procedures, page 27.)

• SetAlternatePrincipal, page 322, which establishes an alternate identity within
the current session, preserving the original identity for afterwards.

• SyncDomain, page 330, which synchronizes the local external domain with
the specified external domain server.

• TestUserIdentity, page 332, which allows a SQL script to determine if the
current identity matches the one specified.

Utility Procedures

The utility procedures are found in the resource tree under /lib/util. They are:

• ClearAllDataSourceCredentials, page 270, which clears all credential data
previously stored using the setDataSourceCredentials JDBC method or the
SetDataSourceCredentials, page 323 procedure.

• ClearMessageProperties, page 271, which clears all JMS headers and
properties that were set using SetMessageProperties, page 326.

• GenerateEvent, page 282, which generates a custom event with the specified
name and value.

• GetEnvironment, page 290, which retrieves values from the environment.

• GetProperty, page 295, which gets the values of system properties.

• Pause, page 306, which causes the current thread of control.
 TIBCO® Data Virtualization

32 | Security Features
• SendEMail, page 318, which sends an email message with the specified
headers and content.

• SendMapMessage, page 319, which sends a JMS map message based on a
ROW type variable.

• SendTextMessage, page 321, which sends a JMS text message.

• SetDataSourceCredentials, page 323, which sets a username and password for
pass-through authentication with a specific data source.

• SetEnvironment, page 324, which sets an environment variable to a value.

• SetMessageProperties, page 326, which sets JMS headers or properties for the
subsequent JMS messages to be sent using SendTextMessage, page 321.

• SetMessageProperty, page 327, which sets a JMS header or property for the
subsequent JMS messages to be sent using SendTextMessage, page 321.

Security Features

TDV operations and built-in procedures support the following security features:

• You can specify HTTPS (secure HTTP) for data sources and data services. See
updateDataSourcePort, page 211, and updateDataServicePort, page 205.

• You can specify a variety of authentication methods (HTTP BASIC, HTTP
DIGEST, WSS user name token, NTLM, or KERBEROS) when you set up a
data service (updateDataServicePort, page 205).

• You can specify a password any time you create or update a user in the
composite domain (createUser, page 80, and updateUser, page 240), begin a
session (beginSession, page 43), join a cluster (joinCluster, page 171), or work
with encryption (see next bullet).
TIBCO® Data Virtualization

Using Web Services Operations |33
Using Web Services Operations

This topic describes how to use operations from the Studio user interface or using
a code generator.

• Using Operations in Studio, page 33

• Using Operations from a Web Services Client, page 35

Using Operations in Studio

In Studio, operations are prepared and run as procedures. For a description of the
procedure editor, see “Procedures and Transformations” in the TDV User Guide.

This section has the following topics:

• Finding and Opening Operations, page 33

• Preparing and Executing an Operation, page 34

Finding and Opening Operations

If you already know which operator you want to use, expand the /system/admin
or /system/util branch of the resource tree and locate the operation. For help
finding the operator you want, see the list in Groups of Operations, page 15.
 TIBCO® Data Virtualization

34 | Using Operations in Studio
To open an operation

1. Double-click the operation in the Studio resource tree, or select Open from the
context menu.

The operation opens on the Parameters tab of an XML to Tabular Mapping
window in the procedure editor.

Preparing and Executing an Operation

This section describes how to prepare and execute an operation in Studio.

For a description of the procedure editor, see “Designing Procedures” in the TDV
User Guide.

To prepare and execute an operation

1. In the procedure editor, click the Execute button on the toolbar. An Input
Values window opens for input values (even if the operator takes no request
elements).
TIBCO® Data Virtualization

Using Operations from a Web Services Client |35
2. If you want to empty the window of XML text, check the Null checkbox on the
right side of this window.

3. If you want to view the operation’s XML in formatted, colored text (pretty
printing), click the Details button.

An XML editor window opens, showing the full XML script (if you have not
nulled it).

4. Edit the XML as needed to specify values for request elements, either in the
XML editor window (click OK when you have finished) or in the Input Values
window.

5. To continue with execution, click OK on the Input Values window.

When the operation has been executed, a Result tab opens in the lower part of
the procedure editor panel, showing the first line of the response XML and the
first line of the fault XML.

6. If you want to see the full response XML, click the Details button to the right
of the <operation_name> Response field.

To close that Value window, click OK.

7. If you want to see the complete list of faults, click the Details button to the
right of the fault field.

To close that Value window, click OK.

Using Operations from a Web Services Client

As a Web services client, you can use any built-in operation by submitting an
XML document to TDV using the appropriate Web services port. Response and
fault elements are returned using the same port.

This section has the following topics:

• Web Services Port, page 35

• WSDL Definitions of Operations, page 36

Web Services Port

Web services use the HTTP base port, which by default is set to 9400. You can
change the value of the base port in the Configuration window, if required, after
installation. Navigate to ...Web Services Interface > Communications > HTTP,
change the value of Port (On Server Restart), and restart the TDV Server.
 TIBCO® Data Virtualization

36 | Using Operations from a Web Services Client
You can test the port connection (even if from the local Studio machine) by
right-clicking either the admin node or the util node in the resource tree and
selecting Test Service.

WSDL Definitions of Operations

All operations are defined in two WSDL files: one for /system/admin operations,
and one for /system/util operations. You can view one of the WSDL files by
right-clicking either the admin node or the util node in the resource tree and
selecting View WSDL.

Note: A View WSDL link is also available in the upper right corner of the URI
page that appears when you right-click either the admin node or the util node in
the resource tree and select Test Service. See Web Services Port, page 35.

Run a code generator with the WSDL definitions as input, or hand-code your
XML documents.
TIBCO® Data Virtualization

Web Services Operations |37
Web Services Operations

This topic contains an alphabetical listing of all Web services operations available
in TDV, and separate descriptions of structures that occur in multiple places
among operation elements.

• Operations Reference, page 37

• Recurring Element Structures, page 246

• TDV Resource Types and Subtypes, page 261

Operations Reference

This section describes all TDV/Studio operations in alphabetical order, along
with their resource tree location, request elements, response elements, and faults.

In Studio, optional request or response elements are displayed in italic on the
Parameters tab. In this documentation, as on the Info tab, these elements are
followed by “optional” in parentheses.

Locations are shown as /system/admin/<branch> or /system/util/<branch>. In
the resource tree, operations appear in these branches under both Desktop and
localhost.

Input Values

To enter the input values for an operation, open the operation and click the
Execute button in the upper left corner of its pane (on any tab, even Info). An
Input Values window opens, with the operation name listed under Parameter.
The Value area contains a hierarchical series of lines in which to type values for
the request elements.
 TIBCO® Data Virtualization

38 | Operations Reference
For example, if you click the Execute button for the updateResourcePrivileges
operation, this window appears.

To assign READ and WRITE privileges to groupABC on datasource NZ 6.0, find
the question marks in the syntax and type the values shown in bold, and then
click OK:
<resource:updateResourcePrivileges
xmlns:resource="http://www.compositesw.com/services/system/admin/r
esource">
 <resource:updateRecursively>false</resource:updateRecursively>

<resource:updateDependenciesRecursively>false</resource:updateDepe
ndenciesRecursively>

<resource:updateDependentsRecursively>false</resource:updateDepend
entsRecursively>
 <resource:privilegeEntries>
 <resource:privilegeEntry>
 <resource:path>/shared/NZload/NZ 6.0</resource:path>
 <resource:type>DATA_SOURCE</resource:type>
 <resource:privileges>
 <resource:privilege>
 <resource:domain>composite</resource:domain>
 <resource:name>groupABC</resource:name>
 <resource:nameType>GROUP</resource:nameType>
 <resource:privs>read write</resource:privs>
 <resource:combinedPrivs>0</resource:combinedPrivs>
 <resource:inheritedPrivs>0</resource:inheritedPrivs>
 </resource:privilege>
 </resource:privileges>
 </resource:privilegeEntry>
 </resource:privilegeEntries>
 <resource:mode>SET_EXACTLY</resource:mode>
</resource:updateResourcePrivileges>
TIBCO® Data Virtualization

Operations Reference |39
Note: If you open the Input Values window and do not replace the question
marks with actual values, and then click OK, you get an “internal error” message
(in this example, ‘Cause: “?” is not a valid resource type.’

addLicenses

Register with the server one or more licenses provided within the license text.
Also see getLicenses, page 137 and removeLicenses, page 187.

Location

/services/webservices/system/admin/server/operations/

Request Elements

licenseText: The license text.

Response Elements

licenses: List of licenses that were registered with the server. See Licenses
Element, page 254.

Faults

IllegalArgument: If any of the provided licenses are invalid.

Security: The user must have both ACCESS_TOOLS and
MODIFY_ALL_CONFIG rights.

addLoginModule

Add a login module to the PAM login sequence.

Location

/services/webservices/system/util/security/operations/

Request Elements

name

group (optional)

enabled (optional)

properties: List of properties for the login module:
 TIBCO® Data Virtualization

40 | Operations Reference
Response Elements

id: The ID value of the new login module instance.

Faults

IllegalArgument: If the input XML is not a valid Login Module.

Security: If no implementation exists for the named login module.

Security: If the user is not composite\admin.

addPrincipalMapping

Add a principal mapping to use during user authentication.

Location

/services/webservices/system/util/security/operations/

Request Elements

The principal mapping to use: type, identifier, group.

Response Elements

id: The ID value for the new principal mapping instance.

Faults

Illegal Input: If the input is empty or not a valid principal mapping.

Security: If the user is not composite\admin.

addUsersToGroup

Add one or more users to a domain’s group.

Location

/services/webservices/system/admin/user/operations/

Request Elements

domainName: The domain name.
TIBCO® Data Virtualization

Operations Reference |41
groupName: The group name.

userNames: List of user names (and optionally domains) to add to the group.

Request Example
<user:addUsersToGroup
xmlns:user="http://www.compositesw.com/services/system/admin/user"
>
 <user:domainName>composite</user:domainName>
 <user:groupName>production-3</user:groupName>
 <user:userNames>
<user:entry>
 <user:name>jean</user:name>
 <user:domain>composite</user:domain>
 </user:entry>
<user:entry>
 <user:name>kim</user:name>
 <user:domain>composite</user:domain>
 </user:entry>
</user:userNames>
</user:addUsersToGroup>

Response Elements

N/A

Faults

NotAllowed: If the group cannot be updated as requested. The group
membership may not be updatable, like the composite domain’s “all” group.

NotAllowed: If an attempt is made to use this operation with an insufficient
license.

NotFound: If the domain does not exist.

NotFound: If the group does not exist.

NotFound: If any of the provided users do not exist.

Security: If the user does not have the ACCESS_TOOLS and
MODIFY_ALL_USERS rights.

addUserToGroups

Add a user to one or more groups within a domain.
 TIBCO® Data Virtualization

42 | Operations Reference
Location

/services/webservices/system/admin/user/operations/

Request Elements

domainName: The user’s domain name.

userName: The user name.

groupNames: List of group names (and their domains if needed) to add the user
into.

Request Example

In this example, you are adding user composite\jean to the admin group in the
composite domain and to the mgrs group in the production domain.
<user:addUserToGroups
xmlns:user="http://www.compositesw.com/services/system/admin/user"
>
 <user:domainName>composite</user:domainName>
 <user:userName>jean</user:userName>
 <user:groupNames>

<user:entry>
 <user:name>admins</user:name>
 <user:domain>composite</user:domain>
 </user:entry>

<user:entry>
 <user:name>mgrs</user:name>
 <user:domain>production</user:domain>
 </user:entry>

</user:groupNames>
</user:addUserToGroups>

Response Elements

N/A

Faults

NotAllowed: If the user cannot be updated as requested. The group membership
may not be updatable, like the composite domain’s “all” group.

NotAllowed: If an attempt is made to use this operation with an insufficient
license.

NotFound: If the domain does not exist.

NotFound: If the user does not exist.
TIBCO® Data Virtualization

Operations Reference |43
NotFound: If any of the provided groups do not exist.

Security: If the user does not have the ACCESS_TOOLS and
MODIFY_ALL_USERS rights.

beginSession

Start a new session. Web services use a connectionless protocol. This operation
allows multiple Web service invocations to appear as if they belong to the same
session.

This operation places a cookie on the HTTP connection. If the client supports
cookies, no additional actions are required to maintain the session.

As a second option, the client can provide the returned session token in the HTTP
basic authentication using &sessionToken=X for the user name and providing a
blank password, where X is the session token returned by this operation.

As a third option, the client can provide the returned session token with a SOAP
header element sessionToken like the following:
<soap-env:Envelope
xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:security="http://www.compositesw.com/services/system/util

/security">
<soap:Header>

<security:sessionToken>b9f5d033fb4a81-b02b5b760641c1d6</security:s
essionToken>

</soap:Header>
<soap-env:Body>

<!-- write body element -->
</soap-env:Body>

</soap-env:Envelope>

If the token is received by the server through more than one of these approaches,
precedence is first given to the SOAP header, then to the HTTP authentication,
and lastly to the cookie.

While the session is open, all responses for requests made during the session
contain a “PUT_SOMETHING_HERE” session token in the SOAP header
element.

Location

/services/webservices/system/util/session/operations/
 TIBCO® Data Virtualization

44 | Operations Reference
Request Elements

sessionTimeout (optional): The number of seconds to keep an inactive session
alive before it is automatically closed.

To view the default session timeout, select Administration > Configuration
from the Studio menu bar and check the value of the Session Timeout
parameter under ...> Sessions.

sessionName (optional): The session name. This usually includes the application
name as part of the string.

Request Example
<session:beginSession
xmlns:session="http://www.compositesw.com/services/system/util/ses
sion">
 <session:sessionTimeout>1200</session:sessionTimeout>

<session:sessionName>backup-restore-monthly</session:sessionName>
</session:beginSession>

Response Elements

sessionToken: A token that uniquely identifies this session. This should be used
within the SessionToken SOAP header for future invocations of operations.

Faults

IllegalArgument: If sessionTimeout is present and is not a positive integer.

NotAllowed: If a session for the current connection is already open.

beginTransaction

Start a transaction on the current session. The transaction continues until
closeTransaction, page 57 is invoked. Within a transaction, each operation that is
invoked becomes a work unit that is part of the transaction. A transaction must be
initiated before calling procedures like createExportArchive, page 69 and
createImportArchive, page 73. Later, closeTransaction must be called to COMMIT
or ROLLBACK the work units.

When the transaction is closed using a ROLLBACK, all work units within the
transaction are rolled back, if the work units support being rolled back.

When the transaction is closed using a COMMIT, all of the work units are
committed. If a failure occurs doing the transaction commit, the server attempts
to close the transaction using the technique specified by the transaction mode.
TIBCO® Data Virtualization

Operations Reference |45
The transactionMode can include one of the following options that control
compensation behavior:

• BEST_EFFORT: If a failure occurs during commit, log that failure and
continue to commit the remaining work units.

• COMPENSATE: If a failure happens during commit, compensate all
previously committed work units and rollback all work units that have not yet
been committed. (Default value.)

• NO_COMPENSATE: If a failure happens during commit, do nothing to
previously committed work units and roll back all work units that have not
yet been committed.

The transactionMode can also include one of the following options that controls
the behavior if the server goes down:

• FAIL_INTERRUPT: Log enough information so that when the server restarts
it can compensate any work units that were committed before the interrupt.

• IGNORE_INTERRUPT: Do no transaction logging. This option yields the best
performance. (Default value.)

• LOG_INTERRUPT: Log before the start of the commit and at key points
within the commit, so that if an interrupt occurs, it can be reconstructed.

Location

/services/webservices/system/util/session/operations/

Request Elements

transactionMode (optional): A space-separated list of up to two options, one from
each of these groups of three:

• BEST_EFFORT, COMPENSATE, or NO_COMPENSATE

• FAIL_INTERRUPT, IGNORE_INTERRUPT, or LOG_INTERRUPT

Request Example
<session:beginTransaction
xmlns:session="http://www.compositesw.com/services/system/util/ses
sion">
 <session:transactionMode>BEST_EFFORT
IGNORE_INTERRUPT</session:transactionMode>
</session:beginTransaction>
 TIBCO® Data Virtualization

46 | Operations Reference
Response Elements

N/A

Faults

IllegalArgument: If transactionMode contains modes that are not listed above or
contains conflicting modes.

IllegalState: If a transaction is already open in the current session.

cancelArchive

Cancel an in-progress archive that was started with createExportArchive, page 69
or createImportArchive, page 73. After the operation returns, the archive ID is no
longer valid.

The archive ID is only valid during a single transaction, so this operation can only
be used within an explicit transaction that also contains either
createExportArchive or createImportArchive. It can be used any time after
createExportArchive or createImportArchive is called, as long as this is done
within the same transaction and the archive has not been closed.

Location

/services/webservices/system/admin/archive/operations/

Request Elements

archiveId: The archive ID provided by the initial createExportArchive or
createImportArchive.

Request Example
<archive:cancelArchive
xmlns:archive="http://www.compositesw.com/services/system/admin/ar
chive">
 <archive:archiveId>archive_0037</archive:archiveId>
</archive:cancelArchive>

Response Elements

status:

• CANCELED: If the archive was successfully canceled.

• SUCCESS or FAIL (as appropriate): If the archive had already completed prior
to this operation.
TIBCO® Data Virtualization

Operations Reference |47
archiveReport (optional): If the status is SUCCESS or FAIL, lists of errors or other
messages that occurred during the archive. Otherwise, this element does not exist.
For the format of each entry element in archiveReport, see Messages Element,
page 255.

Faults

NotFound: The archiveId must still exist at the time of cancelArchive execution.
This can occur if the archive was previously canceled using this procedure, if the
getExportData returned the last chunk of data, if performArchiveImport,
page 177 previously returned a SUCCESS or FAIL status, or if this operation is
called on a different transaction.

cancelCreateDomain

Cancel creation of a domain that is currently in the process of being created.

This operation can be used in a separate session or transaction from the one that
started the domain creation using createDomain, page 68.

Location

/services/webservices/system/admin/user/operations/

Request Elements

domainName: The name of the domain being created that should be canceled.

Request Example
<user:cancelCreateDomain
xmlns:user="http://www.compositesw.com/services/system/admin/user"
>
 <user:domainName>production-HA</user:domainName>
</user:cancelCreateDomain>

Response Elements

status:

• CANCELED: If domain creation was successfully canceled.

• SUCCESS: If the domain was already created prior to this call and therefore
could not be canceled.
 TIBCO® Data Virtualization

48 | Operations Reference
Faults

NotAllowed: If an attempt is made to use this operation with an insufficient
license.

NotFound: Domain does not exist. This may also occur if the domain creation
failed.

Security: If the user does not have the ACCESS_TOOLS and
MODIFY_ALL_USERS rights.

cancelDataSourceReintrospect

Deprecated as of API version 6.0. Use cancelServerTask, page 50 instead.

Cancels a non-blocking reintrospect that was started with
reintrospectDataSource, page 185 and is still in progress. After this operation
returns, the reintrospect ID is no longer valid.

The reintrospect ID is only valid during a single transaction, so this operation can
only be used within an explicit transaction that also contains
reintrospectDataSource.

Location

/services/webservices/system/admin/resource/operations/

Note: This web services operation is different from the procedure of the same
name, which is in the resource tree under /lib/resource and which has not been
deprecated.

Request Elements

reintrospectId: The reintrospect ID is given by reintrospectDataSource.

Response Elements

status:

• CANCELED: If the reintrospect was successfully canceled.

• SUCCESS or FAIL (as appropriate): If the reintrospect had already completed
prior to this operation.

reintrospectReport (optional): If the reintrospect status is SUCCESS or FAIL, list
of errors or the changes that occurred during the reintrospect. Otherwise, this
element does not exist. For the format of each changeEntry element in
reintrospectReport, see Messages Element, page 255.
TIBCO® Data Virtualization

Operations Reference |49
Faults

NotFound: If the reinstrospectId does not exist. This can occur if the reintrospect
was previously canceled using this procedure, if the report was retrieved using
getDataSourceReintrospectResult, or if this operation is called on a different
transaction.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

cancelResourceStatistics

Cancel a statistics gathering process that is currently in progress. No action is
taken if the specified resources is not currently gathering statistics. Does not block
until the cancel signal is processed.

Note: This web services operation is different from the procedure of the same
name, which is in the resource tree under /lib/resource.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: Path to resource.

type: Type of resource. Can only be a relational physical DATA_SOURCE or a
TABLE.

Request Example
<resource:cancelResourceStatistics
xmlns:resource="http://www.compositesw.com/services/system/admin/r
esource">
 <resource:path>/shared/examples/ds_inventory</resource:path>
 <resource:type>DATA_SOURCE</resource:type>
</resource:cancelResourceStatistics>

Response Elements

N/A
 TIBCO® Data Virtualization

50 | Operations Reference
Faults

IllegalArgument: If the path is malformed or an illegal type is provided.

NotAllowed: If resource is of the wrong type.

NotFound: If the resource or any portion of the path to the resource does not exist.

Security: The user must have READ access on all items in path.

Security: The user must have the ACCESS_TOOLS right.

cancelServerTask

Cancel a running server task.

Server tasks are long-running processes maintained by TDV. They are associated
with the TDV session that created the task. If the TDV session ends, the task ends.

Operations that create server tasks return a taskId. This taskId can be used to later
query task results or cancel the task. Such operations generally have the Task
suffix in their name.

Normally, users can only cancel server tasks within the same TDV session used to
create the task. Users with the MODIFY_ALL_STATUS right can cancel tasks
regardless of which session owns the task.

Location

/services/webservices/system/util/common/operations/

Request Elements

taskId: The server task ID.

Response Elements

N/A

Faults

IllegalArgument: If the taskId is malformed.

NotFound: If there currently exists no task with the given taskId.

Security: If the current TDV session is different from the one originally used to
create the task and the user does not have the MODIFY_ALL_STATUS right.

Security: If the user does not have the ACCESS_TOOLS right.
TIBCO® Data Virtualization

Operations Reference |51
changeResourceOwner

Change the owner of a resource to the user specified by the newOwnerName
input attribute. The new resource owner gets only the GRANT privilege, but this
allows management of the resource and delegation of resource privileges as
appropriate.

This operation can only be called by users with the MODIFY_ALL_RESOURCES
right.

You cannot change ownership of resources already owned by system. The reverse
is also true: resources cannot change ownership to become a system-owned
resource. Additionally, resources cannot be owned by any user in the dynamic
domain, or by the anonymous user in the composite domain. Attempts to change
resources this way are quietly ignored.

If the recurse element is TRUE (set to 1) and the resource is a container, the
ownership change affects all resources within the container, including the
container itself.

Changing the ownership of a physical data source implicitly affects all contained
resources.

Resources within physical data sources cannot have their ownership directly
changed. If recurse is TRUE, the physical data source is changed, but this
operation does not recurse into the data structure, because the ownership change
of the child resources is implicitly changed to match the data source.

The currentOwnerName attribute restricts change of resource ownership to only
those resources that are owned by the currently named owner. When the
currentOwnerName feature is used with the recurse feature, the combined effect
changes ownership of only those child resources owned by currentOwnerName.

The default value for newOwnerDomain and currentOwnerDomain is composite
unless otherwise specified. They are optional input attributes.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path of the resource to assign to a new owner.

type: The type of the resource specified by the given path. Valid values are
CONTAINER, DATA_SOURCE, DEFINITION_SET, LINK, PROCEDURE,
TABLE, TREE, and TRIGGER.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.
 TIBCO® Data Virtualization

52 | Operations Reference
newOwnerName: The name of the new owner.

newOwnerDomain (optional): The domain name of the new owner. Defaults to
composite if not set.

currentOwnerName (optional): The name of the current owner. When user name
is set, this restricts ownership changes to those resources currently owned by the
specified user.

currentOwnerDomain (optional): The domain name of the current owner.
Defaults to composite if not set, and to currentOwnerName if set.

recurse (optional): If set to TRUE (1), the ownership change applies recursively to
child resources within the resource container. Default value is 0, meaning no
recursion is attempted.

Response Elements

resources: List of the modified resources and resource definitions. See Resources
Element, page 257.

Faults

IllegalArgument: Either the path element was malformed or an illegal type or
detail was provided.

NotAllowed: If the resource is a child of a physical data source.

NotAllowed: If the resource is currently owned by system.

NotAllowed: If newOwnerName is system in the composite domain.

NotAllowed: If newOwnerName is anonymous in the composite domain.

NotAllowed: If newOwnerDomain is dynamic.

NotAllowed: If currentOwnerName is system in the composite domain.

NotAllowed: If an attempt is made to use this operation with an insufficient
license.

NotFound: If the resource or any portion of the path to the resource does not exist.

NotFound: If the newOwnerName or currentOwnerName does not exist.

NotFound: If the newOwnerDomain or currentOwnerDomain does not exist.

Security: If the user does not have READ access on all items in the path to the
resource.

Security: If the user does not have WRITE access to the last item in path.
TIBCO® Data Virtualization

Operations Reference |53
Security: If the user does not have ACCESS_TOOLS and
MODIFY_ALL_RESOURCES rights.

Note: Separate actions may be needed to make a resource accessible and visible to
the new owner. The changeResourceOwner, page 51 operation does not move
resources into accessible directories. Use moveResource, page 173 or
moveResources, page 175 to place the resource in a directory for which the new
owner has read privileges on all parent containers.

clearIntrospectableResourceIdCache

Clear an existing data source resource identifier cache.

Resource identifier caches are created on a data source or reused when
getDataSourceResourceIdentifiers is called. The cache contains all known native
resources within a data source.

One such cache exists per data source per set per data source user.

The data source user associated with TDV session is used. For non-dynamic data
sources, this user is the user specified in the data source connection parameters.
For dynamic data source, this is the TDV session user that is passed to the data
source.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path of the data source.

Request Example
<resource:clearIntrospectableResourceIdCache
xmlns:resource="http://www.compositesw.com/services/system/admin/r
esource">
 <resource:path>/shared/examples/ds_inventory</resource:path>
</resource:clearIntrospectableResourceIdCache>

Response Elements

N/A

Faults

IllegalArgument: If the path is malformed.
 TIBCO® Data Virtualization

54 | Operations Reference
NotFound: If the data source or any portion of the path to the data source does
not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

clearResourceCache

Clear an existing resource cache. Only purposefully configured resources of type
TABLE and PROCEDURE support caching. Procedure variants are cleared from
the cache along with any cached results.

Use the refreshResourceCache, page 184 procedure to initiate an immediate
refresh of a table or cached view, or allow the cache to be refreshed on next use of
the resource.

Location

/services/webservices/system/admin/resource/operations/

Note: This web services operation is different from the procedure of the same
name, which is in the resource tree under /lib/resource.

Request Elements

path: The path of the resource configured to use caching.

type: The type of the resource. Valid values are TABLE and PROCEDURE.

Request Example
<resource:clearResourceCache
xmlns:resource="http://www.compositesw.com/services/system/admin/r
esource">

<resource:path>/shared/examples/ds_inventory/inventorytransactions
</resource:path>
 <resource:type>TABLE</resource:type>
</resource:clearResourceCache>

Response Elements

N/A
TIBCO® Data Virtualization

Operations Reference |55
Faults

IllegalArgument: If the path is malformed or an illegal type is provided.

IllegalState: If the cache is disabled.

NotAllowed: The resource type must support caching. Only TABLE and
PROCEDURE resources support caching.

NotFound: If the resource or any portion of the path to the resource does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have READ access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

clearResourceStatistics

Clear statistics data on the specified resource. Statistics can be gathered on data
sources and tables.

Resource statistics can be refreshed directly by calling the
refreshResourceStatistics, page 185 operation. Statistics become available next
time a refresh happens.

Location

/services/webservices/system/admin/resource/operations/

Note: This web services operation is different from the procedure of the same
name, which is in the resource tree under /lib/resource.

Request Elements

path: The path of the cached resource.

type: The resource type. Valid type values are a relational physical
DATA_SOURCE or TABLE.

Request Example
<resource:clearResourceStatistics
xmlns:resource="http://www.compositesw.com/services/system/admin/r
esource">

<resource:path>/shared/examples/ds_inventory/inventorytransactions
</resource:path>
 <resource:type>TABLE</resource:type>
 TIBCO® Data Virtualization

56 | Operations Reference
</resource:clearResourceStatistics>

Response Elements

N/A

Faults

IllegalArgument: If the path is malformed or an illegal type is provided.

IllegalState: If statistics gathering is disabled.

NotAllowed: If the resource is of the wrong type.

NotFound: If the resource or any portion of the path to the resource does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have the ACCESS_TOOLS right.

closeResult

Close the given result associated with the ID. All system resources associated
with the result are closed. This includes cursors, query statistics, and anything
else tracked by the system for the result. If the given ID is for procedural result, all
output cursors are closed.

There is no need to call closeResult for each tabular resultId returned within
procedural result. If the execution associated with the ID has not completed, it is
terminated.

Location

/services/webservices/system/admin/execute/operations/

Request Elements

id: A tabular or procedural result ID.

Response Elements

N/A
TIBCO® Data Virtualization

Operations Reference |57
Faults

NotFound: If the result for the given ID does not exist within the current
transaction or has already been closed.

closeSession

Close the current session. See beginSession, page 43 for more information.

Location

/services/webservices/system/util/session/operations/

Request Elements

N/A

Request Example
<session:closeSession
xmlns:session="http://www.compositesw.com/services/system/util/ses
sion"/>

Response Elements

N/A

Faults

IllegalState: If the current session is not currently open.

closeTransaction

Close the current transaction by either committing it or rolling it back, depending
on the action specified.

• COMMIT commits all changes made in the current transaction. Failures
during commit are handled as specified in beginTransaction, page 44.

• ROLLBACK rolls back all changes made in the current transaction.

Location

/services/webservices/system/util/session/operations/
 TIBCO® Data Virtualization

58 | Operations Reference
Request Elements

action: COMMIT or ROLLBACK.

Request Example
<session:closeSession
xmlns:session="http://www.compositesw.com/services/system/util/ses
sion"/>

Response Elements

N/A

Faults

IllegalArgument: If the action is not COMMIT or ROLLBACK.

IllegalState: If no transaction is currently open in the current session.

TransactionFailure: If there is an error in committing the transaction.

copyResource

Replicate the specified resource into an existing folder. This procedure allows the
resource to be copied into a new location and renamed. Owner and security
privileges remain the same in the new copy of the resource.

Note: This web services operation is different from the procedure of the same
name, which is in the resource tree under /lib/resource.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The TDV source path, which is also known as the Resource Name for
copying.

type: The type of the source resource to be copied. Valid TDV types are
DATA_SOURCE, DEFINITION_SET, LINK, PROCEDURE, TABLE, TREE, and
TRIGGER

targetContainerPath: The path of the target container to copy the resource into.

newName: The new name to call the copied resource.
TIBCO® Data Virtualization

Operations Reference |59
copyMode: Controls behavior in the case where a resource exists with the same
name and type in the container specified by newPath. This element can be one of
the following:

• ALTER_NAME_IF_EXISTS: If a resource of the same name and type of the
source resource already exists in the target container, avoid conflicts by
automatically generating a new name. Names are generated by appending a
number to the end of the provided name.

• FAIL_IF_EXISTS: Fails if a resource of the same name and type already exists
in the target container. The resource are not copied if this occurs.

• OVERWRITE_MERGE_IF_EXISTS: If a resource of the same name and type as
the source resource already exists in the target container, overwrite the
resource in the target container. If the source resource is a container, merge
the contents of the source container with the corresponding resource in the
target. All resources in the source container overwrite those resources with
the same name in the target, but child resources in the target with different
names are not overwritten and remain unaltered.

• OVERWRITE_REPLACE_IF_EXISTS: If a resource of the same name and type
of the source resource already exists in the target container, overwrite the
resource in the target container. If the source resource is a container, replace
the container within the target container with the source container. This is
equivalent to deleting the container in the target before copying the source.

Response Elements

N/A

Faults

DuplicateName: If a resource in the target container exists with the same type as
the source, same name as newName, and the copy mode is FAIL_IF_EXISTS.

IllegalArgument: If any of the given paths or types are malformed, or if the
copyMode is not one of the legal values.

IllegalState: If the source resource is not allowed to be copied. Resources in
/services/databases/system, /services/webservices/system, or within any
physical data source, cannot be copied.

NotAllowed: If the source resource is not allowed to exist within the target
container. Resources cannot be copied into a physical data source. LINK
resources can only be copied into a RELATIONAL_DATA_SOURCE, SCHEMA,
or a PORT under /services. Non-LINK resources cannot be copied into any
location under /services.

NotFound: If the source resource or any portion of the new path does not exist.
 TIBCO® Data Virtualization

60 | Operations Reference
Security: If the user does not have READ access on all items in the source path.

Security: If the user does not have READ access on the items in
targetContainerPath other than the last item.

Security: If the user does not have WRITE access to the last item in
targetContainerPath.

Security: If the user does not have WRITE access to a resource that is to be
overwritten in one of the overwrite modes.

Security: If the user does not have the ACCESS_TOOLS right.

copyResourcePrivileges

Enable changes to resource privileges for users and groups, by copying privileges
from other resources.

Changes can be made to one or more resources with different source resources for
one or many users and groups. Resource privileges can be set for a specified set of
users and groups without modifying any existing privileges for other users and
groups, or the procedure can set resource privileges restrictively to only
privileges on the explicit source resources.

Only a user with GRANT privilege on a resource can modify the privileges for
that resource. The owner of a resource always has GRANT privilege, as do users
with the MODIFY_ALL_RESOURCES right.

When mode is OVERWRITE_APPEND or is not supplied, privileges are applied
user by user, so that updating privileges for one user or group does not alter
privileges from any other user or group.

The privileges applied for a user or group replace the previous value for that user
or group.

When mode is SET_EXACTLY, all privileges on the resource are made to look
exactly like the privileges of source resource.

When updateRecursively is FALSE, privileges are applied only to the specified
resources. When it is TRUE, privileges are recursively applied into any
CONTAINER or DATA_SOURCE resource specified. When recursively applying
privileges, the privilege change is ignored for any resource the user lacks owner
privileges for. Privileges that are not applicable for a given resource type are
automatically stripped down to the set that is legal for each resource:

• TABLE resources support NONE, READ, WRITE, SELECT, INSERT,
UPDATE, and DELETE.

• PROCEDURE resources support NONE, READ, WRITE, and EXECUTE.

• All other resource types only support NONE, READ, and WRITE.
TIBCO® Data Virtualization

Operations Reference |61
Location

/services/webservices/system/admin/resource/operations/

Request Elements

updateRecursively: If TRUE, all children of the given resources are recursively
updated with the privileges assigned to their parent.

copyPrivilegeEntries: List of entries containing one source resource and a list of
destination resources. Privileges of the source resource are copied over to
destination resources in the specified mode.

• copyPrivilegeEntry (optional):

• srcResource: Path and type of source resource.

• dstResource (one or more): Path and type of destination resource.

mode (optional): Determines whether privileges are merged with existing ones:

• OVERWRITE_APPEND (default) merges and does not update privileges for
users or groups not mentioned.

• SET_EXACTLY makes privileges look exactly like those provided in the call.

Response Elements

N/A

Faults

IllegalArgument: If any path is malformed, or any type or privilege entry is
illegal, or mode is not one of the legal values.

NotAllowed: If an attempt is made to use this operation with an insufficient
license.

NotFound: If a path refers to a resource that does not exist.

Security: If for a given entry path the user does not have READ access on any item
in a path other than the last item, or does not have GRANT access on the last item.

Security: If the user does not have the ACCESS_TOOLS right.

copyResources

Copy the specified resources into a folder.
 TIBCO® Data Virtualization

62 | Operations Reference
Location

/services/webservices/system/admin/resource/operations/

Request Elements

entries: List of source path-type pairs to copy.

targetContainerPath: The path of the target container to copy the resources into.

copyMode: Controls behavior in the case where a resource exists with the same
name and type in the container specified by newPath. It can be one of the
following:

• ALTER_NAME_IF_EXISTS: If a resource of the same name and type as the
source resource already exists in the target container, avoid conflicts by
automatically generating a new name. Names are generated by appending a
number to the end of the provided name.

• FAIL_IF_EXISTS: Fail if a resource of the same name and type of the source
resource already exists in the target container. No resources are copied if this
occurs.

• OVERWRITE_MERGE_IF_EXISTS: If a resource of the same name and type of
the source resource already exists in the target container, overwrite the
resource in the target container. If the source resource is a container, merge
the contents of the source container with the corresponding resource in the
target. All resources in the source container overwrite those resources with
the same name in the target, but child resources in the target with different
names are not overwritten and remain unaltered.

• OVERWRITE_REPLACE_IF_EXISTS: If a resource of the same name and type
of the source resource already exists in the target container, overwrite the
resource in the target container. If the source resource is a container, replace
the container within the target container with the source container. This is
equivalent to deleting the container in the target before copying the source.

Response Elements

N/A

Faults

DuplicateName: If a resource in the target container exists with the same name
and type as one of the source and the copy mode is FAIL_IF_EXISTS.

IllegalArgument: If any of the given paths or types are malformed, or if the
copyMode is not one of the legal values.
TIBCO® Data Virtualization

Operations Reference |63
IllegalState: If the source resource is not allowed to be copied. Resources in
/services/databases/system, /services/webservices/system, or within any
physical data source, cannot be copied.

NotAllowed: If any of the source resources are not allowed to exist within the
target container. Resources cannot be copied to a physical data source. LINK
resources can only be copied into a RELATIONAL_DATA_SOURCE, SCHEMA,
or a PORT under /services. Non-LINK resources cannot be copied into any
location under /services.

NotFound: If any of the source resources or any portion of the new path does not
exist.

Security: If the user does not have READ access on all items in the source paths.

Security: If the user does not have READ access on the items in the newPath other
than the last item.

Security: If the user does not have WRITE access to the last item in newPath.

Security: If the user does not have WRITE access to a resource that is to be
overwritten in one of the overwrite modes.

Security: If the user does not have the ACCESS_TOOLS right.

createCluster

Create a cluster on this server node.

Location

/services/webservices/system/admin/resource/operations

Request Elements

clusterName: The display name of the cluster to create.

Request Example
<server:createCluster
xmlns:server="http://www.compositesw.com/services/system/admin/ser
ver">
 <server:clusterName>HQ-cluster-113</server:clusterName>
</server:createCluster>

Response Elements

N/A
 TIBCO® Data Virtualization

64 | Operations Reference
Faults

IllegalState: If the server is already part of a cluster.

Security: If the user does not have both ACCESS_TOOLS and
MODIFY_ALL_CONFIG rights.

createConnector

Create a connector.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

connector: The connector to create. See Connector Element, page 249.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

Response Elements

connector: The connector created.

Faults

IllegalArgument: If the path is malformed, or the detail or attributes are illegal.

DuplicateName: If a connector with the same name already exists.

Security: If the user does not have READ access on all items in path except the last
one.

Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

createCustomDataSourceType

Create a custom data source type.

Note: Invoke getDataSourceTypes, page 120 to get a complete list of existing valid
data source types.
TIBCO® Data Virtualization

Operations Reference |65
Location

/services/webservices/system/admin/resource/operations/

Request Elements

dataSourceType: This element should have a name, type, JDBC URL pattern,
driver class name, and parent data source type name. For optional attributes, see
Attributes Element, page 248.

Response Elements

resources: List of the newly created resources. See Resources Element, page 257.

dataSourceType: Type of the data source created.

Faults

IllegalArgument: If the name or type is malformed, or the detail or attributes are
illegal.

DuplicateName: If a custom data source type with the same name already exists.

createDataSource

Create a data source resource.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: An existing path to the container where the new data source metadata is to
be placed.

name: Name to give to the new data source.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.
 TIBCO® Data Virtualization

66 | Operations Reference
dataSourceType: The type of data source to create. Invoke the operation
getDataSourceTypes, page 120 to get a list of valid data source types. Valid values
include, but are not limited to, the following (excluding descriptions in
parentheses):

annotation (optional): A description of the resource.

attributes (optional): Connection information and other information as defined by
the data source type. Although this is optional, most data sources require that
some attributes be provided when created. If a required attribute is missing and
the attribute has no default value, a NotAllowed fault is generated. See Attributes
Element, page 248.

Response Elements

resources: List of the newly created resource. See Resources Element, page 257.

• CustomProc • Netezza

• DataDirect_Mainframe • Oracle (for Oracle 9i and
10g (Thin Driver)
resources)

• DB2 (for DB2 v7 (Type 4) resources) • Oracle_Type2 (for Oracle
9i and 10g (OCI Driver)
resources)

• DB2_Mainframe (for DB2 z/OS v8 (Type
4) resources)

• SqlServer

• DB2_Type2 (for DB2 v7 (Type 2)
resources)

• Sybase

• File • Teradata

• FileCache • VirtualRelational

• Informix (for Informix 9.x resources) • VirtualWsdl

• Ldap • Wsdl

• MsAccess • XmlFile

• MsExcel • XmlHttp

• MySql
TIBCO® Data Virtualization

Operations Reference |67
Faults

DuplicateName: If a resource already exists with the given path and name.

IllegalArgument: If the path is malformed or the detail is not a legal value.

IllegalArgument: If an unsupported attribute is provided.

NotAllowed: If a required attribute is missing.

NotAllowed: If it is not legal to create the resource using the given path and
name. Data sources cannot be created inside other data sources. Only
COMPOSITE_DATABASE typed sources can be created in /services/databases,
and only COMPOSITE_SERVICE typed sources can be created in
/services/webservices (or within folders under this location). No other type of
data source can be created under /services, nor can these data source types be
created at any other location.

NotAllowed: If an attempt is made to create a custom Java procedure or custom
data source with an insufficient license.

NotFound: If any portion of path does not exist.

NotFound: If the requested data source type does not exist.

Security: If the user does not have READ access on all items in path except the last
one.

Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

createDBHealthMonitorTable

Create table for DB Health Monitor.

Location

/services/webservices/system/admin/resource/operations

Request Elements

tablePath: Path of data source, in TDV format, in which to create the table.

tableName: Name to give the table.

Response Elements

N/A
 TIBCO® Data Virtualization

68 | Operations Reference
Faults

Security: If the user does not have both ACCESS_TOOLS and
MODIFY_ALL_CONFIG rights.

createDomain

Create a domain. For some domains this creates a /users/domainName folder
resource.

The set of valid domain types can be acquired using getDomainTypes, page 124.
The set of required and optional attributes for creating the domain can be
acquired using getDomainTypeAttributeDefs, page 123.

If "isBlocking" is set to TRUE, then this operation will not return until the
processing associated with the execution has completed and the "outputs"
element is set. A value of FALSE is not supported.

Location

/services/webservices/system/admin/user/operations/

Request Elements

domainName: The name of the domain to create.

domainType: The domain type name.

isBlocking: If TRUE, the domain is created when this operation returns. A value
of FALSE is not supported.

annotation (optional): A description of the domain.

attributes (optional): List of domain type specific attributes. The required
attributes vary by domain type. See Attributes Element, page 248.

Response Elements

status:

• SUCCESS if the domain has been created.

• FAIL if the domain failed to be created.

• INCOMPLETE if the domain is still being created. An INCOMPLETE domain
can be canceled using cancelCreateDomain, page 47.
TIBCO® Data Virtualization

Operations Reference |69
Faults

DuplicateName: If a domain with the same name already exists.

IllegalArgument: If any of the given types or attributes are not valid.

NotAllowed: If additional domains of the given domain type cannot be created.

NotAllowed: If an attempt is made to use this operation with an insufficient
license.

NotFound: If the domain type does not exist.

Security: If the user does not have the ACCESS_TOOLS and
MODIFY_ALL_USERS rights.

createExportArchive

Create and prepare an archive for export. The archive is defined by its settings.
The settings define exactly what is exported.

This operation must be called within an explicit transaction context wrapping its
usage and that of other archive operations between beginTransaction, page 44
and closeTransaction, page 57 calls. An export archive is created on the server
using this operation. After it is created, the export archive can be further
manipulated using getArchiveContents, page 102, getArchiveExportSettings,
page 105, and updateArchiveExportSettings, page 196. Multiple calls to these
three operations can be made in any order to analyze and redefine what is to be
exported. When satisfied, the client then calls getArchiveExportData, page 104
one or more times.

After getArchiveExportData is called, updateArchiveExportSettings can no
longer be called.

When the last of the export data is returned by getArchiveExportData, or when
cancelArchive, page 46 is called, the server’s concept of the archive no longer
exists, and further calls to any of these operations results in a NotFound faults
because the archiveId is invalid.

The archive contains all resources listed in the resources elements. Each resource
has an optional includeChildren element, which defaults to TRUE if unset. If a
user exports a resource that contains a child resource that the user does not have
READ permission for, the child resource is omitted. (The export succeeds without
generating a security fault, but the resource is not exported.) If this element is
unset, no resources are exported. The “all” subelement can be used to include all
resources on the server.
 TIBCO® Data Virtualization

70 | Operations Reference
The archive contains definitions of all the domains, users, and groups identified
in the users element. If this element is unset, no domains, users, or groups are
exported. The “all” subelement can be used to includes all domains, users, and
groups defined by the server. The archive contains all of the server attributes
identified in the serverAttributes element. If this element is unset, no server
attributes are exported.

The “all” subelement can be used to export all server attributes. See
getServerAttributeDefs, page 157 for server attribute definitions and
getServerAttributes, page 158 for server attribute values.

A number of additional options can be specified in the exportOptions element. If
an option is specified, the associated information is exported. Otherwise it is not.
By default none of these options are exported. The valid options are:

• INCLUDE_CACHING: Include caching configurations for resources.

• INCLUDE_CUSTOM_JAVA_JARS: Include custom Java JARs in the export.
(ADMIN ONLY)

• INCLUDE_STATISTICS: Include any resources stats known about objects
including the table boundaries, and column boundaries.

• INCLUDE_DEPENDENCY: Gather and include all dependent resources for
the resources you choose to export.

• INCLUDE_PHYSICAL_SOURCE_INFO: Include sensitive connection
information for included physical sources. (OWNER ONLY)

• INCLUDE_REQUIRED_USERS: Include the information about the required
users in the export file.

• INCLUDE_SECURITY: Include resource privilege settings. (OWNER ONLY)

If the caller requests an option marked ADMIN ONLY and does not have admin
privileges, a Security fault is generated.

If the caller requests an option marked OWNER ONLY, that option is applied
only to resources where the caller is the owner. If the caller has admin privileges,
the option is applied to all resources regardless of ownership. Messages are
generated, but no fault occurs during export.

The importHints element contains information that can be used by the client
performing an import of this exported data at a later time. This allows creation of
an export archive that has built-in preconceptions of what resources and users
should be rebound on import, as well as what resource attributes should be
remapped (such as database connection information).

Location

/services/webservices/system/admin/archive/operations/
TIBCO® Data Virtualization

Operations Reference |71
Request Elements

settings: Description of how much information to export. The settings have the
following structure:

• name: The name of the export archive.

• description: A verbose description of the archive.

• type:

– BACKUP: All information in this archive replaces the server information
when imported.

– ROOT: Resources within the archive cannot be relocated when reimported.

– PACKAGE: Resources within the archive can be relocated when
reimported.

• resources (optional): List of resources to export.

– all (optional): If set, all resources on the server are exported.

– resource (0 or more): List of path-type pairs for the individual resources to
export:

includeChildren (optional): If TRUE or unset, recursively include all children of
this resource in the export. If FALSE, do not include any children.

• users (optional): List of users to export. See Users Element, page 260

• serverAttributes (optional): List of server attributes to be exported.

– all (optional): If set, all server attributes are exported.

– attributes (optional): A space-delimited list of names of the server
attributes to be exported.

• exportOptions (optional): A space-delimited list of archive options.

• importHints (optional): Hints that can be used during import.

– rebindResources: List of resources that should be rebound on import.

– rebindUsers: List of users that should be mapped to other users on import.

– remapAttributes: List resource attributes that should be mapped during
import.

• createInfo (optional): Any setting of this element is ignored.

Response Elements

archiveId: The archive ID. This is used by other archive operations to manipulate
this archive.
 TIBCO® Data Virtualization

72 | Operations Reference
Faults

IllegalArgument: If the type is malformed.

IllegalArgument: If any of the resource paths or types are malformed.

IllegalArgument: If any of the settings are malformed or contain illegal values.

IllegalArgument: If any of the server attributes are malformed.

IllegalArgument: If any of the export options are malformed.

IllegalArgument: If any of the import hints are malformed.

IllegalState: This operations can only be called within an explicit transaction
context. Use beginTransaction and closeTransaction.

NotAllowed: If an explicitly named resource cannot be exported. The inclusion of
implicitly identified resources, using includeChildren, that are not allowed to be
exported, does not cause this fault.

NotFound: If any portion of any of the resource paths and types does not exist.

NotFound: If any of the domains, users, or groups do not exist.

NotFound: If any of the server attributes do not exist.

NotFound: If any of the resources specified in the importHints are not included in
the export archive.

NotFound: If any of the users specified in the importHints are not included in any
of the resources, privileges, or user data in the export archive.

Security: If the caller does not have READ access on all items in the explicitly
identified resource paths. Paths to resources implicitly included, using
includeChildren, that the caller does not have READ on, do not generate this
fault.

Security: If the caller does not have admin privileges and attempts to use an
export option that is ADMIN ONLY.

Security: If the caller attempts to use an OWNER ONLY export option does not
have admin privileges and attempts to use an export option that is ADMIN
ONLY.

createGroup

Create a new group within a domain. If the domain is an EXTERNAL domain, the
group is a read-only reference to that domain’s group. In other words, when the
group is destroyed, only the reference to the group is destroyed.
TIBCO® Data Virtualization

Operations Reference |73
Location

/services/webservices/system/admin/user/operations/

Request Elements

domainName: The name of the domain in which to create the group.

groupName: The group name.

explicitRights (optional): A bit mask for a group’s rights. For a table of values, see
User and Group Rights Mask, page 259.

annotation (optional): A description of the group.

Response Elements

N/A

Faults

DuplicateName: If a group with the same name already exists.

IllegalArgument: If the group name is not valid within the domain.

NotAllowed: If the domain does not allow groups to be created in it.

NotAllowed: If an attempt is made to use this operation with an insufficient
license.

NotFound: If the domain does not exist.

Security: If the group does not have the ACCESS_TOOLS and
MODIFY_ALL_USERS rights.

createImportArchive

Create and prepare an archive for import.

The data element contains the data aggregated from prior calls to
getArchiveExportData, page 104. CreateImportArchive must be called within an
explicit transaction context wrapping its usage and that of other archive
operations between beginTransaction, page 44 and closeTransaction, page 57
calls.
 TIBCO® Data Virtualization

74 | Operations Reference
This operation creates an import archive on the server. After it is created, the
import archive can be further manipulated using getArchiveContents, page 102,
getArchiveImportSettings, page 108, and updateArchiveImportSettings,
page 198. Multiple calls to these four operations can be made in any order to
analyze and redefine what portion of the data should be imported. When
satisfied, the client then calls performArchiveImport.

If performArchiveImport, page 177 was called without blocking, subsequent calls
to getArchiveImportReport, page 106 can be made to determine whether the
import has completed or not. After performArchiveImport is called,
updateArchiveImportSettings can no longer be called. When a call to
performArchiveImport completes with a SUCCESS or FAIL status, or when
cancelArchive, page 46 is called, the server’s concept of the archive no longer
exists, and further calls to any of these operations results in NotFound faults
because the archiveId is invalid.

Location

/services/webservices/system/admin/archive/operations/

Request Elements

data: The archive data to import. This is the data that was created by a prior call to
getArchiveExportData.

Response Elements

archiveId: The archive ID.

Faults

IllegalArgument: If any of the data is malformed.

NotSupported: If the version of the archive data is not supported.

createLink

Create a link in the /services directory that points to a TABLE or a PROCEDURE
resource. Links effectively publish a resource so that it can be consumed by
external clients.

A link can be created even if the target resource does not exist. No validation of
the existence of the target resource is performed by this procedure. Privileges
must also be set appropriately and independently for use of the linked resource.
TIBCO® Data Virtualization

Operations Reference |75
Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: Place where the link is to be created. Links can only be created in the
/services container and within a Data Service, schema, or operations resource.

name: The name of the link.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

targetPath: The fully qualified path of the resource that the new link points to.

targetType: Valid targets specified by targetPath can be either TABLE or
PROCEDURE.

annotation (optional): A description of the link.

Response Elements

resources: List of the newly created resources. The resource:impactlevel can be
checked when detail is set to SIMPLE or FULL for some target validity
information in the response. See Resources Element, page 257.

Faults

DuplicateName: If a resource of any type already exists with the given path and
name.

IllegalArgument: If either path or targetPath is malformed, or either detail or
targetType is illegal.

NotAllowed: If it is not legal to create the resource using the given path and
name. Links can only be created under /services and within
RELATIONAL_DATA_SOURCE, SCHEMA, and OPERATION resources.

NotAllowed: If the targetType is not allowed to be linked. Only TABLE and
PROCEDURE resources can be used as the target of a link.

NotFound: If any portion of the path does not exist.

Security: If the user does not have READ access on all items in path.

Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.
 TIBCO® Data Virtualization

76 | Operations Reference
createLinksRecursively

Create links for each of the resources within the source path recursively into the
target container. Container resources are not linked; instead, new resources are
created within path to match all containers within the source path. The specific
type of container create in path depends on its location within path.

Only resources that can be linked are linked. Resources that cannot be linked or
are not containers will be linked. If includeRoot is TRUE, the source resource is
the one resource that is recursively traversed. If includeRoot is FALSE, the source
path must be a container and the contents of this container are used as a list of
sources.

If a resource already exists at the targetPath, the behavior of this operation
depends on the createMode as follows:

• ALTER_NAME_IF_EXISTS: If a resource in targetPath already exists within
path with the same name, avoid conflicts by automatically generating a new
name. This only applies to the root if includeRoot is TRUE.

• FAIL_IF_EXISTS: Fail if a resource in the targetPath already exists within
path. No resources are created if this occurs. This only applies to the root if
includeRoot is TRUE.

• OVERWRITE_MERGE_IF_EXISTS: If a resource in targetPath already exists
within path with the same name, recreate the resource within path. If the
resource is a container, merge the contents of the container with the
corresponding resource in path. Any link resources with conflicting names are
recreated.

• OVERWRITE_REPLACE_IF_EXISTS: If a resource in targetPath already exists
within path with the same name, recreate the resource within path. If the
resource is a container, destroy and recreate the container within path. Only
RELATIONAL_DATA_SOURCE resources can be used as the source. The
target can be /services/databases if includeRoot is TRUE; it can be a
COMPOSITE_DATABASE under /services/databases if includeRoot is
FALSE.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: A path to the resource to use as a source.

type: The type of the source resource.
TIBCO® Data Virtualization

Operations Reference |77
detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

targetContainerPath: The path of the container resource to create links into.

createMode: One of the following: ALTER_NAME_IF_EXISTS, FAIL_IF_EXISTS,
OVERWRITE_MERGE_IF_EXISTS, or OVERWRITE_REPLACE_IF_EXISTS.

includeRoot: If TRUE, create a resource with the same name as the source within
the target container. If FALSE, create links to the children of the source container
into the target container.

copyAnnotations: If TRUE, all created link resources within path inherit their
annotations from the corresponding resource in targetPath. If FALSE, no
annotations are provided for created links. Container annotations are not created
or modified.

Response Elements

resources: List of the newly created or updated resources. See Resources Element,
page 257

Faults

DuplicateName: If a resource already exists with the same path and type as one of
the source resources, and createMode is FAIL_IF_EXISTS.

IllegalArgument: If any of the given paths, types, or detail levels are malformed.

NotAllowed: If includeRoot is TRUE and the target container is not /services, or
if includeRoot is FALSE and the target container is not a
COMPOSITE_DATABASE under /service/databases.

IllegalState: If the source is not a RELATIONAL_DATA_SOURCE.

NotFound: If the target resource or any portion of path does not exist.

Security: If the user does not have READ access on all items in path.

Security: If the user does not have READ access on the items in the
targetContainerPath.

Security: If the user does not have WRITE access to the last item in
targetContainerPath.

Security: If the user does not have WRITE access to a resource that is to be
recreated when in one of the OVERWRITE modes.

Security: If the user does not have the ACCESS_TOOLS right.
 TIBCO® Data Virtualization

78 | Operations Reference
createResource

Create a resource in a default state. Resources cannot be created under /services
unless otherwise noted, and cannot be created within a physical data source.

See the table in TDV Resource Types and Subtypes, page 261 for a list of the
resource type-subtype element combinations supported by this operation.

• CONTAINER / CATALOG_CONTAINER: Can only be created within a data
source under /services/databases.

• CONTAINER / PORT_CONTAINER: Can only be created within a SERVICE
under /services/webservices.

• CONTAINER / SCHEMA_CONTAINER: Can only be created within a
CATALOG that is under /services/databases.

• CONTAINER / SERVICE_CONTAINER: Can only be created within a TDV
Web Services data source that is under /services/webservices.

• CONTAINER / FOLDER_CONTAINER: Cannot be created anywhere under
/services except in another FOLDER under /services/webservices.

• DEFINITION_SET / SQL_DEFINITION_SET

• DEFINITION_SET / XML_SCHEMA_DEFINITION_SET

• DEFINITION_SET / WSDL_DEFINITION_SET

• PROCEDURE / BASIC_TRANSFORM_PROCEDURE: Created with no target
procedure and no output columns, so it is not runnable.

• PROCEDURE / CUSTOM_PROCEDURE: Created empty, with no associated
data source, so it is not runnable.

• PROCEDURE / EXTERNAL_SQL_PROCEDURE: Created with no SQL text,
so it is not runnable.

• PROCEDURE / SQL_SCRIPT_PROCEDURE: Created with a simple default
script body that is runnable.

• PROCEDURE / XQUERY_PROCEDURE: Created with no XQuery text, so it
is not runnable.

• PROCEDURE / XSLT_PROCEDURE: Created with no XSLT text, so it is not
runnable.

• PROCEDURE / STREAM_TRANSFORM_PROCEDURE: Created with no
target procedure and no output columns, so it is not runnable.

• PROCEDURE / XQUERY_TRANSFORM_PROCEDURE: Created with no
target schema and no model, so it is not runnable.
TIBCO® Data Virtualization

Operations Reference |79
• PROCEDURE / XSLT_TRANSFORM_PROCEDURE: Created with no target
procedure and no output columns, so it is not runnable.

• TABLE / SQL_TABLE: Created with no SQL text or model, so it is not
runnable.

• TRIGGER / NONE: Created disabled.

• CONNECTOR / JMS: Created with no connection information.

• CONNECTOR / HTTP: Created with no connection information.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: A path to the container with which to place the resource.

name: The name of the resource.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

type: The type of resource to create. See the list above.

subtype: The subtype of resource to create. See the above list.

annotation (optional): A description of the resource.

resource (optional): An entire resource.

resourceBundle (optional).

includeOwnership (optional): If resource is supplied, apply the ownership.

Response Elements

resources: List of the newly created resources. See Resources Element, page 257.
The amount of detail returned varies depending on the value specified for detail
in the request.

Faults

DuplicateName: If a resource already exists with the given path and name.

IllegalArgument: If any of the given paths, types, or detail levels are malformed.

NotAllowed: If it is not legal to create the resource at the specified path.
 TIBCO® Data Virtualization

80 | Operations Reference
NotAllowed: If an attempt is made to create a custom Java procedure, SQL script,
or a trigger, with an insufficient license.

NotFound: If any portion of path does not exist.

Security: If the user does not have READ access on all items in path except the last
one.

Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

createUser

Create a new user within a domain. For some domains this creates a home folder
for the user under /users/domainName/userName. The password element is
ignored when creating users in a non-COMPOSITE domain. If the domain is
EXTERNAL, a read-only reference to the user is created.

Note: By design, this operation returns a NotAllowed fault if you attempt to use it
to create a user in the LDAP domain or any other external domain.

Location

/services/webservices/system/admin/user/operations/

Request Elements

domainName: The domain name to create the user in.

userName: The user name.

password (optional): The user’s password. This is optional for some domains.
This is silently ignored for non-COMPOSITE domains.

explicitRights (optional): A bit mask for a user’s rights. For a table of values, see
User and Group Rights Mask, page 259.

annotation (optional): A description of the user.

Response Elements

N/A

Faults

DuplicateName: If an user with the same name already exists.

IllegalArgument: If the user name is not valid within the domain.
TIBCO® Data Virtualization

Operations Reference |81
NotAllowed: If the domain is external, such as an LDAP domain.

NotAllowed: If the domain does not allow users to be created.

NotAllowed: If an attempt is made to use this operation with an insufficient
license.

NotFound: If the domain does not exist.

Security: If the user does not have the ACCESS_TOOLS and
MODIFY_ALL_USERS rights.

destroyConnector

Destroy a connector.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

name: The name of the connector.

Response Elements

destroyedAll: TRUE if the connector was completely destroyed; otherwise
FALSE.

Faults

IllegalState: If the resource is not allowed to be destroyed.

NotFound: If the resource or any portion of the path does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access to the resource.

Security: If the user does not have the ACCESS_TOOLS right.

destroyCustomDataSourceType

Destroy a custom data source type.
 TIBCO® Data Virtualization

82 | Operations Reference
Location

/services/webservices/system/admin/resource/operations/

Request Element

dataSourceTypeName: the name of the custom data source type to destroy.

Response Elements

destroyed: Whether or not connector destruction was successful.

Faults

NotFound: If the data source type does not exist.

destroyDomain

Destroy a domain. This destroys all groups and users within the domain, and
destroys the /users/domainName folder if it exists.

Location

/services/webservices/system/admin/user/operations/

Request Element

domainName: The domain name.

Request Example
<user:destroyDomain
xmlns:user="http://www.compositesw.com/services/system/admin/user"
>
 <user:domainName>sample_domain</user:domainName>
</user:destroyDomain>

Response Elements

N/A

Faults

NotAllowed: If the domain cannot be destroyed. For example, the composite
domain cannot be destroyed.
TIBCO® Data Virtualization

Operations Reference |83
NotAllowed: If an attempt is made to use this operation with an insufficient
license.

NotFound: If the domain does not exist.

Security: If the user does not have the ACCESS_TOOLS and
MODIFY_ALL_USERS rights.

destroyGroup

Destroy a group in a domain. The users within the group no longer belong to the
destroyed group. If the group’s domain is an EXTERNAL domain, only the
read-only reference to the group is deleted. The group still exists within that
domain, but it is not visible to the TDV Server.

Location

/services/webservices/system/admin/user/operations/

Request Elements

domainName: The domain name.

groupName: The name of the group to destroy.

Request Example
<user:destroyGroup
xmlns:user="http://www.compositesw.com/services/system/admin/user"
>
 <user:domainName>composite</user:domainName>
 <user:groupName>backup_admins</user:groupName>
</user:destroyGroup>

Response Elements

N/A

Faults

NotAllowed: If the group cannot be destroyed. For example, the “all” group in
the composite domain cannot be destroyed.

NotAllowed: If an attempt is made to use this operation with an insufficient
license.

NotFound: If the group does not exist.
 TIBCO® Data Virtualization

84 | Operations Reference
NotFound: If the domain does not exist.

Security: If the user does not have the ACCESS_TOOLS and
MODIFY_ALL_USERS rights.

destroyResource

Destroy a resource and all resources that might be in that container as well. The
force element defines the behavior for containers. If force is FALSE, no resources
are destroyed unless all resources within the container can be destroyed. If force
is TRUE, as many resources are destroyed as possible, but if any resource cannot
be destroyed, its container is not destroyed, either.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: A source path of the resource to be destroyed.

type: The type of the source resource to be destroyed.

force: If TRUE, attempt to destroy as many resources as possible. If FALSE, do not
destroy any resource if there exists at least one that is not destroyable.

Response Elements

destroyedAll: If TRUE, all of the resources were completely destroyed, including
the contents of containers; otherwise FALSE.

Faults

IllegalArgument: If the path or type is malformed.

IllegalState: If the resource is not allowed to be destroyed.

NotFound: If the resource or any portion of the path does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access to the resource.

Security: If force is FALSE and the resource is a container and the user does not
have WRITE access to any resource within the container.

Security: If the user does not have the ACCESS_TOOLS right.
TIBCO® Data Virtualization

Operations Reference |85
destroyResources

Destroy several resources. Containers are recursively destroyed.

The force element defines the behavior for containers. If force is FALSE, no
resources are destroyed unless all resources within the container can be
destroyed. If force is TRUE, as many resources are destroyed as possible, but if
any resource cannot be destroyed, the container that resource is in is not
destroyed.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

entries: List of path-type pairs for the resources to be destroyed.

force: If TRUE, attempt to destroy as many resources as possible. If FALSE, do not
destroy any resource if there exists at least one that is not destroyable.

Response Elements

destroyedAll: If TRUE, all of the resources were completely destroyed including
the contents of containers; otherwise FALSE.

Faults

IllegalArgument: If any of the given paths or types are malformed.

IllegalState: If any of the resources are not allowed to be destroyed.

NotFound: If any of the resources or any portion of their paths do not exist.

Security: If the user does not have READ access on all items in paths other than
the last one.

Security: If the user does not have WRITE access to the resources.

Security: If force is FALSE and the resource is a container and the user does not
have WRITE access to any resource within the container.

Security: If the user does not have the ACCESS_TOOLS right.
 TIBCO® Data Virtualization

86 | Operations Reference
destroyUser

Destroy a user in a domain. The user is removed from any group it belonged to.
The user’s home folder, /users/domainName/userName, is destroyed if it exists.
All resources owned by the user that were not in the user’s home folder are
transferred to be owned by user nobody in domain composite. If the user’s
domain is an EXTERNAL domain, only the read-only reference to the user is
destroyed. The user still exists within that domain, but is not visible to the TDV
Server.

Location

/services/webservices/system/admin/user/operations/

Request Elements

domainName: The user’s domain name.

userName: The name of the user to destroy.

Response Elements

N/A

Faults

NotAllowed: If the user cannot be destroyed. For example, the admin user in the
composite domain cannot be destroyed.

NotAllowed: If an attempt is made to use this operation with an insufficient
license.

NotFound: If the domain does not exist.

NotFound: If the specified user does not exist.

Security: If the user does not have the ACCESS_TOOLS and
MODIFY_ALL_USERS rights.

executeNativeSql

Execute the provided sqlText directly within the data source at dataSourcePath.
This can only be used with data sources that support the direct submission of
SQL. This cannot be used with published data services.

If "isBlocking" is set to TRUE, then this operation will not return until the
processing associated with the execution has completed and the "result" element
is set.
TIBCO® Data Virtualization

Operations Reference |87
If set to FALSE, then this operation will return when the processing associated
with the execution has completed, but it will not wait to fill the "result" element
with data.

If includeMetadata is TRUE, the response includes the metadata element. The
metadata element describes the names and types of the column data that return in
the result, in this call or in a later call to getTabularResult, page 161.

If maxRows is set, result contains at most maxRows number of rows. If maxRows
is fewer than the total number of rows of data available, additional calls to
getTabularResult need to be made to get the rest of the available data. Use
hasMoreRows element in result to determine if additional data is available. This
is more accurate than comparing the number of rows returned with maxRows
because the server might opt to return fewer than maxRows.

If users or groups is set, queries against system tables return resources that are
accessible by the users and groups in these lists. If they are not set, system table
queries return resources that are accessible by the current user. The current user
must have the READ_ALL_RESOURCES privilege to set these parameters.

In the response, the completed element returns TRUE if all of the results
associated with the execution have been exhausted.

The completed element reports whether all possible results have been retrieved.
The requestStatus element reports the status of the server request associated with
the execution. The request status can be one of the following:

• STARTED: The request has started. The request has been created, but is not
yet running.

• WAITING: The request is waiting in a queue for the server to process the
request.

• RUNNING: The request is currently being executed by the server.

• COMPLETED: The execution associated with the request has completed.
Results can now be acquired.

• CLOSING: The request is closing.

• SUCCESS: The request closed with success.

• FAILURE: The request closed with failure.

• TERMINATED: The request was terminated.

All system resources associated with this operation are closed when the
transaction containing the call completes. This means that resultId is not valid if it
is used outside of the transaction that called this execute operation. If you want to
use resultId, you must surround the calls to this execute operation and any
operations using resultId with an explicit transaction.
 TIBCO® Data Virtualization

88 | Operations Reference
Only users with the ACCESS_TOOLS right can call this operation.

Location

/services/webservices/system/admin/execute/operations/

Request Elements

sqlText: The SQL to execute.

isBlocking: If TRUE (default), do not return until execution completes.

includeMetadata (optional): If TRUE, the response contains information about the
column names and their types. Defaults to FALSE.

skipRows (optional): The number of rows to skip in the execution output before
generating results. If not set, no rows are skipped. If set, the specified number of
rows is skipped in the execution output before returning any results. If skipRows
is greater than the total possible number of rows, no rows are returned.

maxRows (optional): The maximum number of rows to return. If not set, all rows
are returned.

consumeRemainingRows (optional): If set and TRUE, all remaining rows after
maxRows are consumed.

users: (optional) For system table queries, returns results that are accessible by the
users included in this list. Each user is specified by a name and optional domain.

groups: (optional) For system table queries, returns results that are accessible by
the groups included in this list. Each group is specified by a name and optional
domain.

dataSourcePath: The path to the data source.

Response Elements

completed: If TRUE, all processing associated with execution has completed.

requestStatus: Status of the server request performing the execution.

metadata (optional): Table metadata listing the column names and types within
the result.

• column: See Column Element, page 249.

rowsAffected (optional): If known, the number of rows affected by the execution
(otherwise unset). This includes a count of rows that were skipped (see skipRows
element) or consumed (see consumedRemainingRows element).

result (optional): The result data.
TIBCO® Data Virtualization

Operations Reference |89
hasMoreRows: TRUE if the table has more rows than the number affected
(rowsAffected, above).

totalRowCount: Total number of rows in the table.

rows: Type-value pair for each row.

resultId: A handle to the result in the server. Valid only if it is used inside of the
transaction that called this execute operation.

Use this with getTabularResult, page 161 and closeResult, page 56.

requestId: The server request ID associated with execution.

Faults

IllegalArgument: If any elements are malformed.

NotAllowed: If the data source does not support SQL execution.

NotFound: If the data source at the given path does not exist.

RuntimeError: If an error occurs during execution.

Security: If the user does not have the ACCESS_TOOLS right and READ, WRITE
and other appropriate privileges on the data source.

executeProcedure

Execute the resource located at the given path and type. Only PROCEDURE and
TABLE resources can be executed. If dataServiceName is provided, the path must
use dotted-path notation to specify a resource relative to the published data
service. If not, the path must use absolute TDV slash-path notation.

If "isBlocking" is set to TRUE, then the call to the procedure will not return until
the processing associated with the execution has completed and the "outputs"
element is set.

If set to FALSE, then the operation will return when the processing associated
with the execution has completed, but it will not wait to fill the "outputs" element
with data.

If includeMetadata is TRUE, the response includes the metadata element which
describes the names and types of the output parameter data which is provided in
the result either in this call or in a later call to getProceduralResult, page 143.

The inputs element contains a set of parameters to be inputs to the execution.
Each parameter has two elements:

• definition: SQL language type for this parameter value. For example,
VARCHAR(40) or BIGINT.
 TIBCO® Data Virtualization

90 | Operations Reference
• value: The value of this parameter.

Inputs cannot be provided for a TABLE resource. Executing a TABLE resource is
akin to showing the contents of that TABLE (SELECT * FROM <path>).

The outputs element, if set, contains exactly one output parameter, which
contains a tabular resultId. Additional calls to getTabularResult, page 161 may be
needed to retrieve data produced by this query.

The dataServiceName is the name of the public data service containing the
resource to be executed. If dataServiceName is included, use dotted-path notation
within sqlText for all resource references. If dataServiceName is not included, use
TDV slash-path notation.

If users or groups is set, queries against system tables return resources that are
accessible by the users and groups in these lists. If they are not set, system table
queries return resources that are accessible by the current user. The current user
must have the READ_ALL_RESOURCES privilege to set these parameters.

The completed element reports whether all possible results have been retrieved.

The requestStatus element reports the status of the server request associated with
the execution. The request status can be one of the following:

• STARTED: The request has started. The request has been created, but is not
yet running.

• WAITING: The request is waiting in a queue for the server to process the
request.

• RUNNING: The request is currently being executed by the server.

• COMPLETED: The execution associated with the request has completed.
Results can now be acquired.

• CLOSING: The request is closing.

• SUCCESS: The request closed with success.

• FAILURE: The request closed with failure.

• TERMINATED: The request was terminated.

The rowsAffected element is set if it is known how many rows were affected by
this execution.

The outputs element contains a set of ProcValue instance. If the output type is
cursor, you should get a resultId that is a handle to the result in server. You can
use it with getTabularResult and closeResult, page 56. If the out type is not cursor,
you should get a real output value.
TIBCO® Data Virtualization

Operations Reference |91
The returned resultId is a handle to the result in the server. This can be used with
getProceduralResult, page 143 and closeResult. Output parameters which are
cursors have a value returned which is a tabular resultId. This can be used with
getTabularResult and closeResult. Closing a tabular resultId closes only that
cursor, while closing a procedural resultId closes the procedure and all cursors
associated with the procedure.

All system resources associated with this operation are closed when the
transaction containing the call completes. This means that resultId is not valid if it
is used outside of the same transaction that called this execute operation. If you
want to use resultId, you must surround the calls to this execute operation and
any operations using resultId with an explicit transaction.

All users can call this operation, but only users with the ACCESS_TOOLS right
can omit the dataServiceName.

Location

/services/webservices/system/admin/execute/operations/

Request Elements

isBlocking (optional): If TRUE (the default), do not return until the execution
completes.

includeMetadata (optional): If TRUE, the response contains information about the
output parameter names and their types. Defaults to FALSE.

inputs (optional): List of parameter values to use as input for the execution.

dataServiceName (optional): The name of the public data service.

path: The path to the resource.

type: The type of the resource.

users: (optional) For system table queries, returns results that are accessible by the
users included in this list.

groups: (optional) For system table queries, returns results that are accessible by
the groups included in this list.

Response Elements

completed: If TRUE, all processing associated with execution has completed.

requestStatus: Status of the server request performing the execution.

metadata (optional): Table metadata listing the column names and types within
the result.
 TIBCO® Data Virtualization

92 | Operations Reference
parameter: See Parameters Element, page 255.

rowsAffected (optional): If known, the number of rows affected by the execution;
otherwise unset.

outputs (optional): List of parameter values returned as output from the
execution.

resultId: The result ID.

requestId: The server request ID associated with execution.

Faults

IllegalArgument: If any elements are malformed.

IllegalArgument: If any required parameters in the inputs element are missing.

IllegalArgument: If unexpected parameters are provided in the inputs element.

NotAllowed: If an attempt is made to execute a SQL script procedure with an
insufficient license.

RuntimeError: If an error occurs during execution.

Security: If the user omitted the dataServiceName and does not have the
ACCESS_TOOLS right.

Security: If the user does not have appropriate privileges on the resource referred
to by path and type.

executeSql

Execute the provided sqlText directly within the TDV server. If dataServiceName
is included, use dotted-path notation within sqlText for all resource references. If
dataServiceName is not included, use TDV slash-path notation.

If "isBlocking" is set to TRUE, then this operation will not return until the
processing associated with the execution has completed and the "result" element
is set.

If set to FALSE, then this operation will return when the processing associated
with the execution has completed, but it will not wait to fill the "result" element
with data.

If includeMetadata is TRUE, the response includes the metadata element which
describes the names and types of the column data provided in the result either in
this call or in a later call to getTabularResult, page 161.
TIBCO® Data Virtualization

Operations Reference |93
If maxRows is set, result contain at most maxRows number of rows. If maxRows
is smaller than the total number of rows of data available, additional calls to
getTabularResult need to be made to get the rest of the available data. Use
hasMoreRows element in result to determine if additional data is available. This
is more accurate than comparing the number of rows returned with maxRows
because the server might opt to return fewer than maxRows.

If consumeRemainingRows is set and TRUE, all remaining rows in excess of
maxRows are consumed.

If users or groups is set, queries against system tables return resources that are
accessible by the users and groups in these lists. If they are not set, system table
queries return resources that are accessible by the current user. The current user
must have the READ_ALL_RESOURCES privilege to set these parameters.

In the response, the completed element returns TRUE if all of the results
associated with the execution have been exhausted.

The completed element reports whether all possible results have been retrieved.

The requestStatus element reports the status of the server request associated with
the execution. The request status can be one of the following:

• STARTED: The request has started. The request has been created, but is not
yet running.

• WAITING: The request is waiting in a queue for the server to process the
request.

• RUNNING: The request is currently being executed by the server.

• COMPLETED: The execution associated with the request has completed.
Results can now be acquired.

• CLOSING: The request is closing.

• SUCCESS: The request closed with success.

• FAILURE: The request closed with failure.

• TERMINATED: The request was terminated.

All system resources associated with this operation are closed when the
transaction containing the call completes. This means that resultId is not valid if it
is used outside of the same transaction that called this execute operation. If you
want to use resultId, you must surround the calls to this execute operation and
any operations using resultId with an explicit transaction.

All users can call this operation, but only users with the ACCESS_TOOLS right
can omit the dataServiceName.
 TIBCO® Data Virtualization

94 | Operations Reference
Location

/services/webservices/system/admin/execute/operations/

Request Elements

sqlText: The SQL to execute.

isBlocking (optional): If TRUE (default), do not return until the execution
completes.

includeMetadata (optional): If TRUE, the response contains information about the
column names and their types. Default is FALSE.

skipRows (optional): The number of rows to skip in the execution output before
generating results. If not set, no rows are skipped. If set, the specified number of
rows is skipped in the execution output before returning any results. If skipRows
is greater than the total possible number of rows, no rows are returned.

maxRows (optional): The maximum number of rows to return. If not set, the
default number of rows is set to the value specified in the configuration option
“SOAP Row Limit”. To change this configuration option, go to Administration ->
Configuration -> Server -> Configuration -> Debugging -> Webservices and
change the value in the “SOAP Row Limit” option.

consumeRemainingRows (optional): If set and TRUE, all remaining rows after
maxRows are consumed.

users: (optional) For system table queries, returns results that are accessible by the
users included in this list.

groups: (optional) For system table queries, returns results that are accessible by
the groups included in this list.

dataServiceName (optional): The name of the public data service.

Response Elements

completed: If TRUE, all processing associated with execution has completed.

requestStatus: Status of the server request associated with the execution. See list
in the introduction to this topic.

metadata (optional): Table metadata listing the column names and types within
the result.

column: See Column Element, page 249.

rowsAffected (optional): If known, the number of rows affected by the execution
(otherwise unset). This includes a count of rows that were skipped (see skipRows
element) or consumed (see consumedRemainingRows element).
TIBCO® Data Virtualization

Operations Reference |95
result (optional): The result data.

hasMoreRows: TRUE if the table has more rows than the number affected
(rowsAffected, above).

totalRowCount: Total number of rows in the table.

rows: Type-value pair for each row.

resultId: A handle to the result in the server. Valid only if it is used inside of the
transaction that called this execute operation.

Use this with getTabularResult, page 161 and closeResult, page 56.

requestId: The server request ID associated with execution.

Faults

IllegalArgument: If any elements are malformed.

RuntimeError: If an error occurs during execution.

RuntimeError: If the user does not have appropriate privileges on any resources
referred to by the sqlText.

Security: If the user omitted the dataServiceName and does not have the
ACCESS_TOOLS right.

executePreparedSql

Execute a prepared statement within the Composite server. The sqlText is treated
as the parameterized query, and the parameterList is used to fill in the
parameters.

If "dataServiceName" is provided, then all resource references within "sqlText"
must use dotted-path notation to specify resources; otherwise CIS slash-path
notation should be used.

If "isBlocking" is set to TRUE, then execution of SQL will not return until the
processing associated with the execution has completed and the "result" element
is set.

If set to FALSE, then this operation will return when the processing associated
with the execution has completed, but it will not wait to fill the "result" element
with data.

If "includeMetadata" is "true", then the response will include the "metadata"
element which describes the names and types of the column data which will be
provided in the "result" either in this call or in a later call to getTabularResult,
page 161.
 TIBCO® Data Virtualization

96 | Operations Reference
If "skipRows" is set, then that many number of rows will be skipped in the
execution output before returning any results. If "skipRows" is greater than the
total possible number of rows, then no rows will be returned.

If "maxRows" is set, then "result" will contain at most "maxRows" number of
rows.

If "maxRows" is fewer than the total number of rows of data available, then
additional calls to "getTabularResult" will need to be made to get the rest of the
available data.

Use "hasMoreRows" element in "result" to determine if additional data is
available. This is more accurate than comparing the number of rows returned
with "maxRows" because the server might opt to return fewer than "maxRows".

If "consumeRemainingRows" is TRUE, then all remaining rows in excess of
"maxRows" will be consumed.

If "users" or "groups" is set, then queries against system tables will return
resources that are accessible by the users and groups in these lists. If they are not
set, then system table queries will return resources that are accessible by the
current user.

The current user must have the READ_ALL_RESOURCES privilege to set these
parameters.

In the response, the "completed" element will return true if all of the results
associated with the execution have been exhausted. The "completed" element
reports whether all possible results have been retrieved.

The "requestStatus" element reports the status of the server request associated
with the execution. The request status can be one of:

• "STARTED": The request has started. The request has been created, but is not
yet running.

• "WAITING": The request is waiting in a queue for the server to process the
request.

• "RUNNING": The request is currently being executed by the server.

• "COMPLETED": The execution associated with the request has completed.
Results can now be acquired.

• "CLOSING": The request is closing.

• "SUCCESS": The request closed with success.

• "FAILURE":The request closed with failure.

• "TERMINATED": The request was terminated.
TIBCO® Data Virtualization

Operations Reference |97
The "rowsAffected" element will be set if it is known how many rows were
affected by this execution. This includes a count of rows that were skipped (see
“skipRows” element) or consumed (see "consumedRemainingRows" element).

The returned "resultId" returns a handle to the result in the server. This can be
used with the getTabularResult, page 161 and closeResult, page 56 operations.

The "requestId" is the server request ID associated with execution.

All system resources associated with this operation are closed when the
transaction containing the call completes. This means that "resultId" is not valid if
it is used outside of the same transaction that called this execute operation. If you
want to use "resultId", you must surround the calls to this execute operation and
any operations using "resultId" with an explicit transaction.

All users can call this operation, but only users with the ACCESS_TOOLS right
can omit the "dataServiceName".

Request Elements

sqlText: The Parameterized SQL to be executed.

isBlocking (optional): If "true", do not return until the execution completes.
Defaults to "true".

includeMetadata (optional): If "true", the response will contain information about
the column names and their types. Defaults to "false".

skipRows (optional): The number of rows to skip in the execution output before
generating results. If not set, then no rows will be skipped.

maxRows (optional): The maximum number of rows to return. If not set, then
there all rows will be returned.

consumeRemainingRows (optional): If set to TRUE, then all remaining rows after
"maxRows" will be consumed.

dataServiceName (optional): The name of the public data service.

users: (optional) For system table queries, returns results that are accessible by the
users included in this list.

groups: (optional) For system table queries, returns results that are accessible by
the groups included in this list.

parameterList: The list of parameters to be used for the prepared Statement.

Response Elements:

completed: If "true", all processing associated with execution has completed.
 TIBCO® Data Virtualization

98 | Operations Reference
metadata (optional): Table metadata describing the column names and types
within the result.

rowsAffected (optional): If known, the number of rows affected by the execution;

otherwise unset.

result (optional): The result data.

resultId: The result ID.

requestId: The request ID.

Faults:

IllegalArgument: If any elements are malformed.

RuntimeError: If an error occurs during execution.

RuntimeError: If the user does not have appropriate privileges on any resources
referred to by the "sqlText".

Security: If the user omitted the "dataServiceName" and does not have the
ACCESS_TOOLS right.

executeSqlScript

Execute the provided scriptText directly within the TDV server.

If "isBlocking" is set to TRUE, then this operation will not return until the
processing associated with the execution has completed and the "outputs"
element is set.

If set to FALSE, then the execution of the Sql script will return when the
processing associated with the execution has completed, but it will not wait to fill
the "outputs" element with data.

If includeMetadata is TRUE, the response includes the metadata element which
describes the names and types of the output parameter data provided in the result
either in this call or in a later call to getProceduralResult, page 143.

The inputs element contains a set of parameters to be inputs to the execution. A
parameter contains two elements:

• definition: The SQL-language data type for this parameter value. For example,
VARCHAR(40) or BIGINT.

• value: The value of this parameter.
TIBCO® Data Virtualization

Operations Reference |99
If users or groups is set, queries against system tables return resources that are
accessible by the users and groups in these lists. If they are not set, system table
queries return resources that are accessible by the current user. The current user
must have the READ_ALL_RESOURCES privilege to set these parameters.

The completed element reports whether all possible results have been retrieved.

The requestStatus element reports the status of the server request associated with
the execution. The request status can be one of the following:

• STARTED: The request has started. The request has been created, but is not
yet running.

• WAITING: The request is waiting in a queue for request processing.

• RUNNING: The request is currently being executed by the server.

• COMPLETED: The execution associated with the request has completed.
Results can now be acquired.

• CLOSING: The request is closing.

• SUCCESS: The request closed with success.

• FAILURE: The request closed with failure.

• TERMINATED: The request was terminated.

The outputs element contains a set of ProcValue instance. If the out type is cursor,
you should get a resultId, which is a handle to the result in server. You can use it
with getTabularResult, page 161 and closeResult, page 56. If the out type is not
cursor, you should get real output value.

The returned resultId returns a handle to the result in the server. This can be used
with getProceduralResult, page 143 and closeResult, page 56.

The value returned for output parameters that are cursors is a tabular resultId.
This can be used with getTabularResult and closeResult. Closing a tabular
resultId only closes that cursor, while closing a procedural resultId closes the
procedure and all cursors associated with the procedure.

All system resources associated with this operation are closed when the
transaction containing the call completes. This means that resultId is not valid if it
is used outside of the same transaction that called this execute operation.
Therefore, if you want to use resultId, you must surround the calls to this execute
operation and any operations using resultId with an explicit transaction.

Only users with the ACCESS_TOOLS right can call this operation.

Location

/services/webservices/system/admin/execute/operations/
 TIBCO® Data Virtualization

100 | Operations Reference
Request Elements

isBlocking (optional): If TRUE (the default), do not return until the execution
completes.

includeMetadata (optional): If TRUE, the response contains information about the
output parameter names and their types. Defaults to FALSE.

inputs (optional): List of definitions and values for parameters to use as execution
input.

scriptText: The SQL to be executed.

users (optional): For system table queries, returns results that are accessible by the
users included in this list.

groups (optional): For system table queries, returns results that are accessible by
the groups included in this list.

Response Elements

completed: If TRUE, all processing associated with execution has completed.

requestStatus: Status of the server request performing the execution.

metadata (optional): Table metadata listing the column names and types within
the result.

column: See Column Element, page 249.

rowsAffected (optional): If known, the number of rows affected by the execution;
otherwise unset.

outputs (optional): A set of parameter values returned as output from the
execution.

result: The result ID.

requestId: The request ID.

Faults

IllegalArgument: If any elements are malformed.

IllegalArgument: If any required parameters in the inputs element are missing.

IllegalArgument: If unexpected parameters are provided in the inputs element

NotAllowed: If an attempt is made to use this operation with an insufficient
license. RuntimeError: If an error occurs during execution.

RuntimeError: If the user does not have appropriate privileges on any resources
referred to by the scriptText.
TIBCO® Data Virtualization

Operations Reference |101
Security: If the user does not have the ACCESS_TOOLS right.

getAllResourcesByPath

Get all of the specified resources for a given path.

Resources are normally uniquely identified by both the path and type of the
resource. This operation returns all resources at a given path regardless of type.
Multiple resources are returned if a path has multiple resources that differ by
type–for example, /shared/examples/ds_inventory (data source) and
/shared/examples/ds_inventory (view).

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path of the resource to get.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

Response Elements

resources: List of the resources at the given path. See Resources Element,
page 257.

Faults

IllegalArgument: If the path or detail are malformed.

NotFound: If no resources at the given path exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have the ACCESS_TOOLS right.

getAncestorResources

Get all of the ancestors of the specified resource up to and including the root
resource.
 TIBCO® Data Virtualization

102 | Operations Reference
Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path to the resource.

type: The type of the resource.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

Response Elements

resources: List of the ancestor resources. See Resources Element, page 257.

Faults

IllegalArgument: If the path, type, or detail are malformed.

NotFound: If the resource or any portion of the path to the resource does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have the ACCESS_TOOLS right.

getArchiveContents

Get the contents of the archive. The contents contains an explicit list of everything
that exists within the archive.

Use this operation with either an export or import archive. Use it anytime after
createExportArchive, page 69 or createImportArchive, page 73 is called, as long
as it is within the same transaction and the archive has not been closed.

Location

/services/webservices/system/admin/archive/operations/

Request Elements

archiveId: The ID of the archive whose contents to retrieve.

Response Elements

contents: The contents of the archive.
TIBCO® Data Virtualization

Operations Reference |103
• resources (optional): List of resources within the archive.

• users (optional): An explicit list of domains, users, and groups within this
archive. This is similar to Users Element, page 260, but some elements are
illegal, as marked below.

– all (illegal): This element is never set in this context.

– domains (optional): List of domains included within the archive.

all (illegal): This element is never set in this context.

domains: A space-delimited list of domain names of the domains.

– users (optional): List of users within the archive.

domain (0 or more): A domain that contains users within the archive.

all (illegal): This element is never set in this context.

name: The name of the domain containing the users.

users (optional): A space-delimited list of user names of the users within the
archive.

– groups (optional): List of groups within the archive. Includes user
membership.

domain (0 or more): A domain that contains groups within the archive.

name: The name of the domain containing the groups.

all (illegal): This element is never set in this context.

groups (optional): List of groups and their definitions within the archive.

name: The name of the group.

all (illegal): This element is never set in this context.

user (optional): List of users to be listed as members of the group.

• serverAttributes (optional): A space-delimited list of server attributes (name
elements) within the archive.

• exportOptions (options): A space-delimited list of options (name elements)
used to export additional data into the archive.

Faults

NotFound: If the archiveId does not exist. This can occur if:

• the archive was previously canceled using this procedure

• the getExportData returned the last chunk of data
 TIBCO® Data Virtualization

104 | Operations Reference
• getImportReport or performImportArchive previously returned a FAIL or
SUCCESS status

• this operation is called on a different transaction

getArchiveExportData

Export some or all of the archive data. This operation performs the actual export
of the archive created using createExportArchive, page 69. After this operation is
called, updateExportSettings can no longer be called. If maxBytes is unset, this
operation returns the entire archive in one call.

If the status is INCOMPLETE, additional calls to getArchiveExportData, page 104
must be made to get the remainder of the archive.

If the status is SUCCESS, cancelArchive, page 46 is invoked, or the bounding
transaction is closed, the archive process is closed and the archive ID becomes
invalid. It is generally recommended that you always use maxBytes, because the
actual size of the export data cannot be determined ahead of time and it can be
very large depending on what is being exported.

This operation can only be used with an export archive. It can be used anytime
after createExportArchive is called, as long as it is within the same transaction
and the archive has not been closed.

Location

/services/webservices/system/admin/archive/operations/

Request Elements

archiveId: The ID of the export archive.

maxBytes (optional): The maximum number of bytes to retrieve for the archive in
this call. This must be a positive number.

Response Elements

status:

• CANCELED: If the archive was canceled during this call.

• SUCCESS: If the export has completed.

• INCOMPLETE: If there is more archive data to be retrieved.

archiveReport (optional): List of messages generated during this call, if any. If no
messages exist, this element is unset. See Messages Element, page 255.
TIBCO® Data Virtualization

Operations Reference |105
data (optional): The archive data.

Faults

IllegalArgument: If maxBytes is not a positive number.

IllegalState: If this operation is called using an import archive ID.

NotFound: If archive for the archive ID does not exist.

getArchiveExportSettings

Get the export settings used or to be used by an archive export.

This operation can be used with either an export or import archive. It can be used
anytime after createExportArchive, page 69 or createImportArchive, page 73 is
called, as long as it is within the same transaction and the archive has not been
closed.

Location

/services/webservices/system/admin/archive/operations/

Request Element

archiveId: The ID of the archive.

Response Elements

settings: Description of what was or will be exported for this archive. The settings
have the following structure:

• name: The name of the export archive.

• description: A verbose description of the archive.

• type:

– BACKUP: All information in this archive replaces the server information
when imported.

– ROOT: Resources within the archive cannot be relocated when reimported.

– PACKAGE: Resources within the archive can be relocated when
reimported.
 TIBCO® Data Virtualization

106 | Operations Reference
• resources (optional): List of exported resources.

– all (optional): If set, all resources on the server were or will be exported.

– resource (0 or more): List of individual exported resources.

path: The path to the resource.

type: The type of the resource.

includeChildren (optional): If TRUE or unset, recursively export all child
resources. If FALSE, do not include any children.

• users (optional): List of exported users. See Users Element, page 260.

• serverAttributes (optional): List of exported server attributes.

– all (optional): If set, all server attributes were or will be exported.

– attributes (optional): A space-delimited list of exported server attribute
names. See Attributes Element, page 248.

• exportOptions (optional): A space-delimited list of archive options (name
elements).

• importHints (optional): Hints that can be used during import. See Import
Hints, page 252.

• createInfo (optional): Information about the creation of the exported archive.

– archiveDomain: The domain of the user that created this archive.

– archiveUser: The name of the that created this archive.

– archiveVersion: The version of the archiver used to create this archive.

– createDate: When the archive was created.

– sourceJvm: What Java Virtual Machine was used to create this archive.

– sourceOperationSystem: What operating system was used to create the
archive.

Faults

NotFound: If archive for the archive ID does not exist.

getArchiveImportReport

Get the current status of an in-progress import.
TIBCO® Data Virtualization

Operations Reference |107
This operation can only be used with an import archive. It can be used any time
after createImportArchive, page 73 is called, as long as it is within the same
transaction and the archive has not been closed. Especially if
performArchiveImport, page 177 was called without blocking, subsequent calls to
getArchiveImportReport, page 106 can be made to determine whether the import
has completed or not. It only gets the messages that is generated if import
completed.

If an import status is CANCELED or FAIL, the import is in an inconsistent state.
The bounding transaction should be rolled back before performing other
operations.

Location

/services/webservices/system/admin/archive/operations/

Request Elements

archiveId: The ID of the archive.

isBlocking If TRUE, this call does not return until the import has completed. If
FALSE, this call returns immediately. Only TRUE is supported.

Response Elements

status:

• CANCELED: The archive was canceled during this call.

• SUCCESS: The import has completed.

• INCOMPLETE: The import is still in progress.

• FAIL: The import failed during or prior to this call.

archiveReport (optional): List of messages generated since the previous call to
performArchiveImport or getArchiveImportReport, if any. If no messages exist,
this element is unset. See Messages Element, page 255 for message structure.

Faults

IllegalArgument: If the isBlocking element is malformed.

IllegalState: If this operation is called using an export archive ID.

NotFound: If archive for the archive ID does not exist.
 TIBCO® Data Virtualization

108 | Operations Reference
getArchiveImportSettings

Get the import settings that are to be used for controlling the archive import.

This operation can only be used with an import archive. It can be used anytime
after createImportArchive, page 73 is called, as long as it is within the same
transaction and the archive has not been closed.

A number of options can be specified in the importOptions element. If an option
is specified, the associated information is exported; otherwise, it is not. By default,
if the caller has admin privileges, the setting of the importOptions is that of the
exportSettings. If the caller does not have admin privileges, the default is the
same except that any items marked as ADMIN ONLY are not included.

The valid options are:

• INCLUDE_CACHING: Include caching configurations for resources.

• INCLUDE_CUSTOM_JAVA_JARS: Include custom Java JARs in the export.
(ADMIN ONLY)

• INCLUDE_STATISTICS: Include any resources statistics known about things
including the table boundaries, and column boundaries.

• INCLUDE_DEPENDENCY: Gather and include all dependent resources for
the resources you choose to export.

• INCLUDE_PHYSICAL_SOURCE_INFO: Include sensitive connection
information for included physical sources. (OWNER ONLY)

• INCLUDE_REQUIRED_USERS: Include the information about the required
users in the export file.

• INCLUDE_SECURITY: Include resource privilege settings. (OWNER ONLY)

If an option is marked OWNER ONLY, that option is only be applied to resources
where the caller is the owner. If the caller has admin privileges, the option is
applied to all resources regardless of ownership. If the option cannot be applied,
messages are generated, but no fault occurs during import.

Location

/services/webservices/system/admin/archive/operations/

Request Element

archiveId: The ID of the archive.
TIBCO® Data Virtualization

Operations Reference |109
Response Elements

settings: Description of how much of the archive to import and what
modifications should be made during import. The settings have the following
structure:

• excludeResources (optional): List of resources that should not be imported. By
default this is unset.

• entry (optional): Paths and types for the entries.

• relocateResources (optional): List of mappings (using path-type pairs) of
resources from their location in the archive to where they should be imported.
By default this is unset.

• rebindResources (optional): List of mappings (using path-type pairs) of
resources references within the archive to where they should refer to. By
default this is unset.

• rebindUsers (optional): List of mappings (using domainName-userName
pairs) of users within the archive from who they are to who they should be. By
default this is unset.

• remapAttributes (optional): List of resource attribute settings that should be
applied on import. By default this is unset. Each resource has a map element
that contains a path-type pair designating a resource, and an attribute
element. see Attributes Element, page 248.

• importOptions (optional): Space-separated list of archive options (name
elements) indicating what additional features should be imported. By default,
the same options used for export are used for import.

Faults

IllegalState: If this operation is called using an export archive ID.

NotFound: If archive for the archive ID does not exist.

getAvailableLoginModuleNames

Retrieve a list of valid login modules types by name.

Location

/services/webservices/system/util/security/operations/

Request Elements

N/A
 TIBCO® Data Virtualization

110 | Operations Reference
Response Elements

loginModule (optional): List of names of the available login modules:

• name

• bundleEnabled

Faults

N/A

getCachedResourceStatisticsConfig

Get the Cost Based Optimizer (CBO) statistics configuration for a data source.
Cache must be configured before configuring statistics.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path of a cacheable resource.

type: The type of the resource. Can only be TABLE.

Response Elements

cachedStatisticsConfig: The statistics configuration of the given resource.

• configured (optional): TRUE if statistics gathering is configured otherwise
FALSE.

• useEnabled (optional): TRUE if gathered statistics are to be used by CBO;
otherwise FALSE. Can be used to temporarily disable CBO.

• cardinalityMin (optional): Minimum cardinality for this resource. Setting this
value overrides gathered statistics.

• cardinalityMax (optional): Maximum cardinality for this resource. Setting this
value overrides gathered statistics.

• cardinalityExpected (optional): Expected cardinality for this resource. Setting
this value overrides gathered statistics.

• gatherEnabled (optional): Defines what statistics should be gathered for this
resource. Valid values are TABLE_BOUNDARY or CUSTOM.
TIBCO® Data Virtualization

Operations Reference |111
• maxTime (optional): Integer 0 to n in minutes; maximum amount of time the
process should spend gathering data; 0 means no limit.

• columns (optional): Only applicable if gatherEnabled is set to CUSTOM.

– column: List indicating what specific data to get for each column.

– name: Simple column name.

– flags: Valid values are NONE, BOUNDARY or ALL.

– columnMin (optional): Minimum value for this resource. Setting this value
overrides gathered statistics.

– columnMax (optional): Maximum value for this resource. Setting this value
overrides gathered statistics.

– columnDistinct (optional): Distinct value this resource. Setting this value
overrides gathered statistics.

• onCacheRefresh (optional): If TRUE, statistics gathering should be
automatically triggered by cache refresh. If FALSE, refresh mode can be
specified.

• refresh (optional): How the statistics data should be refreshed. See Refresh
Element, page 256.

Faults

IllegalArgument: If the path is malformed or an illegal type is provided.

NotAllowed: If the resource is of the wrong type.

NotFound: If the resource or any portion of the path to the resource does not exist.

Security: If the user does not have READ access on all items in path.

Security: If the user does not have the ACCESS_TOOLS right.

getChildResources

Get all the immediate child resources of a resource. Only CONTAINER and
DATA_SOURCE resources have child resources. All other resource types return
an empty list.

Location

/services/webservices/system/admin/resource/operations/
 TIBCO® Data Virtualization

112 | Operations Reference
Request Elements

path: The path of the parent resource.

type: The type of the parent resource.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

Response Elements

resources: List of child resources. See Resources Element, page 257.

Faults

IllegalArgument: If the path is malformed or an illegal type is provided.

NotFound: If any portion of the path does not exist.

Security: If the user does not have READ access on all items in path.

Security: If the user does not have the ACCESS_TOOLS right.

getClusterConfig

Get cluster configuration data.

Location

/services/webservices/system/admin/resource/operations

Request Elements

N/A

Response Elements

clusterConfig: Cluster configuration data, including cluster display name and list
of servers in the cluster.

clusterDisplayName

serverList: List of server names, host names, and ports.

Faults

IllegalState: If the server is not part of a cluster.
TIBCO® Data Virtualization

Operations Reference |113
Security: If the user does not have both ACCESS_TOOLS and
READ_ALL_CONFIG rights.

getConnectorGroup

Get all connectors within a specified group.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

name: The name of the connector group.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

Response Elements

connectors: List of connectors. See Connector Element, page 249.

Faults

NotFound: If the resource or any portion of the path to the resource does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

getConnectorGroupNames

Get all a list of the connector group names if any connector is part of a group.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

N/A

Response Elements

names: List of the connector group names.
 TIBCO® Data Virtualization

114 | Operations Reference
Faults

Security: If the user does not have READ access on all items in path other than the
last one.

getConnectors

Get all connectors.

Location

/services/webservices/system/admin/resource/operations/

Request Element

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

Response Elements

connectors: List of the connectors. See Connector Element, page 249.

Faults

IllegalArgument: If the path is malformed or an illegal type or detail is provided.

NotFound: If the resource or any portion of the path to the resource does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

getCreateDBHealthMonitorTableSQL

Get SQL for creating health monitor table.

Location

/services/webservices/system/admin/server/operations/

Request Elements

tablePath: Path of data source, in TDV format, in which to create the table.

tableName: Name of the table.
TIBCO® Data Virtualization

Operations Reference |115
Response Elements

sql: Native SQL string.

Faults

Security: If the user does not have both ACCESS_TOOLS and
MODIFY_ALL_CONFIG rights.

getDataSourceAttributeDefs

Get the attribute definitions for data sources of the given data source type. These
attributes definitions are used when creating and updating data sources, such as
the host and port to connect to.

Also see the related operation getDataSourceTypeAttributeDefs, page 119 which
defines the attributes for the data source type itself.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

dataSourceType: Valid input value is a resource:name from getDataSourceTypes,
page 120.

Response Elements

attributeDefs: List of attribute definitions. See Attribute Definitions Element,
page 247.

Faults

NotFound: The given data source type does not exist.

Security: If the user does not have the ACCESS_TOOLS right.

getDataSourceChildResources

Deprecated as of API version 6.0. Instead use getIntrospectableResourceIdsTask,
page 130 or getIntrospectedResourceIdsTask, page 134 to get this list of possible
resources, , or getIntrospectionAttributes, page 136 to get the desired data. If the
resource is introspected, you can use getResource, page 145. getResources,
page 150. or getChildResources, page 111.
 TIBCO® Data Virtualization

116 | Operations Reference
Gets information on the child resources within a data source, even if those child
resources have not been introspected. Accessing data source childInfo is
relatively expensive. If multiple calls to this operation and/or
updateDataSourceChildInfos and/or updateDataSourceChildInfosWithFilter are
going to be made, making them all on one transaction improves performance.
Also see reintrospectDataSource, page 185.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path to the data source.

dsPath: The path within the data source for which children are to be found. It can
be the root path or the path of any container under root.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

attributes (optional): Optional values to be used for the resource. These may be
required to specify login information if such information is not persisted with the
data source definition. See Attributes Element, page 248.

Response Elements

resources: List of the child resources. See Resources Element, page 257.

Faults

DataSourceError: If a data source connection cannot be established or if a data
source request returns an error.

IllegalArgument: If path, dsPath, dsType, or the detail is malformed.

IllegalState: If the data source is disabled.

NotFound: If the data source resource or any portion of the path to the data
source does not exist.

NotFound: If any portion of the dsPath within the data source does not exist.

Security: If the user does not have READ access on all items in path.

Security: If the user does not have WRITE access on the data source.

Security: If the user does not have the ACCESS_TOOLS right.
TIBCO® Data Virtualization

Operations Reference |117
getDataSourceReintrospectResult

Deprecated as of API version 6.0. Instead use introspectResourcesResult,
page 167.

Checks for completion of a non-blocking reintrospect that was started with
reintrospectDataSource, page 185. Returns no report if the reintrospect is not yet
complete.

The reintrospect ID is only valid during a single transaction, so this operation can
only be used within an explicit transaction that also contains
reintrospectDataSource. If this operation returns a SUCCESS or FAIL status, the
reintrospectId is invalidated.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

reintrospectId: The reintrospect ID provided by the reintrospectDataSource.

isBlocking: If TRUE, this operation does not return until reintrospect has
completed. If FALSE, this operation returns immediately, regardless of
completion.

Response Elements

status:

• SUCCESS or FAIL (as appropriate) if the reintrospect completed during or
prior to this call.

• INCOMPLETE if the reintrospect is still in progress and isBlocking is FALSE.

• CANCELED if the reintrospect was canceled by a separate call during this
operation.

reintrospectReport (optional): If the status is SUCCESS or FAIL, this report lists
messages (changeEntry elements) describing either errors or the changes that
occurred during reintrospect. Otherwise, this element does not exist. See
Messages Element, page 255.

Faults

IllegalArgument: If the isBlocking element is not a valid boolean.

NotFound: If the reinstrospectId does not exist.

Security: If the user does not have the ACCESS_TOOLS right.
 TIBCO® Data Virtualization

118 | Operations Reference
getDataSourceStatisticsConfig

Get the cost-based optimizer (CBO) statistics configuration for a data source.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path of a resource.

type: The type of the resource. May only be a relational physical DATA_SOURCE.

Response Elements

dataSourceStatisticsConfig: The statistics configuration of the given resource.

• configured (optional): TRUE if statistics gathering is configured; otherwise
FALSE.

• useEnabled (optional): TRUE if gathered statistics are to be used by CBO;
otherwise FALSE. Can be used to temporarily disable CBO.

• tableGatherDefault (optional): Unless overridden at table level, sets the
default table configuration. Values are ALL, COLUMN_BOUNDARY, NONE
or TABLE_BOUNDARY.

• numThreads (optional): Integer 1 to N; indicates how many threads should be
allocated to gather statistics for this data source.

• maxTime (optional): Integer 0 to N in minutes; sets data source level default
for maximum amount of time the process should spend gathering data for
each table; 0 means no limit.

• refresh (optional): How the statistics data should be refreshed. See Refresh
Element, page 256.

Faults

IllegalArgument: If the path is malformed or an illegal type is provided.

NotAllowed: If the resource is of the wrong type.

NotFound: If the resource or any portion of the path to the resource does not exist.

Security: If the user does not have READ access on all items in path.

Security: If the user does not have the ACCESS_TOOLS right.
TIBCO® Data Virtualization

Operations Reference |119
getDataSourceTypeAttributeDefs

Get the attribute definitions for the given data source type. These attribute
definitions are used to interpret the attributes of the data source type itself, such
as where to find a JDBC driver and what CLASSPATH to use. Also see
getDataSourceAttributeDefs, page 115 which defines attributes that are used
when creating and updating data source resources.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

dataSourceType: Valid input value is a resource:name from getDataSourceTypes,
page 120.

Response Elements

attributeDefs: List of attribute definitions. See Attribute Definitions Element,
page 247.

Faults

NotFound: The given data source type does not exist.

Security: If the user does not have the ACCESS_TOOLS right.

getDataSourceTypeCustomCapabilities

Get a list of capabilities.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

dataSourceTypeName: The name of the data source type.

Response Elements

customCapabilities: List of capabilities.

• attribute: See Attributes Element, page 248.
 TIBCO® Data Virtualization

120 | Operations Reference
Faults

NotFound: If the data source type does not exist.

getDataSourceTypes

Get a list of the available data source types. These data source types can be used
to create new data sources.

Location

/services/webservices/system/admin/resource/operations/

Request Element

detail: The level of detail about the types to include in the response. Valid values
are:

• SIMPLE: Returns the name and type of the types.

• FULL: Additionally returns type-specific data source attributes, including
required connection parameters and other information.

Response Elements

dataSourceTypes: List of data source types known by the server. For attributes,
see Attributes Element, page 248.

Faults

IllegalArgument: If detail is not valid.

Security: If the user does not have the ACCESS_TOOLS right.

getDependentResources

Get all of the resources that depend on the given resource. A resource depends on
this resource if it makes use of this resource. Also see getUsedResources,
page 164, which lists the resources a resource uses.

Location

/services/webservices/system/admin/resource/operations/
TIBCO® Data Virtualization

Operations Reference |121
Request Elements

path: The path of the resource to analyze for usage dependencies.

type: The type of the resource specified by the given path. Valid values are
DATA_SOURCE, DEFINITION_SET, LINK, PROCEDURE, TABLE, TREE, and
TRIGGER.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

Response Elements

resources: List of the dependent resources. See Resources Element, page 257.

Faults

IllegalArgument: If the path is malformed or an illegal type or detail is provided.

NotFound: If the resource or any portion of the path to the resource does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have the ACCESS_TOOLS right.

getDomainGroups

Get the group definitions within a domain.

If the scope is LOCAL_ONLY, only the groups the server has local definitions for
are returned. If the scope is ALL, all groups are returned. For locally defined
domains, like the composite domain, both options return the same list. For
domains with external storage such as LDAP, only some of the groups in the
external storage may have been created as local groups, so the returned lists may
differ.

Location

/services/webservices/system/admin/user/operations/

Request Elements

domainName: The domain name. scope: Either ALL or LOCAL_ONLY.

scope: LOCAL_ONLY or ALL.
 TIBCO® Data Virtualization

122 | Operations Reference
Response Elements

groups: List of groups within the domain. See Groups Element, page 251.

Faults

IllegalArgument: If an invalid scope is provided.

NotFound: If the domain does not exist.

Security: If the user does not have the ACCESS_TOOLS and READ_ALL_USERS
rights.

getDomains

Get the definitions of all the domains that exist on a server.

This operation can be invoked by any user, even an anonymous user.

Location

/services/webservices/system/admin/user/operations/

Request Element

detail: The level of detail about the domains to include in the response. See
Domains Element, page 250.

• SIMPLE: Returns name, type, and annotation.

• FULL: Returns name, type, annotation, and attributes.

Request Example
<user:getDomains
xmlns:user="http://www.compositesw.com/services/system/admin/user"
xmlns:common="http://www.compositesw.com/services/system/util/comm
on">
 <user:detail>SIMPLE</user:detail>
</user:getDomains>

Response Elements

domains: List of domains.

Response Example

This example shows a response to a request with detail=SIMPLE.
TIBCO® Data Virtualization

Operations Reference |123
<user:getDomainsResponse
xmlns:user="http://www.compositesw.com/services/system/admin/user"
>
 <user:domains>
 <user:domain>
 <user:name>dynamic</user:name>
 <user:domainType>DYNAMIC</user:domainType>
 <user:annotation>Dynamic authentication
domain</user:annotation>
 </user:domain>
 <user:domain>
 <user:name>composite</user:name>
 <user:domainType>COMPOSITE</user:domainType>
 <user:annotation>Composite authentication
domain</user:annotation>
 </user:domain>
 </user:domains>
</user:getDomainsResponse>

Faults

IllegalArgument: If an invalid detail value is provided.

Security: If the detail is FULL and the user does not have the ACCESS_TOOLS
and READ_ALL_USERS rights.

getDomainTypeAttributeDefs

Get the definitions of attributes that can be used for creating or updating domains
of a given domain type. The valid list of domain types can be acquired using
getDomainTypes, page 124.

Location

/services/webservices/system/admin/user/operations/

Request Element

domainType: The domain type name. Valid input values include LDAP,
DYNAMIC, and COMPOSITE.

Response Elements

attributeDefs: List of attribute definitions. See Attribute Definitions Element,
page 247.
 TIBCO® Data Virtualization

124 | Operations Reference
Faults

IllegalArgument: If an invalid domain type name is provided.

NotFound: If the domain type does not exist.

Security: If the user does not have the ACCESS_TOOLS and READ_ALL_USERS
rights.

getDomainTypes

Get the list of supported domain types.

Location

/services/webservices/system/admin/user/operations/

Request Elements

N/A

Response Elements

domainTypes: List of domain types.

• domainType:

• name

• annotation (optional)

• attributeDefs (optional): See Attribute Definitions Element, page 247.

Faults

Security: If the user does not have the ACCESS_TOOLS and READ_ALL_USERS
rights.

getDomainUsers

Get all of the user definitions within a domain.

If the scope is LOCAL_ONLY, only the users the server has local definitions for
are returned. If the scope is ALL, all users are returned. For locally defined
domains like the composite domain, both options return the same list. For
domains with external storage, such as LDAP, only some of the users in the
external storage may have been created as local users, so the returned lists may be
different.
TIBCO® Data Virtualization

Operations Reference |125
Location

/services/webservices/system/admin/user/operations/

Request Elements

domainName: The domain name.

scope: Either LOCAL_ONLY or ALL.

Response Elements

users: List of users within the domain.

• user: The name, domain name and ID of a user, plus:

– explicitRights. For a table of values, see User and Group Rights Mask,
page 259.

– interitedRights. For a table of values, see User and Group Rights Mask,
page 259.

– annotation (optional)

– groupNames (optional): Names and domains of the groups to which the
user belongs.

Faults

IllegalArgument: If an invalid scope is provided.

NotFound: If the domain does not exist.

Security: If the user does not have the ACCESS_TOOLS and READ_ALL_USERS
rights.

getExtendableDataSourceTypes

Get all data source types that can be extended.

Location

/services/webservices/system/admin/resource/operations/

Request Element

detail: Reserved for future changes.
 TIBCO® Data Virtualization

126 | Operations Reference
Response Elements

dataSourceTypes: List of data source types known by the server.

• dataSourceType (optional):

• name

• type

• attributes (optional): See Attributes Element, page 248.

Faults

IllegalArgument: If detail is not valid. Reserved for future changes.

Security: If the user does not have the ACCESS_TOOLS right.

getGeneralSettings

Retrieve the general settings for Pluggable Authentication Modules (PAM).

Location

/services/webservices/system/util/security/operations/

Request Elements

N/A

Response Elements

Security object, with attributes representing configuration details:

enablePAM

mapDisallowUser

logAuthFailures

logPerformance

assignModuleGroups

Faults

• N/A
TIBCO® Data Virtualization

Operations Reference |127
getGroups

Get the definitions of the given domain groups.

Location

/services/webservices/system/admin/user/operations/

Request Elements

domainName: The domain name.

names: List of group names within the domain.

Response Elements

groups: List of groups within the domain. See Groups Element, page 251.

Faults

NotFound: If the domain does not exist.

NotFound: If any of the requested groups do not exist.

Security: If the user does not have the ACCESS_TOOLS and READ_ALL_USERS
rights.

getGroupsByUser

Get the definitions of all groups that contain the given user and are also within
the given domain.

Location

/services/webservices/system/admin/user/operations/

Request Elements

userName: The name of the user whose groups to retrieve.

domainName: The domain of the user whose groups to retrieve.

Response Elements

groups: List of groups within the domain. See Groups Element, page 251.
 TIBCO® Data Virtualization

128 | Operations Reference
Faults

NotFound: If the user does not exist.

NotFound: If the domain does not exist.

Security: If the operation user does not have the ACCESS_TOOLS and
READ_ALL_USERS rights.

getIntrospectableResourceIdsResult

Get the results from getIntrospectableResourceIdsTask, page 130. The number of
resources returned is limited by page size and total number of known resources.
Subsequent calls to this operation incrementally return the full list of native
resource identifiers available within the data source.

If the block element is set and TRUE, this operation blocks until the task is
complete. Otherwise, this operation does not block.

The page size controls the maximum number of resource identifiers that are
returned from this call.

The page start determines which resource is returned first. This can be used to
jump ahead in the resource list. This jump is relative to the current position.
Providing a non-zero page start with every call to this operation has the effect of
skipping a page-size number of results oeach time. Specifying the page start sets
the position that you would like to start receiving resource identifiers. Subsequent
calls to this operation start from that point.

If an insufficient number of resource identifiers have been found during a call to
this operation, this operation either times out or returns with COMPLETED equal
TRUE. In either case, an empty list of identifiers is returned.

This operation returns a taskId that can be used to get results using
getIntrospectableResourceIdsResult, page 128, or canceled using
cancelServerTask, page 50.

This operation returns the total number of known resource identifiers in the
totalResults element. The totalResults element does not exist until the full total is
known. If this number is not known or only partial results are available, this
element is empty.

This operation returns a completed element that indicates whether or not
processing has completed, and these are the last results the caller receives. If
TRUE, a subsequent call to getIntrospectableResourceIdsResult generates a
NotFound fault.
TIBCO® Data Virtualization

Operations Reference |129
The lastUpdate return element indicates when the cache associated with this
resource identifier list was last updated. If the result set is currently being
updated due to the original getIntrospectableResourceIdsTask, page 130,
lastUpdate reflects when the server task was initiated.

The resourceIdentifiers element provides the list of native resources paths, types,
and subtypes. Paths are relative to the containing data source.

This operation must be run within the same explicit transaction that the original
call to getIntrospectableResourceIdsTask was invoked. Otherwise the taskId is
reported as NotFound.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

taskId: The server task ID associated with the original call.

block: Whether or not to block until processing is complete. Defaults is FALSE.

page:

• size: The number of resource identifiers to return in the result.

• start: The page number to start retrieving data from. Defaults to 0.

Response Elements

taskId: The server task ID associated with the original call.

totalResults: If known, the total result set size. Otherwise this element does not
exist.

completed: TRUE if processing is completed and the result set has been
exhausted.

lastUpdate: The date and time the resource cached was last created.

resourceIdentifiers: List of native resource paths and types available within a data
source.

Faults

DataSourceError: If a data source connection cannot be established or if a data
source request returns an error.

IllegalArgument: If the taskId, or page is malformed.

IllegalState: If the data source is disabled.
 TIBCO® Data Virtualization

130 | Operations Reference
NotFound: If the taskId does not exist or has completed.

Security: If the user does not have the ACCESS_TOOLS right.

Security: If a different TDV session was used to create the server task.

getIntrospectableResourceIdsTask

Create a server task to fetch all resource identifiers available for a given data
source.

The first time this is called, the underlying data source is queried for its
completed list of resources available within the data source. This information is
cached so that future invocations of this using the same data source returns the
contents of the cache rather than querying the data source. To clear this cache, use
clearIntrospectableResourceIdCache, page 53. The results include a lastUpdate
field that can be used to help determine whether clearing the resource identifier
cache is necessary.

The list of available resources within a data source depends upon the user’s
access privileges within the data source.

If dsContainerId is provided, the search for introspectable resources starts at that
location. If it is unset, the search starts at the data source root.

If recurse is TRUE or unset, the search for introspectable resources is performed
recursively throughout the data source starting at the given dsContainerId, or at
the data source root if dsContainerId is unset. If recurse is FALSE, only the
immediate children of the dsContainerId or data source root are found.

The user name associated with creating the cache is placed in the cache as well. If
the data source is non-dynamic the user name is drawn from the data source
connection parameters. If the data source is dynamic, it is drawn from the TDV
user name and domain.

Each data source has one primary resource identifier cache. If the user name
associated with this call differs from the primary cache, the primary cache is
marked for expiration. When the expiration period is over, the cache is cleared.
This period can be modified using a TDV Server attribute. If the user name
associated with the call matches a cache that is currently marked for expiration,
the expiration is canceled and it becomes the primary cache. If no cache with a
matching user name exists, a new cache is created by querying the data source.

This operation returns a taskId which can be used to get results using
getIntrospectableResourceIdsResult, page 128 or canceled used cancelServerTask,
page 50.
TIBCO® Data Virtualization

Operations Reference |131
This operation returns the total number of known resource identifiers in the
totalResults element. The totalResults element does not exist until the full total is
known. If this number is not known or only partial results are available, this
element is empty.

If the TDV session that invokes this operation closes before the task is completed,
the task is terminated.

This operation must be run within an explicit transaction so that the taskId can be
used in successive calls to getIntrospectableResourceIdsResult.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path of the data source.

attributes (optional): List of data source type specific attributes. The specific list of
supported attributes varies by data source type. (See getDataSourceAttributeDefs,
page 115.) Sets the specified attributes, but does not alter the value of unspecified
attributes. See Attributes Element, page 248.

dsContainerId (optional): A container within the data source for which to find
introspectable resources. If unset, the data source root path is used.

• path: Path to the container.

• type: Container type. See TDV Resource Types and Subtypes, page 261.

• subtype: Container subtype. See TDV Resource Types and Subtypes,
page 261.

recurse (optional): If TRUE or unset, the search for introspectable resources is
performed recursively throughout the data source starting at the given
dsContainerId, or at the data source root if dsContainerId is unset. If recurse is
FALSE, only the immediate children of the dsContainerId or data source root are
found.

Response Elements

taskId: The ID of the server task performing the work.

totalResults (optional): If known, the total result set size. Otherwise this element
does not exist.
 TIBCO® Data Virtualization

132 | Operations Reference
Faults

DataSourceError: If a data source connection cannot be established or if a data
source request returns an error.

IllegalArgument: If the path or dsPath is malformed.

IllegalState: If the data source is disabled.

NotFound: If the data source or any portion of the path to the data source does
not exist.

NotFound: If dsPath does not exist within the data source.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have READ access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

getIntrospectedResourceIdsResult

Get the results from getIntrospectedResourceIdsTask, page 134. The number of
resource identifiers returned is limited by page size and total number of known
resources.

Subsequent calls to this operation incrementally return the full list of resource
identifiers introspected from the data source.

If the block element is set and TRUE, this operation blocks until the task is
complete. Otherwise, this operation does not block.

The page size controls the maximum number of resource identifiers that are
returned from this call.

The page start determines which resource is returned first. This can be used to
jump ahead in the resource list. This jump is relative to the current position.
Providing a non-zero page start with every call to this operation has the effect of
skipping a page-size number of resources each time.

Specifying the page start sets the position where you would like to start receiving
resource identifiers. Subsequent calls to this operation starts from that point. If an
insufficient number of resource identifiers have been found during a call to this
operation, this operation either times out or returns with COMPLETED set to
TRUE. In either case, an empty list of identifiers is returned.

This operation returns a taskId that can be used to get results using the
getIntrospectedResourceIdsResult operation or canceled using cancelServerTask,
page 50.
TIBCO® Data Virtualization

Operations Reference |133
This operation returns the total number of introspected resource identifiers in the
totalResults element. If the data source has not yet been introspected, this element
is set to zero.

This operation returns a completed element that indicates whether or not
processing has completed and these are the last results the caller receives. If
TRUE, a subsequent call to this operation generates a NotFound fault.

The lastUpdate return element indicates when the data source was last
introspected. If the data source has never been introspected, the lastUpdate
element is unset.

The resourceIdentifiers element provides the list of native resources paths, types,
and subtypes. Paths are relative to the containing data source.

This operation must be run within the same explicit transaction that the original
call to getIntrospectedResourceIdsTask was invoked. Otherwise the taskId is
reported as NotFound.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

taskId: The task ID associated with the original call.

block (optional): Whether or not to block until processing is complete. Default is
FALSE.

page (optional):

• size: The number of resource identifiers to return in the result.

• start: The page number to start retrieving data from. Defaults to 0.

Response Elements

taskId: The task ID associated with the original call.

totalResults (optional): If known, the total result set size. Otherwise this element
does not exist.

completed: TRUE if processing is completed and the result set has been
exhausted.

lastUpdate (optional): The date and time the resource cache was last created.

resourceIdentifiers (optional): List of native resource paths and types available
within a data source.
 TIBCO® Data Virtualization

134 | Operations Reference
Faults

DataSourceError: If a data source connection cannot be established or if a data
source request returns an error.

IllegalArgument: If the taskId or page is malformed.

IllegalState: If the data source is disabled.

NotFound: If the taskId does not exist or has completed.

NotFound: If a different TDV session was used to create the server task.

Security: If the user does not have the ACCESS_TOOLS right.

getIntrospectedResourceIdsTask

Create a server task to fetch all resource identifiers for resources that have been
introspected on a given data source.

This operation returns a taskId that can be used to get results using the
getIntrospectedResourceIdsResult, page 132, or canceled using cancelServerTask,
page 50.

This operation returns the total number of resources that are currently
introspected on the given data source. If the data source has never been
introspected, totalResults is zero.

If the TDV session that invokes this operation closes before the task is completed,
the task is terminated.

This operation must be run within an explicit transaction, so that the taskId can be
used in successive calls to getIntrospectedResourceIdsResult.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path of the data source.

attributes (optional): List of data source type specific attributes. The specific list of
supported attributes vary by data source type. (See getDataSourceAttributeDefs,
page 115.) Sets the specified attributes but does not alter the value of unspecified
attributes. See Attributes Element, page 248.

Response Elements

taskId: The ID of the server task performing the work.
TIBCO® Data Virtualization

Operations Reference |135
totalResults (optional): If known, the total result set size; otherwise, this element
does not exist.

Faults

DataSourceError: If a data source connection cannot be established or if a data
source request returns an error.

IllegalArgument: If the path is malformed.

IllegalState: If the data source is disabled.

NotFound: If the data source or any portion of the path to the data source does
not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have READ access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

getIntrospectionAttributeDefs

Get all possible attribute definitions for all possible resource type and subtypes
that can be applied to data source resources during introspection. These attributes
definitions are used to help define the attributes used to introspect resources,
which are normally set within the plan request element when calling
introspectResourcesTask, page 169.

The attribute definitions may contain display hints to help assist client tools in
displaying appropriate editors for each of the attributes.

Also see getIntrospectionAttributes, page 136, which retrieves the attributes
applied to the most recent introspection of a particular resource.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: Path to the resource.

Response Elements

subTypeAttributeDefs: List of attribute definitions by type and subtype.

• type: The resource type.
 TIBCO® Data Virtualization

136 | Operations Reference
• subType: The resource subtype.

• attributeDefs: List of introspection attributes definitions available for the type
and subType combination. See Attribute Definitions Element, page 247.

Faults

Security: If the user does not have the ACCESS_TOOLS right.

getIntrospectionAttributes

Get the resource attributes that were applied to a resource the last time it was
introspected from a data source. This call only queries the TDV, not the
underlying data source. Therefore, the data source does not need to be enabled or
currently have a valid connection. If the provided resource has not yet been
introspected, no attributes are returned. No checks are performed to see if the
resource currently exists within the data source. A fault is generated if the
resource does not exist within the TDV.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path to the data source.

dsPath: The relative path within the data source of the resource for which to
gather attributes. If the path is root ("/") or the empty string, the introspection
properties for the data source itself are returned.

dsType: The type of the resource.

Response Elements

attributes (optional): The attributes applied to the resource if it has been
introspected. Otherwise, this is unset. See Attributes Element, page 248.

Faults

IllegalArgument: If path, dsPath, or dsType is malformed.

NotFound: If the data source resource or any portion of the path to the data
source does not exist.

Security: If the user does not have READ access on all items in path.
TIBCO® Data Virtualization

Operations Reference |137
Security: If the user does not have READ access on the data source.

Security: If the user does not have the ACCESS_TOOLS right.

getLicenses

Get all licenses registered with the server. Also see addLicenses, page 39 and
removeLicenses, page 187.

Location

/services/webservices/system/admin/resource/operations

Request Elements

N/A

Response Elements

licenses (optional): List of licenses registered with the server. Unset if no licenses
are registered with the server. See Licenses Element, page 254.

Faults

Security: If the user does not have both ACCESS_TOOLS and
READ_ALL_CONFIG rights.

getLockedResources

Get all of the locked resources in the server. Resources are normally uniquely
identified by both the path and type of the resource. This operation returns all
resources at a given path regardless of type.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

includeOnlyUnlockableResources (optional): If TRUE, the response includes only
resources the caller has the right to unlock.
 TIBCO® Data Virtualization

138 | Operations Reference
Response Elements

resources: List of the locked resources. See Resources Element, page 257.

Faults

IllegalArgument: If an illegal detail or includeOnlyUnlockableResources element
is provided.

Security: If the user does not have the ACCESS_TOOLS right.

getLoginModule

Retrieve a login module based on its ID.

Location

/services/webservices/system/util/security/operations/

Request Element

id: ID of login module to retrieve.

Response Elements

id: ID of the login module retrieved.

name

bundleName

group (optional)

enabled (optional)

bundleEnabled (optional)

properties (optional): List of property name-value pairs.

Faults

Invalid ID: If the ID specified does not denote a valid LoginModule instance.

getLoginModuleDefaultProperties

Retrieve the default property list for a login module type.
TIBCO® Data Virtualization

Operations Reference |139
Location

/services/webservices/system/util/security/operations/

Request Elements

name: The bundle-name of the login module class in bundle\class format.

Response Elements

properties (optional): List of property elements, each of which is a name-value
pair.

Fault

Invalid ID: If the input name does not designate a valid login module type.

getLoginModuleList

Retrieve a list of the IDs of all the current login module instances.

Location

/services/webservices/system/util/security/operations/

Request Elements

N/A

Response Elements

id (optional): List of ID values of the login module instances.

Faults

N/A

getMostRecentIntrospectionStatus

Get the results from the most recent introspection that was run and committed on
the given data source.
 TIBCO® Data Virtualization

140 | Operations Reference
Results are in the form of introspection change entries (which contain the path,
type, and subtype of the resource that was introspected), the introspection action
that occurred, and a message, if available, regarding introspection of that
resource.

This operation returns different levels of introspection status based on the value
of the detail request element:

• NONE: Minimal information to indicate the final run state of the introspection
task.

• SIMPLE: Overall status plus counts.

• FULL: List of introspection change entries, containing all entries and
messages that occurred during the last completed and committed
introspection.

If the data source has never successfully completed an introspection, the status
response element is unset.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path to the data source.

detail: The level of detail to include in the response. Valid values are NONE,
SIMPLE, and FULL.

Response Elements

status (optional): The introspection status report. See Introspection Report Status
Element, page 253.

Faults

DataSourceError: If a data source connection cannot be established, or if a data
source request returns an error.

IllegalArgument: If the path or detail element is malformed.

NotFound: If a data source resource cannot be found at the given path.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access on the last item in path.
TIBCO® Data Virtualization

Operations Reference |141
Security: If the user does not have the ACCESS_TOOLS right.

getParentDataSourceType

Get the parent data source type of the given data source type name.

Location

/services/webservices/system/admin/resource/operations/

Request Element

selfDataSourceTypeName: The name of current data source type.

Response Elements

resources: List of resources and their characteristics. see Resources Element,
page 257.

parentDataSourceType: The parent’s data source information. Can be NULL.

• name

• type

• attributes (optional): See Attributes Element, page 248.

Faults

NotFound: If current data source type is not found.

getParentResource

Get the parent resource of the given resource. The root resource ("/") has no
parent.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path of the resource to get parent of.
 TIBCO® Data Virtualization

142 | Operations Reference
type: The type of the resource specified by the given path. Valid values are
CONTAINER, DATA_SOURCE, DEFINITION_SET, LINK, PROCEDURE,
TABLE, TREE, and TRIGGER.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

Response Elements

resources: List of the parent resources and their characteristics. The list is empty
for the root resource ("/"). See Resources Element, page 257.

Faults

IllegalArgument: If the path is malformed or an illegal type or detail is provided.

NotFound: If the resource or any portion of the path to the resource does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have the ACCESS_TOOLS right.

getPrincipalMapping

Retrieve a principal mapping instance.

Location

/services/webservices/system/util/security/operations/

Request Element

id: The ID of the principal mapping.

Response Elements

id: The ID of the principal mapping.

type: The type of the principal mapping.

identifier: The identifier of the principal mapping.

group: The group to which the principal mapping belongs.

Faults

Invalid Input: If the input ID does not designate a valid principal mapping.
TIBCO® Data Virtualization

Operations Reference |143
getPrincipalMappingList

Retrieve the list of IDs for all principal mappings.

Location

/services/webservices/system/util/security/operations/

Request Elements

N/A

Response Element

id (optional): List of ID values for all principal mappings.

Faults

N/A

getProceduralResult

Get the procedural result associated with the resultId returned from a call to
executeProcedure, page 89 or executeSqlScript, page 98.

If "isBlocking" is set to TRUE, then this operation will not return until the
processing associated with the execution has completed and the "outputs"
element is set.

If set to FALSE, then this operation will return when the processing associated
with the execution has completed, but it will not wait to fill the "outputs" element
with data.

If includeMetadata is TRUE, the response includes the metadata element. The
metadata element describes the names and types of the output parameter data
that are provided in the result, either in this call or in a later call to
getProceduralResult, page 143.

The completed element reports whether all possible results have been retrieved.

The requestStatus element reports the status of the server request associated with
the execution. The request status can be one of the following:

• STARTED: The request has started. The request has been created but is not yet
running.

• WAITING: The request is waiting in a queue for the server to process the
request.
 TIBCO® Data Virtualization

144 | Operations Reference
• RUNNING: The request is currently being executed by the server.

• COMPLETED: The execution associated with the request has completed.
Results can now be acquired.

• CLOSING: The request is closing.

• SUCCESS: The request closed with success.

• FAILURE: The request closed with failure.

• TERMINATED: The request was terminated.

The rowsAffected element is set if it is known how many rows were affected by
this execution.

The outputs element contains a set of ProcValue instance. If the out type is cursor,
you should get a resultId which is a handle to the result in server. You can use it
with getTabularResult, page 161 and closeResult, page 56. If the out type is not
cursor, you should get real output value.

Location

/services/webservices/system/admin/execute/operations/

Request Elements

resultId: The result ID.

isBlocking: If TRUE (default), do not return until the execution completes.

includeMetadata (optional): If TRUE, the response contains information about the
output parameter names and their types. Defaults to FALSE.

Response Elements

completed: If TRUE, all processing associated with execution has completed.

requestStatus: Status of the server request performing the execution.

metadata (optional): Table metadata listing the parameter names and types
within the result.

• parameter: See Parameters Element, page 255.

rowsAffected (optional): If known, the number of rows affected by the execution;
otherwise unset.

outputs (optional): List of type-value pairs of procedural outputs.
TIBCO® Data Virtualization

Operations Reference |145
Faults

IllegalArgument: If the isBlocking element is malformed.

NotFound: If the resultId does not exist within the current transaction or has
already been closed.

RuntimeError: If an error occurs during execution. The resultId is closed if this
occurs.

getResource

Get the specified resource.

Multiple resources are returned if a path has multiple resources that differ by
type–for example, /shared/examples/ds_inventory (data source) and
/shared/examples/ds_inventory (view).

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path of the resource to get.

type: The type of the resource specified by the given path. Valid values are
CONTAINER, DATA_SOURCE, DEFINITION_SET, LINK, PROCEDURE,
TABLE, TREE, and TRIGGER.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

Response Elements

resources: List of resources and their characteristics. See Resources Element,
page 257.

Faults

IllegalArgument: If the path is malformed or an illegal type or detail is provided.

NotFound: If the resource or any portion of the path to the resource does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.
 TIBCO® Data Virtualization

146 | Operations Reference
getResourceCacheConfig

Get the cache configuration for a resource. TABLE and PROCEDURE resources
support caching.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path of a cacheable resource.

type: The type of the resource. A valid input is TABLE or PROCEDURE.

Response Elements

The getResourceCacheConfig response has five levels of elements. Elements at
the fourth and fifth levels are preceded by their level number in square brackets
([4] and [5]).

cacheConfig: The cache configuration of the given resource.

• allOrNothing (optional): The refresh policy of the cache group: TRUE if cache
group refresh policy should be all or nothing; FALSE if cache group refresh
policy should be best effort. This flag applies only to cache group. For
individual cache groups, this flag always returns TRUE and setting this flag
has no effect.

• configured (optional): TRUE if caching should be configured for the given
resource; otherwise FALSE. If configured is FALSE, all other elements are
ignored.

• enabled (optional): TRUE if the cache is enabled; otherwise FALSE.

• incremental (optional): TRUE if the cache is incrementally maintained;
otherwise FALSE.
TIBCO® Data Virtualization

Operations Reference |147
• storage (optional): How the cached is stored.

– useDefaultCacheStorage (optional): The server returns TRUE for this value
if default cache data source is used to store the cache tables; otherwise,
FALSE.

– mode (optional): The type of storage to use for the cache. May be
AUTOMATIC, DATA_SOURCE or DATA_SOURCE_OTPS.

– bucketMode (optional): Present when storage mode is
DATA_SOURCE_OTPS; otherwise ignored. May be AUTO_GEN or
MANUAL.

– bucketProperties (optional): Present when bucketMode is AUTO_GEN;
otherwise ignored.

– [4] bucketCatalog (optional): Database catalog in which to create the
bucket.

– [4] bucketSchema (optional): Database schema in which to create the
bucket.

– [4] bucketPrefix (optional): Short string which begins the name of each
bucket.

– [4] numBuckets (optional): Number of buckets to use for caching.

– dropCreateIdx (optional): If TRUE, TDV automatically drops indexes
before loading cache data, and creates them after loading.

– storageDataSourcePath (optional): If the mode is DATA_SOURCE or
DATA_SOURCE_OTPS, this identifies the path to the data source being
used to store cache data.

– storageTargets: (optional) Used for storing cache data. If the mode is
DATA_SOURCE or DATA_SOURCE_OTPS, this identifies the tables. If the
latter, it is required when bucketMode is MANUAL; otherwise,
storageTargets is ignored.

– [4] entry (optional):

– [5] targetName: For a TABLE resource and storage mode
DATA_SOURCE, this is always the result. For a TABLE resource and
storage mode DATA_SOURCE_OTPS, this may be result, result1, result2,
and so on. For a PROCEDURE resource, this is the name of a cursor
parameter, or an empty string for the scalar output parameters.

– [5] path: The path to the table used for storing this data.

– [5] type: Always TABLE.
 TIBCO® Data Virtualization

148 | Operations Reference
• refresh (optional): How the cache should be refreshed. See Refresh Element,
page 256.

– mode: How the cache should be refreshed. May be MANUAL or
SCHEDULED.

– schedule (optional): Present if the mode is SCHEDULED. See Schedule
Element, page 258.

Note: The value of the mode element under schedule is always INTERVAL
for cache.

Faults

IllegalArgument: If the path is malformed or an illegal type is provided.

IllegalState: If the resource type does not support caching.

NotFound: If the resource or any portion of the path to the resource does not exist.

Security: If the user does not have READ access on all items in path.

Security: If the user does not have the ACCESS_TOOLS right.

getResourcePlan

Execute the provided path directly within the TDV server and return the
execution plan. Only PROCEDURE and TABLE resources can be executed.

The rootNodeTitle is the name of this sqlText execution plan. It is possible to get
the execution plan for the resource in the path element.

The parameters element contains a set of parameters to be inputs to the execution
for TDV script. A parameter contains two subelements:

• definition: SQL language type for this parameter value. For example,
VARCHAR(40) or BIGINT.

• value: The value of this parameter.

The queryPlanRoot contains the root plan.

The name contains this plan’s node name.

The type shows this plan’s node type. PROCEDURE and TABLE are valid types.

The properties element contains a set of plan node properties.

Only users with the ACCESS_TOOLS right can call this operation.
TIBCO® Data Virtualization

Operations Reference |149
Location

/services/webservices/system/admin/execute/operations/

Request Elements

rootNodeTitle (optional): The name of this path execution plan. Defaults to
Execution Plan.

path: Specify a full resource path of a table or procedure for that SQL to be
evaluated.

type: TABLE and PROCEDURE types are valid.

parameters (optional): A list of parameter elements (containing definition-value
pairs) to use as input for the execution.

Response Elements

queryPlanRoot (iterative over child nodes, to any depth):

• name: Query plan node name.

• type: Type of this query plan node.

• properties (optional): List of name-value pairs of properties for current node.

Faults

RuntimeError: If an error occurs during execution.

Security: If the user does not have the ACCESS_TOOLS right and other
appropriate priveleges.

getResourcePrivileges

Get the privilege information for any number of resources.

The returned privileges per user or group are the privileges specifically given to
that user or group. In each privilegeEntry, the combinedPrivs element contains
the effective privileges for that user or group based on their membership in all
other groups. In each privilegeEntry, the inheritedPrivs element only contains the
privileges that were inherited due to group membership. Logically OR’ing the
privs and inheritedPrivs is the same as the combinedPrivs.

A user with GRANT privilege or with READ_ALL_RESOURCES right receives
all privilege information for all users for a that resource. Other users receive only
their own privilege information.
 TIBCO® Data Virtualization

150 | Operations Reference
Location

/services/webservices/system/admin/resource/operations/

Request Elements

entries: List of path-type pairs to get privilege information for.

filter (optional): A filter string. The only legal values in this release are an empty
string and ALL_EXPLICIT.

includeColumnPrivileges (optional)

Response Elements

privilegeEntries: List with the privilege information for each of the requested
resources.

• privilegeEntry (optional): Path-type pairs and list for one or more privileges.

– combinedPrivs (optional)

– inheritedPrivs (optional)

Faults

IllegalArgument: If any path is malformed or type is illegal.

NotFound: If any one of the provided resources does not exist.

Security: If the user does not have READ access on all items in each path other
than the last one.

Security: If the user does not have the ACCESS_TOOLS right.

getResources

Get the specified resources. Only the resources that exist and which the user has
proper privileges to access are returned. It is possible to get back a shorter list
than requested.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

entries: List of path-type pairs of the resources to get.
TIBCO® Data Virtualization

Operations Reference |151
detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

Response Elements

resources: List of the resources and their characteristics. see Resources Element,
page 257.

Faults

IllegalArgument: If any of the provided paths are malformed, or types or detail
are illegal.

Security: If the user does not have the ACCESS_TOOLS right.

getResourceStatisticsConfig

Get the statistics configuration for a resource.

Also see getDataSourceStatisticsConfig, page 118.

Multiple resources are returned if a path has multiple resources that differ by
type–for example, /shared/examples/ds_inventory (data source) and
/shared/examples/ds_inventory (view).

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path of the resource.

type: The type of the resource. May only be a relational physical TABLE.

Response Elements

statisticsConfig: The statistics gathering configuration of the given resource.

• cardinalityMin (optional): Minimum cardinality for this resource. Setting this
value overrides gathered statistics.

• cardinalityMax (optional): Maximum cardinality for this resource. Setting this
value overrides gathered statistics.

• cardinalityExpected (optional): Expected cardinality for this resource. Setting
this value overrides gathered statistics.
 TIBCO® Data Virtualization

152 | Operations Reference
• gatherEnabled (optional): Defines what statistics should be gathered for this
resource. Valid values are DEFAULT, CUSTOM, DISABLED or
TABLE_BOUNDARY.

• maxTime (optional): Number of minutes after which each thread performing
statistics gathering gives up: 0 means no timeout; -1 means use data source
setting.

• columns (optional): Only applicable if gatherEnabled is set to CUSTOM.

• column: List indicating what specific data to get for each column.

– name: Simple column name.

– flags: Valid values are NONE, BOUNDARY or ALL.

Faults

IllegalArgument: If the path is malformed or an illegal type is provided.

NotAllowed: If the resource if of the wrong type.

NotFound: If the resource or any portion of the path to the resource does not exist.

Security: If the user does not have READ access on all items in path.

Security: If the user does not have the ACCESS_TOOLS right.

getResourceStatsSummary

Get the statistical summary for the resource.

Multiple resources are returned if a path has multiple resources that differ by
type–for example, /shared/examples/ds_inventory (data source) and
/shared/examples/ds_inventory (view).

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path of the resource.

type: The resource type. Valid values are DATA_SOURCE or TABLE.

Response Elements

status: The statistical status of the resource.
TIBCO® Data Virtualization

Operations Reference |153
msg: Detailed information about the status.

last_refresh_end: Time at which the last refresh operation ended.

curr_refresh_start: Time at which the current refresh operation started.

Faults

IllegalArgument: If the path is malformed or an illegal type or detail is provided.

getResourceUpdates

Determine all of the updates occurred for a given set of resources. Updates
include the addition of new sibling resources, changes to resources, movement of
resources, and deletion.

By default, the given list of resources is compared with the most recent versions
of themselves. If the changeId element is set, the resources are compared with the
given changeId instead. If the provided changeId is older than the current version
of a given resource, no changes are reported for that resource.

You can specify one or neither of the changeId or version elements. You cannot
specify both.

If an id element for a nonexistent resource or one that is not accessible is
provided, that ID appears in the deleted list.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

detail: The level of detailin the added, changed, and moved lists. Valid values are
NONE, SIMPLE, and FULL.

discoverChildren: TRUE if all descendents of given resources should be returned.
FALSE if you only want the given resources to be checked. With FALSE, new
sibling resources are discovered, but not descendents.

includeLockState: TRUE if changes to lock state should be considered as a
resource update.

changeId (optional): If set, only resources with a change ID greater than the given
change ID are returned.

version (optional; not supported): The element is not currently supported.

resourcesToUpdate: List of resources to check for updates.
 TIBCO® Data Virtualization

154 | Operations Reference
entry: An entry for a resource to check.

• path: The path of the resource.

• type: The type of the resource specified by the given path. Valid values are
CONTAINER, DATA_SOURCE, DEFINITION_SET, LINK, PROCEDURE,
TABLE.

• id (optional): The ID of the resource. This is required to help track resource
moves. Otherwise moved resources appears as deleted and added.

• changeId (optional): The Change ID of the resource. This is required to
identify precise changes to a resource.

• hasChildren (optional): If TRUE, the client believes this resource has children.
This is used to help detect deletion of all child resources.

• isExpanded (optional): Whether or not children of this resource are already
known by the client. For use by client tree views. If TRUE, the immediate
children of an expanded container are discovered regardless of the
discoverChildren setting.

• lastClientRefresh (optional): The last time this resource was refreshed by the
client. Time is relative to the server. May be used an alternative to using
Change ID to detect changes. This is not as precise as using Change ID.

• lockCreateTime (optional): The known time a lock was created for this
resource. Time is relative to the server. If includeLockState is TRUE, this value
is used to help detect multiple lock state changes where the current state is
similar to but not exactly the same as the previously known state in the client.

Response Elements

resourceUpdates (optional):

• addedResources (optional): List of resources that were created as siblings of
the provided resources.

• changedResources (optional): List of resources that have been changed.

• movedResources (optional): List of resources that have been changed
including their path.

• deletedResources (optional): List of resource IDs of the resources that have
been deleted.

Faults

IllegalArgument: If any of the detail, discoverChildren, includeLockState,
changeId, version, or resources elements are malformed.
TIBCO® Data Virtualization

Operations Reference |155
NotAllowed: If both the changeId and version elements are set.

NotSupported: If the version element is set. This is reserved for future use.

getResultSetPlan

Return the execution plan by resultId.

The rootNodeTitle is the name of this sqlText execution plan.

The resultId element can be obtained from the operation response returned from
executeSql, page 92, executeNativeSql, page 86, executeProcedure, page 89, or
executeSqlScript, page 98. The queryPlanRoot contains the root plan.

Only users with the ACCESS_TOOLS right can call this operation.

Location

/services/webservices/system/admin/execute/operations/

Request Elements

rootNodeTitle (optional): The name of this resultId execution plan. Defaults to
Execution Plan.

resultId: The SQL or Script executed resultId.

Response Elements

queryPlanRoot:

• name: Query plan node name.

• type: Type of this query plan node.

• properties (optional): List of name-value pairs of properties for current node.

• children (optional): List of child nodes belonging to current node. This list is
iterative to any depth.

properties (optional): Same as properties element, above.

children (optional), Same as children element, above; and so on.

Faults

RuntimeError: If an error occurs during execution.

Security: If the user does not have the ACCESS_TOOLS right and other
appropriate privileges.
 TIBCO® Data Virtualization

156 | Operations Reference
getServerActions

Get a list of all available server actions and their definitions. These are also listed
in Server Actions Reference, page 347.

Server actions can be invoked using performServerAction, page 178.

Location

/services/webservices/system/admin/server/operations

Request Elements

N/A

Response Elements

actions: List of available server actions.

• action: A server action.

• name: The name of the server action.

• attributeDefs: List of attribute definitions of the server action which conveys
how it should be invoked.

attributeDef (optional): See Attribute Definitions Element, page 247.

• annotation: A description of the server action.

Faults

Security: If caller does not have ACCESS_TOOLS right.

getServerAttributeDefChildren

Get the child server attribute definitions of the given path. This is an empty list for
attribute definitions that are not of the FOLDER type.

Location

/services/webservices/system/admin/server/operations

Request Elements

path: A path to a server attribute.
TIBCO® Data Virtualization

Operations Reference |157
Response Elements

attributeDefs: List of child attribute definitions. The names of the returned
attribute definitions are fully qualified paths in the server attribute namespace.

• attributeDef (optional): See Attribute Definitions Element, page 247.

Faults

IllegalArgument: If any of the provided paths are malformed.

NotFound: If the path represent a nonexistent server attribute.

NotFound: If any of the paths represent a valid non-public server attribute and
the user does not have READ_ALL_CONFIG right.

Security: If the user does not have ACCESS_TOOLS right.

getServerAttributeDefs

Get server attribute definitions for the given paths.

Location

/services/webservices/system/admin/server/operations

Request Elements

paths: Optional list of paths for which to get the attribute definitions.

Response Elements

attributeDefs: List of attribute definitions. The names of the returned attribute
definitions are fully qualified paths in the server attribute namespace. See
Attribute Definitions Element, page 247.

• attributeDef (optional): See Attribute Definitions Element, page 247.

Faults

IllegalArgument: If any of the provided paths are malformed.

NotFound: If any of the paths represent a nonexistent server attribute.

NotFound: If any of the paths represent a valid non-public server attribute and
the user does not have READ_ALL_CONFIG right.

Security: If the user does not have ACCESS_TOOLS right.
 TIBCO® Data Virtualization

158 | Operations Reference
getServerAttributes

Get server attributes for the given paths.

Location

/services/webservices/system/admin/server/operations

Request Elements

paths: Optional list of paths for which to get the attributes.

Response Elements

attributes: List of attributes. The names of the returned attributes are fully
qualified paths in the server attribute namespace. See Attributes Element,
page 248.

Faults

IllegalArgument: If any of the provided paths are malformed.

NotFound: If any of the paths represent a nonexistent server attribute.

NotFound: If any of the paths represent a valid non-public server attribute and
the user does not have READ_ALL_CONFIG right.

Security: If the user does not have ACCESS_TOOLS right.

getServerInfo

Get a list of server attributes. These include but are not limited to:

• /Server/Information/Protocol Version: The protocol version of the server.

• /Server/Information/Host IP Address: The IP address of the server.

• /Server/Information/Host Name: The host name of the server.

• /Server/Data Services/JDBC-ODBC/Client Port: The server’s JDBC port
number.

• /Server/Configuration/Version: The version of the server.

• /Server/Configuration/Services Port: The server’s Web Services port
number.

• /Server/Information/Supported Protocol Versions: List of protocol version
the server supports.
TIBCO® Data Virtualization

Operations Reference |159
Note: This operation can be invoked anonymously.

Location

/services/webservices/system/util/session/operations/

Request Elements

N/A

Response Elements

attributes: List of server attributes. See Attributes Element, page 248.

Faults

N/A

getServerName

Get the server display name.

Location

/services/webservices/system/admin/server/operations

Request Elements

N/A

Response Elements

serverName: The server display name.

Faults

Security: If the user does not have ACCESS_TOOLS and READ_ALL_CONFIG
rights.

getSqlPlan

Execute the provided sqlText directly within the TDV server and return the
execution plan. The rootNodeTitle is the name of this sqlText execution plan.
 TIBCO® Data Virtualization

160 | Operations Reference
You can get the execution plan for the SQL statement or SQL Script in sqlText.
Common SELECT, UPDATE, INSERT, DELETE SQL without input parameters is
supported. Input parameters for SQL script are also supported.

The parameters element contains a set of parameters to be inputs to the TDV
script. A parameter contains two elements:

• definition: SQL language type for this parameter value. For example,
VARCHAR(40) or BIGINT

• value: The value of this parameter.

Only users with the ACCESS_TOOLS right can call this operation.

Location

/services/webservices/system/admin/execute/operations/

Request Elements

rootNodeTitle (optional): The name of this sqlText execution plan. Defaults to
Execution Plan.

sqlText: The SQL to be executed.

parameters (optional): Name-value pairs for the arameters to use as execution
input.

Response Elements

queryPlanRoot: The root plan, which contains:

• name: Query plan node name.

• type: Type of this query plan node.

• properties (optional): List of properties for the current node and its child
nodes (to any depth).

Faults

RuntimeError: If an error occurs during execution.

Security: If the user does not have the ACCESS_TOOLS right and other
appropriate priveleges.
TIBCO® Data Virtualization

Operations Reference |161
getTabularResult

Get the tabular result associated with the resultId returned from a call to
executeNativeSql, page 86 or executeSql, page 92, or contained within the outputs
element of a call to executeProcedure, page 89 or executeSqlScript, page 98.

If "isBlocking" is set to TRUE, then this operation will not return until the
processing associated with the execution has completed and the "outputs"
element is set.

If set to FALSE, then this operation will return when the processing associated
with the execution has completed, but it will not wait to fill the "outputs" element
with data.

If includeMetadata is TRUE, the response includes the metadata element. The
metadata element describes the names and types of the column data that are
provided in the result, either in this call or in a later call to getTabularResult,
page 161.

The completed element reports whether all possible results have been retrieved.

The requestStatus element reports the status of the server request associated with
the execution. The request status can be one of the following:

• STARTED: The request has started. The request was created, but is not yet
running.

• WAITING: The request is waiting in a queue for the server to process the
request. RUNNING: The request is currently being executed by the server.

• COMPLETED: The execution associated with the request has completed.
Results can now be acquired.

• CLOSING: The request is closing.

• SUCCESS: The request closed with success.

• FAILURE: The request closed with failure.

• TERMINATED: The request was terminated.

If skipRows is set, that number of rows is skipped in the execution output before
returning any results. If skipRows is greater than the total possible number of
rows, no rows are returned.

If maxRows is set, result contains at most maxRows number of rows. If maxRows
is smaller than the total number of rows of data available, additional calls to
getTabularResult, page 161 need to be made to get the rest of the available data.
Use hasMoreRows element in result to determine if additional data is available.
This is more accurate than comparing the number of rows returned with
maxRows because the server might opt to return fewer than maxRows.
 TIBCO® Data Virtualization

162 | Operations Reference
If consumeRemainingRows is set and TRUE, all remaining rows in excess of
maxRows are consumed.

The rowsAffected element is set if it is known how many rows were affected by
this execution. This includes a count of rows that were skipped (see skipRows
element) or consumed (see consumedRemainingRows element).

Location

/services/webservices/system/admin/execute/operations/

Request Elements

resultId: The result ID.

isBlocking (optional): If TRUE (the default), do not return until the execution
completes.

includeMetadata (optional): If TRUE, the response contains information about the
column names and their types. Defaults to FALSE.

skipRows (optional): The number of rows to skip in the execution output before
generating results. If not set, no rows are skipped.

maxRows (optional): The maximum number of rows to return. If not set, all rows
are returned.

consumeRemainingRows (optional): If set and TRUE, all remaining rows after
maxRows are consumed.

Response Elements

completed: If TRUE, all processing associated with execution has completed.

requestStatus: Status of the server request performing the execution.

metadata (optional): Table metadata listing the column names and types within
the result:

column: See Column Element, page 249.

rowsAffected (optional): If known, the number of rows affected by the execution;
otherwise unset.

result (optional): The result data.

hasMoreRows: TRUE if the table has more rows than the number affected
(rowsAffected, above).

totalRowCount: Total number of rows in the table.
TIBCO® Data Virtualization

Operations Reference |163
Faults

IllegalArgument: If the isBlocking, includeMetadata, or maxRows elements are
malformed.

NotFound: If the resultId does not exist within the current transaction or has
already been closed.

RuntimeError: If an error occurs during execution. The resultId is closed if this
occurs.

getTransformFunctions

Get all functions related to transformations.

Location

/services/webservices/system/admin/resource/operations

Request Element

language: Target language. Valid values are JAVA, SQL, SQL_SCRIPT, XQUERY,
XSLT, and CUSTOM. (CUSTOM is not an actual language; it is used for custom
functions.)

Response Element

functions: List of transform-related functions.

Fault

IllegalArgument: If the language is malformed.

getUsedDataSources

Get all of the dependency data source resources the given resources depends on.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

entries: A list of resource-path/type pairs. Type can be TABLE, PROCEDURE,
LINK, DEFINITION_SET, DATA_SOURCE, or TRIGGER
 TIBCO® Data Virtualization

164 | Operations Reference
detail: The level of detail of resources in the response. May be NONE, SIMPLE, or
FULL.

Response Elements

resources: List of the resources used by the request-resources, and their
characteristics. See Resources Element, page 257.

Faults

IllegalArgument: If the path is malformed or an illegal type or detail is provided.

NotFound: If the resource or any portion of the path to the resource does not exist.

Security: If the user does not have READ access on all items in the path.

Security: If the user does not have the ACCESS_TOOLS right.

getUsedResources

Get all of the resources the given resource depends on.

Also see getDependentResources, page 120, which gets all the resources that use a
resource.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path of the resource to analyze for dependencies.

type: The type of the resource specified by the given path. Valid values are:
DATA_SOURCE, DEFINITION_SET, LINK, PROCEDURE, TABLE, TREE, and
TRIGGER.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

Response Elements

resources: List of the resources used by the given resource and their
characteristics. See Resources Element, page 257.
TIBCO® Data Virtualization

Operations Reference |165
Faults

IllegalArgument: If the path is malformed or an illegal type or detail is provided.

NotFound: If the resource or any portion of the path to the resource does not exist.

Security: If the user does not have READ access on all items in path.

Security: If the user does not have the ACCESS_TOOLS right.

getUser

Get the user definition of the caller.

Location

/services/webservices/system/admin/user/operations/

Request Elements

N/A

Response Elements

user: Name, domain and ID of user (see Users Element, page 260), as well as:

• explicitRights. For a table of values, see User and Group Rights Mask,
page 259.

• interitedRights. For a table of values, see User and Group Rights Mask,
page 259.

• annotation (optional)

• groupNames (optional): Names and domains of the groups to which the user
belongs.

Faults

NotFound: If the domain does not exist.

NotFound: If the user does not exist.

Security: If the user does not have the ACCESS_TOOLS right.

getUsers

Get the definitions of the given domain users.
 TIBCO® Data Virtualization

166 | Operations Reference
Location

/services/webservices/system/admin/user/operations/

Request Elements

domainName: The domain name.

names: List of user names within the domain.

Response Elements

users: List of users within the domain. See User Element, page 259.

Faults

NotFound: If the domain does not exist.

NotFound: If any of the requested users do not exist.

Security: If the user does not have the ACCESS_TOOLS right.

Security: If the user does not have the READ_ALL_USERS and the user names
being retrieved includes any user other than the current user.

getUsersByGroup

Get the definitions of all users within the given group, who are also within the
given domain.

Location

/services/webservices/system/admin/user/operations/

Request Elements

groupName: The group name.

domainName: The domain name.

Response Elements

users: List of users within the domain. See User Element, page 259.

Faults

NotFound: If the group does not exist.
TIBCO® Data Virtualization

Operations Reference |167
NotFound: If the domain does not exist.

Security: If the user does not have the ACCESS_TOOLS right.

introspectResourcesResult

Get the results from introspectResourcesTask, page 169. The number of results
returned is limited by page size and total number of known fields.

Results are in the form of introspection change entries, which contain the path,
type, and subtype of the resource that was introspected, the introspection action
that occurred, and a message, if available, regarding introspection of that
resource.

Subsequent calls to this operation incrementally return the full set of results.

If the block element is set and TRUE, this operation blocks until the task is
complete. Otherwise, this operation does not block.

The page size controls the maximum number of change entries that are returned
from this call.

The page start determines which result is returned first. This can be used to jump
ahead in the result list. This jump is relative to the current position. Providing a
non-zero page start with every call to this operation has the effect of skipping a
page-size number of results each time.

Specifying the page start sets the position where you would like to start receiving
results. Subsequent calls to this operation start from that point. If an insufficient
number of results have been found during a call to this operation, this operation
either times out or returns with COMPLETED set to TRUE. In either case, an
empty list of results is returned.

This operation returns a taskId that can be used to get results using , or canceled
using cancelServerTask, page 50.

This operation returns the total number of results in the totalResults element. If it
is not known what the total number of results is, this element is unset.

This operation returns a completed element that indicates whether or not
processing has completed and these are the last results the caller receives. If
TRUE, a subsequent call to getIntrospectableResourceFieldsResult generates a
NotFound fault.

This operation returns the introspection status in the status element based on the
value specified in the detail element:

• NONE: Minimal information is returned to indicate the running state of the
task.

• SIMPLE: Overall status and counts are returned.
 TIBCO® Data Virtualization

168 | Operations Reference
• FULL: List of introspection change entries is returned.

The status startTime element is set only after introspection has started. The status
endTime element is set only when introspected has completed.

The list of introspection change entries contains only entries for newly added
messages or resource identifiers since the last call to introspectResourcesResult,
page 167.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

taskId: The server task ID associated with the original call.

block (optional): Whether or not to block until processing is complete. Default is
FALSE.

page (optional):

• size: The number of resource identifiers to return in the result.

• start: The page number to start retrieving data from. Defaults to 0.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

Response Elements

taskId: The server task ID associated with the original call.

totalResults (optional): If known, the total result set size. Otherwise this element
does not exist.

completed: TRUE if processing is completed and the result set has been
exhausted.

status: The introspection status report. See Introspection Report Status Element,
page 253.

Faults

DataSourceError: If a data source connection cannot be established or if a data
source request returns an error.

IllegalArgument: If the taskId, page, or detailLevel is malformed.

IllegalState: If the data source is disabled.
TIBCO® Data Virtualization

Operations Reference |169
NotFound: If the taskId does not exist or has completed.

Security: If the user does not have the ACCESS_TOOLS right.

Security: If a different TDV session was used to create the server task.

introspectResourcesTask

Create a server task to introspect a data source.

Introspection is the process of analyzing native resources in a data source and
creating resources within the TDV that represent them. The introspection plan
provides details on what exactly should be introspected. This includes resources
to be added, updated, or removed; whether to update all previously introspected
resources; introspection attributes for individual resources; and other options.

ntrospection attributes for individual resources need only be provided if any of
the introspection attributes for a particular resource have changed. Otherwise, the
previously used attributes (if available) or defaults can be used.

The introspection plan contains a list of introspectionPlanEntries. For each entry
the following needs to be specified:

• resourceId: The path, type, and subtype of the resource to be introspected.
Resource paths are relative to the data source. An empty path, for example,
identifies the data source itself.

• action:

– ADD_OR_UPDATE: The resource is added if it does not already exist.
Otherwise it is updated.

– REMOVE: The resource is removed if it exists.

Data sources cannot be removed. Use destroyResource, page 84 to remove a
data source.

– ADD_OR_UPDATE_RECURSIVELY: Not supported.

• attributes: List of introspection-specific attributes to apply during
introspection. If a specific attribute is not specified, the attribute that was used
during the previous introspection is used. If the resource has not previously
been introspected, the default value for that attribute is used.

If the plan’s failFast option is TRUE, the introspection fails when the first error
occurs. Otherwise the plan runs to completion as a best effort. The default is
FALSE.

If the plan’s commOnFailure option is TRUE, the introspection commits whatever
it can. If fastFail is also TRUE, only resources successfully introspected up to that
point are committed. The default is FALSE.
 TIBCO® Data Virtualization

170 | Operations Reference
If the plan’s autoRollback option is TRUE, the introspection task rolls back rather
than being committed. This supersedes all commit options. This allows you to
perform a dry run of resource introspection. If autoRollback is TRUE, you can use
introspectResourcesResult, page 167. If autoRollback is FALSE or unset, the
introspection is not automatically rolled back.

If the plan’s scanForNewResourcesToAutoAdd option is TRUE, the introspection
task scans for native resources that have been newly added to the data source. If a
newly added resource is found and its parent container has the autoAddChildren
introspection attribute set, that child is automatically introspected.

This operation returns a taskId that can be used to get results using
introspectResourcesResult, or canceled using cancelServerTask, page 50.

This operation returns the number of resources that are added, removed, or
updated in the totalResults element. The totalResults element does not exist until
the full total is known. If this number is not known or only partial results are
available, this element is empty.

If the TDV session that invokes this operation closes before the task is completed,
the task continues to run until completion. However, the taskId can only be used
with cancelServerTask. It cannot be used with introspectDataSourceResult.

The introspection task is run within an independent background transaction on
the server. It is not necessary to call introspectResourcesTask, page 169 within an
explicit transaction in order to call introspectResourceResult or cancelServerTask.
This background transaction survives across server restarts until it is completed.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path to the data source.

plan: The introspection plan, which details the resource to act upon. See
Introspection Plan Element, page 252.

runInBackgroundTransaction

attributes (optional; same as attribute list and subelements as under plan above).
Also see Attributes Element, page 248.

Response Elements

taskId: The ID of the server task performing the work.
TIBCO® Data Virtualization

Operations Reference |171
totalResults (optional): If known, the total result set size. Otherwise this element
does not exist.

completed: Boolean. Whether or not task ran to completion.

Faults

DataSourceError: If a data source connection cannot be established or if a data
source request returns an error.

IllegalArgument: If the path, plan, or attributes are malformed.

IllegalState: If the data source is disabled.

NotFound: If a data source resource cannot be found at the given path.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access on the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

joinCluster

Join a cluster.

Location

/services/webservices/system/admin/resource/operations

Request Elements

remoteHostName: host name of the remote server to send join request.

remotePort (optional): port of the server to send join request.

remoteDomainName: name of the user domain on the remote server.

remoteUserName: name of the user on the remote server.

remotePassword: password of the user on the remote server.

Response Elements

messages (optional): List of messages regarding the action. See Messages
Element, page 255.
 TIBCO® Data Virtualization

172 | Operations Reference
Faults

IllegalState: If the server is already part of a cluster.

RemoteServerError: If connection fails with the remote server.

Security: If the user does not have ACCESS_TOOLS, MODIFY_ALL_CONFIG,
MODIFY_ALL_USERS, and MODIFY_ALL_RESOURCES rights.

Security: If the authentication fails on the remote server.

Security: If the user does not have ACCESS_TOOLS and MODIFY_ALL_CONFIG
rights on the remote server.

lockResource

Lock the specified resource.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path of the resource to lock.

type: The type of the resource specified by the given path. Valid values are
CONTAINER, DATA_SOURCE, DEFINITION_SET, LINK, PROCEDURE,
TABLE, TREE, or TRIGGER.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

Response Elements

resources: List of the locked resources. See Resources Element, page 257.

Faults

IllegalArgument: If the path is malformed or the type or detail is illegal.

NotFound: If the resource or any portion of the path to the resource does not exist.

Security: If the user does not have READ access on all items in path, except the
last one.

Security: If the user does not have WRITE access to the last item in path and does
not have the MODIFY_ALL_RESOURCES right.

Security: If the user does not have the ACCESS_TOOLS right.
TIBCO® Data Virtualization

Operations Reference |173
lockResources

Lock all specified resources.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

entries: List of path and type pairs of the resources to lock:

• entry (optional):

• path

• type: The type of the resource specified by the given path. Valid values are
CONTAINER, DATA_SOURCE, DEFINITION_SET, LINK, PROCEDURE,
TABLE, TREE, or TRIGGER.

detail: The level of detail of resources in the response. May be NONE, SIMPLE,
and FULL.

Response Elements

resources: List of the locked resources. See Resources Element, page 257.

Faults

IllegalArgument: If any of the provided paths are malformed, or types or detail
are illegal.

NotFound: If any of the resources or any portions of the paths do not exist.

Security: If the user does not have READ access on all items in path, except the
last one.

Security: If the user does not have WRITE access to the last item in path and does
not have the MODIFY_ALL_RESOURCES right.

Security: If the user does not have the ACCESS_TOOLS right.

moveResource

Move the specified resource into a folder using a new name.

Note: This web services operation is different from the procedure of the same
name, which is in the resource tree under /lib/resource.
 TIBCO® Data Virtualization

174 | Operations Reference
Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path of the resource to be moved.

type: The type of the resource specified by the given path. Valid values are
CONTAINER, DATA_SOURCE, DEFINITION_SET, LINK, PROCEDURE,
TABLE, TREE, or TRIGGER.

targetContainerPath: The path of the target container to move the resource into.

newName: The new name to call the moved resource.

overwrite: If a resource exists in the target container with the same name and type
of the target resource and overwrite is TRUE, the resource within the target
container is overwritten. If overwrite is FALSE, a DuplicateName fault is
generated and resource are not moved.

Response Elements

N/A

Faults

DuplicateName: If a resource in the target container exists with the same name
and type as one of the source and overwrite is FALSE.

IllegalArgument: If any of the given paths or types are malformed.

IllegalState: If the source resource cannot be moved. Resources in
/services/databases/system, /services/webservices/system, or within any
physical data source cannot be moved.

NotAllowed: If the source resource is not allowed to exist within the target
container. Resources cannot be moved into a physical data source. LINK
resources can only be moved into RELATIONAL_DATA_SOURCEs, SCHEMAs,
and PORTs under /services. Non-LINK resources cannot be moved into any
location under /services.

NotFound: If the source resource or any portion of the path to the target container
do not exist.

Security: If the user does not have READ access on all items in the source path.

Security: If the user does not have READ access on the items in the
targetContainerPath other than the last item.
TIBCO® Data Virtualization

Operations Reference |175
Security: If the user does not have WRITE access to the last item in
targetContainerPath.

Security: If the user does not have WRITE access to a resource that is to be
overwritten.

Security: If the user does not have the ACCESS_TOOLS right.

moveResources

Move the specified resources into a folder.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

entries: List of source path-type pairs to move.

• entry (optional):

– path

– type: The type of the resource specified by the given path. Valid values are
CONTAINER, DATA_SOURCE, DEFINITION_SET, LINK, PROCEDURE,
TABLE, TREE, and TRIGGER.

targetContainerPath: The path of the target container to move the resources into.

overwrite: If a resource exists in the target container with the same name and type
of the target resource and overwrite is TRUE, the resource within the target
container is overwritten. If overwrite is FALSE, a DuplicateName fault is
generated and resource are not moved.

Response Elements

N/A

Faults

DuplicateName: If a resource in the target container exists with the same name
and type as one of the source and the overwrite is FALSE.

IllegalArgument: If any of the given paths are malformed or if any of the types are
illegal.
 TIBCO® Data Virtualization

176 | Operations Reference
IllegalState: If any of the source resources is not allowed to be moved. Resources
in /services/databases/system, /services/webservices/system, or within any
physical data source cannot be moved.

NotAllowed: If any of the source resources is not allowed to exist within the
target container. Resources cannot be moved into a physical data source. LINK
resources can only be moved into RELATIONAL_DATA_SOURCEs, SCHEMAs,
and PORTs under /services. Non-LINK resources cannot be moved into any
location under /services.

NotFound: If any of the source resources or any portion of the path to the target
container do not exist.

Security: If the user does not have READ access on all items in the source paths.

Security: If the user does not have READ access on the items in the
targetContainerPath other than the last item.

Security: If the user does not have WRITE access to the last item in
targetContainerPath.

Security: If the user does not have WRITE access to a resource that is to be
overwritten.

Security: If the user does not have the ACCESS_TOOLS right.

parseSqlQuery

Parse the sqlText to check if the syntax is correct for TDV server.

Location

/services/webservices/system/admin/execute/operations/

Request Elements

sqlText: The SQL to be parsed.

Response Elements

No output element if parse sqlText SUCCESS, the input SQL is correct for TDV.

Faults

RuntimeError: If an error occurs during parse.

RuntimeError: If the user does not have appropriate privileges on any resources
referred to by the scriptText.
TIBCO® Data Virtualization

Operations Reference |177
Security: If the user does not have the ACCESS_TOOLS right.

performArchiveImport

Start importing an archive.

This operation can only be used with an import archive. It can be used anytime
after createImportArchive, page 73 is called, as long as it is within the same
transaction and the archive has not been closed.

If an import status is CANCELED or FAIL, the import is in an inconsistent state,
and so the bounding transaction should be rolled back before performing other
operations.

An import fails only if the caller does not have permission to import most data.
The only exceptions to this are the import options marked OWNER ONLY.
Attempts to set owner-only options on resources that the caller does not own nor
has admin privileges for generate a warning message in the report.

Location

/services/webservices/system/admin/archive/operations/

Request Elements

archiveId: The ID of the archive.

isBlocking: If TRUE, this call does not return until the import has completed. If
FALSE, this call returns immediately.

Response Elements

status:

• CANCELED if the archive was canceled during this call.

• SUCCESS if the import has completed.

• INCOMPLETE if the import is still in progress.

archiveReport (optional): One or more entry elements describing messages
generated during this call, if any. If no messages exist, this element is unset. See
Messages Element, page 255.

Faults

IllegalArgument: If the isBlocking element is malformed.

IllegalState: If this operation is called using an export archive ID.
 TIBCO® Data Virtualization

178 | Operations Reference
NotFound: If archive for the archive ID does not exist.

performServerAction

Perform a server action.

Use getServerActions, page 156 to get a complete list of available actions and their
attribute definitions. These are also listed in Server Actions Reference, page 347.

Location

/services/webservices/system/admin/server/operations

Request Elements

actionName: The name of the action to invoke.

attributes: List of attributes to apply to the action. See Attributes Element,
page 248.

Response Elements

status: If SUCCESS, the action succeeded; otherwise FAIL.

messages: List of entry elements describing messages regarding the action.
Messages might be returned regardless of success or failure, depending on the
action that was invoked. See Messages Element, page 255.

Faults

IllegalArgument: If any of the attributes are malformed.

IllegalArgument: If an unsupported attribute is provided.

NotAllowed: If a required attribute is missing.

NotFound: If no action for actionName exists.

Security: If caller does not have ACCESS_TOOLS right.

Security: If caller does not have any other rights as required by the specific action.

rbsAssignFilterPolicy

Assign a filter policy for row-based security.
TIBCO® Data Virtualization

Operations Reference |179
Location

/services/webservices/system/util/security/operations/

Request Elements

name: The name of the filter policy, in one of two forms:

• name: If a name element is specified, the filter policy is retrieved based on its
short name.

• procedureName: If a procedureName element is specified, the filter policy is
retrieved based on the path of the implementing procedure.

target: The path of the view or table.

operation: (optional):

• ASSIGN: Assigns a policy definition. Default value.

• REMOVE: Removes a filter policy definition.

Response Elements

N/A

Faults

NotFound: If the specified filter policy does not exist

NotFound: If the specified view or table does not exist

Security: If user is not member of the admin group, or else lacks
ACCESS_TOOLS, READ_ALL_CONFIG and MODIFY_ALL_CONFIG.

rbsDeleteFilterPolicy

Remove a filter policy definition. Either a name or a procedure name must be
specified.

Location

/services/webservices/system/util/security/operations/

Request Element

name: The name of the filter policy, in one of two forms:
 TIBCO® Data Virtualization

180 | Operations Reference
• name: If a name element is specified, the filter policy to delete is identified by
short name.

• procedureName: If a procedureName element is specified, the filter policy to
delete is identified by the path of the implementing procedure.

Response Elements

N/A

Faults

NotFound: If the specified filter policy does not exist

Security: If user is not member of the admin group, or else lacks
ACCESS_TOOLS, READ_ALL_CONFIG and MODIFY_ALL_CONFIG.

rbsGetFilterPolicy

Retrieve the definition of a filter policy.

Location

/services/webservices/system/util/security/operations/

Request Elements

name: The filter policy’s name.

Response Elements

policy: A filter policy definition. See Filter Policy Definition, page 250.

Faults

Security: If user is not member of the admin group, or else lacks
ACCESS_TOOLS, READ_ALL_CONFIG and MODIFY_ALL_CONFIG.

NotFound: If no such filter policy exists.

rbsGetFilterPolicyList

Retrieve a list of filter policies.
TIBCO® Data Virtualization

Operations Reference |181
Location

/services/webservices/system/util/security/operations/

Request Elements

N/A

Response Elements

filterPolicyList:

• filterPolicy (optional): Can include one or more filter policies. See Filter Policy
Definition, page 250.

Faults

Security: If user is not member of the admin group, or else lacks
ACCESS_TOOLS, READ_ALL_CONFIG and MODIFY_ALL_CONFIG.

rbsIsEnabled

Checks whether row-based security is enabled or not.

Location

/services/webservices/system/util/security/operations/

Request Elements

N/A

Response Elements

enabled: RBS is enabled (TRUE) or not (FALSE).

Faults

N/A

rbsSetEnabled

Enable or disable row-based security.
 TIBCO® Data Virtualization

182 | Operations Reference
Location

/services/webservices/system/util/security/operations/

Request Elements

enabled: Sets whether RBS is to be enabled (TRUE) or disabled (FALSE).

Response Elements

N/A

Faults

Security: If user is not member of the admin group, or else lacks
ACCESS_TOOLS, READ_ALL_CONFIG and MODIFY_ALL_CONFIG.

rbsWriteFilterPolicy

Create or update a filter policy.

Location

/services/webservices/system/util/security/operations/

Request Elements

policy: A filter policy definition. See Filter Policy Definition, page 250.

Response Elements

N/A

Faults

Metadata: If existing metadata precludes the creation of the filter policy as
specified.

Security: If user is not member of the admin group, or else lacks
ACCESS_TOOLS, READ_ALL_CONFIG and MODIFY_ALL_CONFIG.
TIBCO® Data Virtualization

Operations Reference |183
rebindResources

Change the bindings of used resources within one or more resources. Within each
resource specified in entries, the rebindRule is applied. Each rule changes usage
of one resource to another as specified by the rule.

How rebinding is done is resource-specific. Typically, the resource’s source text,
model, or both are updated to replace the references of oldPath and oldType to
newPath and newType.

If a resource in the entries does not currently use a resource identified by oldPath
and oldType in the rebindRules, that rule is not applied, but no fault is generated.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

entries: List of source path-type pairs indicating where to apply rebinding:

• entry

• path: The path to the resource.

• type: Resource type: TABLE, PROCEDURE, LINK, DEFINITION_SET,
DATA_SOURCE, or TRIGGER.

rebindRules: List of rebindings to be performed on each resource identified in
entries.

• rebindRule (optional): A single rebinding:

• oldPath: The path to the resource that used to be used.

• oldType: The type of the resource that used to be used. See above.

• newPath: The path to the resource that is now to be used.

• newType: The type of the resource that is now to be used. See above.

Response Elements

N/A

Faults

IllegalArgument: If any of the given paths or types are malformed.

NotFound: If any of the resources in entries cannot be found.
 TIBCO® Data Virtualization

184 | Operations Reference
Security: If the user does not have READ access on all items in the entry paths
other than the last item.

Security: If the user does not have WRITE access to a resource that is to be
rebound.

refreshResourceCache

Refresh the cache on a resource. Also see updateResourceCacheConfig, page 225
for enabling and disabling caching.

Note: This web services operation is different from the procedure of the same
name, which is in the resource tree under /lib/resource.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path of the resource with caching enabled.

type: The type of the resource can be either TABLE or PROCEDURE.

Response Elements

N/A

Faults

IllegalArgument: If the path is malformed or an illegal type is provided.

IllegalState: If the cache is disabled or the resource type does not support caching.

NotFound: If the resource or any portion of the path to the resource does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

ServerError: If any problems with connecting to or retrieving data from the data
source when refreshing.
TIBCO® Data Virtualization

Operations Reference |185
refreshResourceStatistics

Refresh the statistics on a resource.

Note: This web services operation is different from the procedure of the same
name, which is in the resource tree under /lib/resource.

Also see updateResourceStatisticsConfig, page 231 for enabling statistics
gathering.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path of the resource with statistics gathering enabled.

type: The type of the resource. May only be a relational physical DATA_SOURCE
or TABLE.

isBlocking (optional): Boolean indicating if call should block until operation
completes.

Response Elements

N/A

Faults

IllegalArgument: If the path is malformed or an illegal type is provided.

NotAllowed: If the statistics are disabled or the resource is of the wrong type.

NotFound: If the resource or any portion of the path to the resource does not exist.

Security: If the user does not have READ access on all items in path.

Security: If the user does not have the ACCESS_TOOLS right.

reintrospectDataSource

Deprecated as of API version 6.0. Instead use introspectResourcesTask, page 169.

Note: This web services operation is different from the procedure of the same
name, which is in the resource tree under /lib/resource.

Performs a reintrospection of the given data source.
 TIBCO® Data Virtualization

186 | Operations Reference
If isBlocking is TRUE, this operation does not return until the reintrospect is
complete. If isBlocking is FALSE, the call returns immediately with a reintrospect
ID that can be used with cancelDataSourceReintrospect, page 48 and
getDataSourceReintrospectResult, page 117.

If isBlocking is FALSE and this operation is invoked with an explicit transaction,
committing the transaction before the reintrospect completes blocks until it
completes. If this operation is invoked with an implicit transaction, the
reintrospection is run in the background and commits on success or rolls back on
failure. In this case, the reintrospect ID is not found by calls to
cancelDataSourceReintrospect or getDataSourceReintrospectResult. A
reintrospect on an implicit transaction cannot be canceled or generate a report.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path to the data source to be reintrospected.

isBlocking: If TRUE, this call does not return until reintrospection has completed.
If FALSE, this call returns immediately regardless of completion.

attributes (optional): Optional values to be used for the resource. These may be
required to specify login information if such information is not persisted with the
data source definition. See Attributes Element, page 248.

Response Elements

status:

• SUCCESS or FAIL (as appropriate) if the reintrospect completed during this
operation.

• INCOMPLETE if the reintrospect is still in progress.

reintrospectReport (optional): If the reintrospect is SUCCESS or FAIL, this report
lists what changes occurred during the reintrospection. Otherwise, this element
does not exist. See Reintrospect Report Element, page 257.

reintrospectId (optional): If the status is INCOMPLETE, the reintrospect ID is
provided.

Faults

IllegalArgument: If the path is malformed.

NotFound: If a data source resource cannot be found at the given path.
TIBCO® Data Virtualization

Operations Reference |187
IllegalState: If the data source is disabled.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access on the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

removeFromCluster

Remove a server node from a cluster.

Location

/services/webservices/system/admin/server/operations

Request Elements

remoteHostName (optional): Host name of the remote server to be removed. Can
be omitted if it is the invoking server.

remotePort (optional): Port of the remote server to be removed. Can be omitted if
it is the invoking server, or it is the default port.

Response Elements

messages (optional): List of entries describing messages regarding the action. See
Messages Element, page 255.

Faults

IllegalState: If the server is not part of a cluster.

Security: If the user does not have both ACCESS_TOOLS and
MODIFY_ALL_CONFIG rights.

removeLicenses

Unregister one or more licenses from the server. Also see addLicenses, page 39
and getLicenses, page 137.

Location

/services/webservices/system/admin/server/operations
 TIBCO® Data Virtualization

188 | Operations Reference
Request Elements

licenseId: List of licenses to be unregistered.

Response Elements

N/A

Faults

NotFound: If any of the given licenses do not exist.

Security: If the user does not have both ACCESS_TOOLS and
MODIFY_ALL_CONFIG rights.

removeLoginModule

Remove a login module instance from the login sequence.

Location

/services/webservices/system/util/security/operations/

Request Elements

id: The ID of the login module to remove.

Response Elements

N/A

Faults

Invalid ID: If the ID does not designate a valid login module instance.

Security: If the user is not composite\admin.

removePrincipalMapping

Remove a principal mapping from the authentication process.

Location

/services/webservices/system/util/security/operations/
TIBCO® Data Virtualization

Operations Reference |189
Request Elements

id: The ID of the principal mapping to remove.

Response Elements

N/A

Faults

Invalid ID: If the ID value does not designate a principal mapping.

Security: If the user is not composite\admin.

removeUserFromGroups

Remove a user from one or more groups within a domain.

Location

/services/webservices/system/admin/user/operations/

Request Elements

domainName: The domain name.

userName: The user name.

groupNames: List of groups to remove the user from.

Response Elements

N/A

Faults

NotAllowed: If the user cannot be updated as requested. For example, the group
membership might not be updatable to omit the all group.

NotAllowed: If an attempt is made to use this operation with an insufficient
license.

NotFound: If the domain does not exist.

NotFound: If the user does not exist.

NotFound: If any of the provided groups do not exist.
 TIBCO® Data Virtualization

190 | Operations Reference
Security: If the user does not have the ACCESS_TOOLS and
MODIFY_ALL_USERS rights.

removeUsersFromGroup

Remove one or more users from a domain’s group.

Location

/services/webservices/system/admin/user/operations/

Request Elements

domainName: The domain name.

groupName: The group name.

userNames: List of user names to remove from the group.

Response Elements

N/A

Faults

NotAllowed: If the group cannot be updated as requested. The group
membership might not be updatable, as with the composite domain’s “all” group.

NotAllowed: If an attempt is made to use this operation with an insufficient
license.

NotFound: If the domain does not exist.

NotFound: If the group does not exist.

NotFound: If any of the provided users do not exist.

Security: If the user does not have the ACCESS_TOOLS and
MODIFY_ALL_USERS rights.

renameResource

Rename the resource but not the contents. This call does not modify the script text
for a SQL Script procedure.

Note: This web services operation is different from the procedure of the same
name, which is in the resource tree under /lib/resource.
TIBCO® Data Virtualization

Operations Reference |191
Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: A source path of the resource to be renamed.

type: The type of the source resource to be renamed. Valid values are
CONTAINER, DATA_SOURCE, DEFINITION_SET, LINK, PROCEDURE,
TABLE, TREE, and TRIGGER.

newName: The new name of the resource.

Response Elements

N/A

Faults

DuplicateName: If a resource already exists of this type with the new name.

IllegalArgument: If the path is malformed or the type is illegal.

IllegalState: If the resource cannot be renamed. Resources within a physical data
source and in the /shared, /services/databases, /services/webservices and user
home folders cannot be renamed.

NotFound: If resource does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access to the last item in newName.

Security: If the user does not have the ACCESS_TOOLS right.

repairCluster

Repair server nodes and set the timekeeper node.

Location

/services/webservices/system/admin/server/operations

Request Elements

option: Option to perform. Values are: REGROUP
 TIBCO® Data Virtualization

192 | Operations Reference
remoteHostName (optional): Host name of the remote server to send repair
request.

remotePort (optional): Port of the server to send repair request

remoteDomainName (optional): Name of the user domain on the remote server.

remoteUserName (optional): Name of the user on the remote server.

remotePassword (optional): Password of the user on the remote server.

Response Elements

messages: List of entry elements describing messages regarding the action. See
Messages Element, page 255.

Faults

IllegalArgument: If the option is malformed.

IllegalState: If the server is not part of a cluster.

RemoteServerError: If error communicating with other cluster nodes.

Security: If the user does not have both ACCESS_TOOLS and
MODIFY_ALL_CONFIG rights.

Security: If the remote server authentication fails.

Security: If the user does not have both ACCESS_TOOLS and
MODIFY_ALL_CONFIG on the remote server.

resourceExists

Check to see if a resource exists.

Note: This web services operation is different from the procedure of the same
name, which is in the resource tree under /lib/resource.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path of the resource to check.

type: The type of the resource to check. Valid values are CONTAINER,
DATA_SOURCE, DEFINITION_SET, LINK, PROCEDURE, TABLE, TREE, and
TRIGGER.
TIBCO® Data Virtualization

Operations Reference |193
version (optional): Reserved for future use.

Response Elements

exists: TRUE if the resource exists; otherwise FALSE.

Faults

IllegalArgument: If the path is malformed, an illegal type is provided, or any
value is provided for version.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have the ACCESS_TOOLS right.

syncDomainGroups

Synchronize the given users in all external domain groups for an external domain.

Location

/services/webservices/system/admin/user/operations

Request Elements:

domainName: The domain name.

names: A list of user names within the domain.

Response Elements:

 N/A

Faults:

NotFound: If the domain does not exist.

Security: If the group does not have the ACCESS_TOOLS, READ_ALL_USERS,
MODIFY_ALL_USERS rights.

testDataSourceConnection

Test to see if a data source’s connection is operational.
 TIBCO® Data Virtualization

194 | Operations Reference
Note: This web services operation is different from the procedure of the same
name, which is in the resource tree under /lib/resource.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path to the data source to be tested.

Response Elements

status: If SUCCESS, the data source is operational and responds to the test;
otherwise, the test status reports FAIL.

messages: List of entry elements describing messages that were generated during
the test. See Messages Element, page 255.

Faults

IllegalArgument: If the path is malformed.

NotFound: If the data source does not exist.

Security: If the user does not have READ access on all items in path.

Security: If the user does not have the ACCESS_TOOLS right.

unlockResource

Unlock the specified resource.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path of the resource to unlock.

type: The type of the resource to unlock. Valid values are CONTAINER,
DATA_SOURCE, DEFINITION_SET, LINK, PROCEDURE, TABLE, TREE, and
TRIGGER.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.
TIBCO® Data Virtualization

Operations Reference |195
comment (optional): A description about why the resource is being unlocked.

Response Elements

resources: List of the unlocked resources. See Resources Element, page 257.

Faults

IllegalArgument: If the path is malformed or the type or detail is illegal.

NotFound: If the resource or any portion of the path to the resource does not exist.

Security: If the user does not have WRITE access to the last item in path and does
not have the MODIFY_ALL_RESOURCES right.

Security: If the user does not have the ACCESS_TOOLS right.

Security: If the user is not the lock owner and does not have the
UNLOCK_RESOURCE right.

unlockResources

Unlock all the specified resources.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

entries: List of path-type pairs of the resources to unlock:

• path: Path to a resource.

• type: Valid values are CONTAINER, DATA_SOURCE, DEFINITION_SET,
LINK, PROCEDURE, TABLE, TREE, and TRIGGER.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

comment (optional): A description of why the resource is being unlocked.

Response Elements

resources: List of the unlocked resources. See Resources Element, page 257.
 TIBCO® Data Virtualization

196 | Operations Reference
Faults

IllegalArgument: The provided paths are malformed, or types or detail are illegal.

NotFound: If any of the resources or any portions of the paths do not exist.

Security: If the user does not have WRITE access to the last item in path and does
not have the MODIFY_ALL_RESOURCES right.

Security: If the user does not have the ACCESS_TOOLS right.

Security: If the user is not the lock owner and does not have the
UNLOCK_RESOURCE right.

updateArchiveExportSettings

Update the export settings used or to be used by an archive export. This operation
can only be used with an export archive. It can be used anytime after
createExportArchive, page 69 is called as long as it is within the same transaction
and the archive has not been closed.

Location

/services/webservices/system/admin/archive/operations/

Request Elements

archiveId: The ID of the archive.

settings: Description of what is exported for this archive. The settings have the
following structure:

• name: The name of the export archive.

• description: A verbose description of the archive.

• type:

– BACKUP: All information in this archive replaces the server information
when imported.

– ROOT: Resources within the archive cannot be relocated when reimported.

– PACKAGE: Resources within the archive can be relocated when
reimported.

• resources (optional): List of exported resources.

– all (optional): If set, all resources on the server are exported.

– resources (optional): Path and type of each resource, plus:
TIBCO® Data Virtualization

Operations Reference |197
includeChildren (optional): If TRUE or unset, recursively export all child
resources. If FALSE, do not include any children.

• users (optional): List of exported users. See Users Element, page 260.

• exportOptions (optional): A space-delimited list of archive options.

• importHints (optional): Hints that can be used during import. See Import
Hints, page 252.

• createInfo (optional): Not used. Any setting of this element is ignored.

Response Elements

N/A

Faults

IllegalArgument: If the type is malformed.

IllegalArgument: If any of the resource paths or types are malformed.

IllegalArgument: If any of the settings are malformed or contain illegal values.

IllegalArgument: If any of the server attributes are malformed.

IllegalArgument: If any of the export options are malformed.

IllegalArgument: If any of the import hints are malformed.

IllegalState: This operations can only be called within an explicit transaction
context. Use beginTransaction, page 44 and closeTransaction, page 57.

IllegalState: If this operation is called using an import archive ID.

NotAllowed: If an explicitly named resource cannot be exported. The inclusion of
implicitly identified resources (using includeChildren) that are not allowed to be
exported does not cause this fault.

NotFound: If archive for the archive ID does not exist.

NotFound: If any portion of any of the resource paths and types do not exist.

NotFound: If any of the domains, users, or groups do not exist.

NotFound: If any of the server attributes do not exist.

NotFound: If any of the resources specified in the importHints are not included in
the export archive.

NotFound: If any of the users specified in the importHints are not included in any
of the resources, privileges, or user data in the export archive.
 TIBCO® Data Virtualization

198 | Operations Reference
Security: If the user does not have READ access on all items in the explicitly
identified resource paths. Paths to resources implicitly included (through
includeChildren) that the user does not have READ access on does not generate
this fault.

Security: If the caller does not have admin privileges and attempts to use an
export option that is ADMIN ONLY.

Security: If the caller attempts to use an OWNER ONLY export option does not
have admin privileges and attempts to use an export option that is ADMIN
ONLY.

updateArchiveImportSettings

Update the import settings that are to be used for controlling the archive import.

This operation can only be used with an import archive. It can be used any time
after createImportArchive, page 73 is called as long as it is within the same
transaction and the archive has not been closed.

Not setting a particular optional element within the settings elements means that
no aspect of that setting is applied during import. No checks are made to
determine whether any specified resources exist or whether any mapping creates
a cyclical relationship.

A number of options can be specified in the importOptions element. If an option
is specified, the associated information is exported. Otherwise it is not exported.
The valid options are:

• INCLUDE_CACHING: Include caching configurations for resources.

• INCLUDE_CUSTOM_JAVA_JARS: Include custom Java JARs in the export.
(ADMIN ONLY)

• INCLUDE_STATISTICS: Include any resources statistics known about the
table boundaries, and column boundaries.

• INCLUDE_DEPENDENCY: Gather and include all dependent resources for
the resources you choose to export.

• INCLUDE_PHYSICAL_SOURCE_INFO: Include sensitive connection
information for included physical sources. (OWNER ONLY)

• INCLUDE_REQUIRED_USERS: Include the information about the required
users in the export file.
TIBCO® Data Virtualization

Operations Reference |199
• INCLUDE_SECURITY: Include resource privilege settings. (OWNER ONLY)

– If the caller requests an option marked ADMIN ONLY and does not have
admin privileges, a Security fault is generated.

– If the caller requests an option marked OWNER ONLY, that option is
applied only to resources where the caller is the owner. If the caller has
admin privileges, the option is applied to all resources regardless of
ownership. If the option cannot be applied, messages are generated, but no
fault occurs during import.

Location

/services/webservices/system/admin/archive/operations/

Request Elements

archiveId: The ID of the archive.

settings: Description of how much of the archive to import and what
modifications should be made during import. The settings have the following
structure:

• excludeResources (optional): List of path-type pairs indicating resources that
should not be imported. By default this is unset.

• relocateResources (optional): A mapping of resources from their location in
the archive to where they should be imported. By default this is unset. Each
mapping is a path-type pair indicating the “from” location and a path-type
pair indicating the “to” location.

• rebindResources (optional): A mapping of resources references within the
archive to where they should refer to. By default this is unset. Each mapping
is a path-type pair indicating the “from” resource binding and a path-type
pair indicating the “to” resource binding.

• rebindUsers (optional): A mapping of users within the archive to whom they
should be. By default this is unset. Each mapping is a
domainName-userName pair indicating the from user binding and a
domainName-userName pair indicating the to user binding.

• remapAttributes (optional): List of resource attribute settings that should be
applied on import. By default this is unset.

• map (optional):

– resource: A path-type pair indicating a resource.

– attribute: See Attributes Element, page 248.
 TIBCO® Data Virtualization

200 | Operations Reference
• importOptions (optional): A space-separated list of name elements (archive
options) indicating what additional features should be imported. By default,
the same options used for export are used for import.

Response Elements

N/A

Faults

IllegalArgument: If any of the resource paths or types are malformed.

IllegalArgument: If a supplied attribute is malformed.

IllegalArgument: If any of the import options are malformed.

IllegalState: If this operation is called using an export archive ID.

NotAllowed: If the archive type is BACKUP or ROOT and the relocateResources
element is set.

NotAllowed: If the archive type is BACKUP and the excludeResources element is
set.

NotAllowed: If the archive type is BACKUP and the rebindResources element is
set.

NotAllowed: If the archive type is BACKUP and the rebindUsers element is set.

NotAllowed: If the archive type is BACKUP and the remapAttributes element is
set.

NotFound: If archive for the archive ID does not exist.

NotFound: If an importOption is set for which the correspond exportOption was
not set.

Security: If the caller attempts to set an ADMIN ONLY import option and the
caller does not have admin privileges.

updateBasicTransformProcedure

Update the definition of a Basic Transform procedure resource. If the source
resource does not currently exist or is not compatible with the transformation, the
resource becomes impacted. Only a PROCEDURE with a single output parameter
of type XML or a TREE (XML file) is supported.

Location

/services/webservices/system/admin/resource/operations/
TIBCO® Data Virtualization

Operations Reference |201
Request Elements

path: A fully qualified path to the resource.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

transformSourcePath: The location of the resource to be transformed.

transformSourceType: The type of resource (PROCEDURE) to be transformed.

annotation (optional): A description of the resource. If not provided, the
annotation is left unaltered.

attributes (optional): List of resource-specific attributes. Sets the specified
attributes but does not alter the values of unspecified attributes. See Attributes
Element, page 248.

Response Elements

resources: List of the updated resources. See Resources Element, page 257.

Faults

IllegalArgument: If any of the given paths are malformed, or the detail or any of
the types are illegal.

NotFound: If the resource does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

updateCachedResourceStatisticsConfig

Set the cost based optimizer (CBO) statistics configuration for a data source.
Cache must be configured before configuring statistics.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path of a cacheable resource.

type: Cached resource statistics are of type TABLE.
 TIBCO® Data Virtualization

202 | Operations Reference
detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

cachedStatisticsConfig: The statistics configuration of the given resource.

• configured (optional): TRUE if statistics gathering is configured; otherwise
FALSE.

• useEnabled (optional): TRUE if gathered statistics are to be used by CBO;
otherwise FALSE. This can be used to temporarily disable CBO.

• cardinalityMin (optional): Minimum cardinality for this resource. Setting this
value overrides gathered statistics.

• cardinalityMax (optional): Maximum cardinality for this resource. Setting this
value overrides gathered statistics.

• cardinalityExpected (optional): Expected cardinality for this resource. Setting
this value overrides gathered statistics.

• gatherEnabled (optional): Defines what statistics should be gathered for this
resource. Valid values are TABLE_BOUNDARY or CUSTOM.

• maxTime (optional): Integer 0 to n in minutes. Maximum amount of time the
process should spend gathering data; 0 means no limit

• columns (optional): Only applicable if gatherEnabled is set to CUSTOM.

• column (optional): List indicating what specific data to get for each column:

name: Simple column name.

flags: Valid values are NONE, BOUNDARY or ALL.

• onCacheRefresh (optional): TRUE if statistics gathering should be
automatically triggered by cache refresh. If FALSE, refresh mode can be
specified.

• refresh (optional): How the statistics data should be refreshed.

• mode: How the statistics data should be refreshed (MANUAL or
SCHEDULED).

• schedule (if mode is SCHEDULED): See Schedule Element, page 258.

Response Elements

cachedStatisticsConfig (optional): The statistics configuration of the given
resource. This element is only present in the response if the detail level is not
NONE.
TIBCO® Data Virtualization

Operations Reference |203
Faults

IllegalArgument: If the path is malformed or an illegal type is provided.

NotAllowed: If the resource is of the wrong type.

NotFound: If the resource or any portion of the path to the resource does not exist.

Security: If the user does not have READ access on all items in path.

Security: If the user does not have the ACCESS_TOOLS right.

updateClusterName

Update cluster display name.

Location

/services/webservices/system/admin/server/operations

Request Elements

clusterName: New cluster display name.

Response Elements

N/A

Faults

IllegalState: If the server is not part of a cluster.

Security: If the user does not have both ACCESS_TOOLS and
MODIFY_ALL_CONFIG rights.

updateColumnAnnotation

Updates the annotation of a column.

Request Elements

 path: A fully qualified path to the column.

 detail: The level of detail of resources in the response.Valid values are "NONE",
"SIMPLE", or "FULL".

 annotation: A description of the column. See Column Element, page 249
 TIBCO® Data Virtualization

204 | Operations Reference
Response Elements

 resources: A list containing the parent resource of updated column.

Faults

 IllegalArgument: If the path is malformed or if the type or detail are illegal.

 NotFound: If the column does not exist.

 Security: If the user does not have READ access on all items in the path other
than the last one.

 Security: If the user does not have WRITE access to the last item in path.

 Security: If the user does not have the ACCESS_TOOLS right.

updateConnector

Update the definition of a connector.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

connector: Connector update values. List of connector-type-specific attributes sets
the specified attributes but does not alter the value of unspecified attributes. See
Connector Element, page 249.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

Response Elements

connector: Updated connector values. Response elements are the same as the
request elements.

• name: Identifies the connector that has been updated.

• groupName (optional), and so on.

Faults

IllegalArgument: If the path is malformed, or the detail or attributes are illegal.

NotFound: If the resource or any portion of path does not exist.
TIBCO® Data Virtualization

Operations Reference |205
Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

updateCustomDataSourceType

Update a custom data source type.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

dataSourceType: Resource type of intended data source; updated JDBC URL
pattern or driver class name. Other changes are not allowed.

• name

• type

• attributes (optional): List of connector-type-specific attributes. Sets the
specified attributes but does not alter the value of unspecified attributes. See
Attributes Element, page 248.

Response Elements

resources: List of the updated data source resources. See Resources Element,
page 257.

Faults

IllegalArgument: If the name or type is malformed, or the detail or attributes are
illegal.

NotFound: If the data source type does not exist.

updateDataServicePort

Update the definition of a TDV data service port container.

Location

/services/webservices/system/admin/resource/operations/
 TIBCO® Data Virtualization

206 | Operations Reference
Request Elements

path: Fully qualified path to the resource.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

authMethods (optional): Authentication methods. Valid values are NONE,
HTTP_BASIC, HTTP_DIGEST, WSS_USERNAME_TOKEN, NTLM, or
KERBEROS.

requireAllAuthMethods (optional): If TRUE, all selected authentication methods
are required. If FALSE, any selected authentication method is allowed.

transportSecurity (optional): Transport level security. Valid values are NONE or
HTTPS.

bindingType (optional): The WSDL binding type. Valid values are:
DOCUMENT_LITERAL, RPC_SOAP, RPC_LITERAL, HTTP_POST, HTTP_GET.

bindingProfileType (optional): binding profile type. Valid values are:

• http://schemas.xmlsoap.org/soap/http

• http://schemas.xmlsoap.org/soap/jms

• http://www.tibco.com/namespaces/ws/2004/soap/binding/JMS

bindingProperties (optional): Parameter for JMS binding profile type.

correlationType (optional): Not used.

isConnectorGroup (optional): Parameter for JMS binding profile type. Typically
FALSE.

connector (optional): Parameter for JMS binding profile type. It is used by JMS
binding only. Use Manager to create a connector, and set the value of the
connector name.

attributes (optional): List of attributes. See Attributes Element, page 248.

annotation: A description of the resource. If not provided, the annotation are left
unaltered.

implementation: Points to the operation. Deprecated from 5.0. No need to specify
a value.

alternateURL: Deprecated from 5.0. No need to specify a value.

Response Elements

resources: List of the updated data service ports. See Resources Element,
page 257.
TIBCO® Data Virtualization

Operations Reference |207
Faults

IllegalArgument: If the path is malformed, or the detail or attributes are illegal.

NotFound: If the resource or any portion of path does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

updateDataSource

Update the definition of a data source resource.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: A fully qualified path to the resource.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

annotation (optional): A description of the resource. If not provided, the
annotation is left unaltered.

attributes (optional): List of data source type specific attributes. The specific list of
supported attributes vary by data source type. (See getDataSourceAttributeDefs,
page 115.) Sets the specified attributes but does not alter the value of unspecified
attributes. See Attributes Element, page 248.

Response Elements

resources: List of updated resources. See Resources Element, page 257.

Faults

IllegalArgument: If the path is malformed, the detail is illegal, or any of the
attribute values provided do not match their definitions.

NotAllowed: If an attempt is made to update a custom Java procedure or custom
data source with an insufficient license.

NotFound: If the data source or any portion of path do not exist.
 TIBCO® Data Virtualization

208 | Operations Reference
Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

updateDataSourceChildInfos

Deprecated as of API version 6.0. Instead use introspectResourcesTask, page 169.

Update the introspect state for child resources within a data source. This causes
resources in the namespace to be added or removed as appropriate.

The childInfo paths are paths relative to the data source. The introspect state
IGNORED causes the resource to be removed (or stay removed); SELF causes the
resource to be added (or stay added); and SELF_AND_CHILDREN causes the
resource to be added along with all of its children.

The changes made with this operation are applied when the transaction is
committed, or when it is discarded on transaction rollback.

Accessing data source childInfo is relatively expensive. If multiple calls to this
operation and/or getDataSourceChildResources are going to be made, making
them all on one transaction improves performance.

Also see getDataSourceChildResources and reintrospectDataSource.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: A path to the data source

childInfos: List of dataSourceChildInfos to be updated.

path: The path within the data source.

type: The type of resource within the data source. Legal values are CONTAINER,
DATA_SOURCE, DEFINITION_SET, LINK, PROCEDURE, TABLE, TREE,
TRIGGER.

introspectState: The new state to set. Legal values are IGNORED, SELF, and
SELF_AND_CHILDREN.

attributes (optional): Optional values to be used for the resource. These might be
required to specify login information if such information is not persisted with the
data source definition. See Attributes Element, page 248.
TIBCO® Data Virtualization

Operations Reference |209
Response Elements

N/A

Faults

DataSourceError: If a data source connection cannot be established or if a data
source request returns an error.

IllegalArgument: If the path element or any path in a childInfo is malformed, or if
any type or introspect state on childInfo is illegal.

NotFound: If the data source or any portion of path do not exist.

NotFound: If any of the childInfo paths do not exist and the introspect state is not
being set to IGNORED.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

Example

Introspect the table orders: run the webservice and set parameters as follows.
updateDataSourceChildInfos

path=/shared/examples/ds_orders
childInfos
childInfo

path=orders
type=TABLE
introspectState=SELF

updateDataSourceChildInfosWithFilter

Unsupported in API version 6.0. Instead use introspectResourcesTask, page 169
with an introspection plan.

Updates the introspection state for child resources based upon the specified filter
criterion.

Invocation of this procedure adds or removes resources that match the filter set
on the path and childInfo path depending on the value passed by introspectState.

Filters created with the API are persistent and they are applied to future
introspections (programmatic or manual), so that new tables or directories that
match the filter criterion are added or ignored based on those filters and their
respective introspection states.
 TIBCO® Data Virtualization

210 | Operations Reference
Accessing data source childInfo is relatively expensive. If multiple calls to this
operation and/or getDataSourceChildResources, page 115 are going to be made,
filtering the request and making them all on one transaction improves
performance.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: Path to the data source.

childInfos: List of dataSourceChildInfos to update. For each childInfo:

• path: The path within the data source. The childInfo paths are paths relative to
the data source.

• type: The type of resource within the data source. Legal type values are:
CONTAINER and TABLE.

• introspectState: The new state to set. Legal introspect state values are:

– IGNORED: Causes the resource to be removed (or stay removed).

– SELF: Causes the resource to be added (or stay added).

– SELF_AND_CHILDREN: Causes the resource to be added along with all of
its children.

attributes (optional): Optional values to be used for the resource. These might be
required to specify login information if such information is not persisted with the
data source definition. See Attributes Element, page 248.

filter: Wild-card character used by the specific datasource to represent any
trailing characters.

Response Elements

N/A

Faults

DataSourceError: Given if a data source connection cannot be established or if a
data source request returns an error.

IllegalArgument: If the path element or any path in a childInfo is malformed, or if
any type or introspect state on a childInfo is illegal.

NotFound: If the data source or any portion of path do not exist.
TIBCO® Data Virtualization

Operations Reference |211
NotFound: If any of the childInfo paths do not exist and the introspect state is not
being set to IGNORED.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

Example

Introspect the data source ds_orders and any other table that starts with the letter
“o.” Run the webservice API and set parameters as follows:
updateDataSourceChildInfosWithFilter

path="/shared/examples/ds_orders"
childInfos
childInfo

path=o %
type=TABLE
introspectState=SELF

filter="%"

In a programmatic invocation of this procedure, the changes made are applied
when the transaction is committed, or discarded when the transaction is rolled
back. Studio invocation of this procedure implies commit on execution.

Changes are additive. Existing table selections remain selected even if they do not
match the current filter, unless the introspectState value is IGNORED.

Datasource filters created with the API are persistent, but the introspectState can
be reversed with a separate invocation, or the Studio API can be used to delete the
filter while retaining currently introspected tables.

Also see getDataSourceChildResources, page 115 and reintrospectDataSource,
page 185.

updateDataSourcePort

Update the definition of a TDV data source port container.

Location

/services/webservices/system/admin/resource/operations/
 TIBCO® Data Virtualization

212 | Operations Reference
Request Elements

path: A fully qualified path to the resource.

detail: The level of detail of resources in the response. Valid values are NONE,
SIMPLE, and FULL.

authMethods (optional): A space-separated list containing one or more
authentication methods that data service clients can use to authenticate to the
server: HTTP_BASIC, HTTP_DIGEST, HTTPS_X509_CERT,
WSS_USERNAME_TOKEN, WSS_X509_CERT_BINARY_TOKEN.

requireAllAuthMethods (optional): If TRUE, all selected authentication methods
are required. If FALSE, any selected authentication method is allowed.

transportSecurity (optional): The transport security level of the port. It must be
one of the following: NONE, HTTPS, HTTPS_WITH_X509_CERT_AUTH.

bindingType (optional)

bindingProfileType (optional)

bindingProperties (optional)

correlationType (optional)

isConnectorGroup (optional)

connector (optional)

attributes (optional): List of attributes. See Attributes Element, page 248.

annotation (optional): A description of the resource. If not provided, the
annotation is left unaltered.

timeout (optional)

inputPipeline (optional)

• version

• type

• proprietaryModel (optional)

inputMappingType (optional)

inputMappingOptions (optional)

outputPipeline (optional)

• version

• type

• proprietaryModel (optional)
TIBCO® Data Virtualization

Operations Reference |213
outputMappingType (optional)

outputMappingOptions (optional)

Response Elements

resources: List of the updated resources. See Resources Element, page 257.

Faults

IllegalArgument: If the path is malformed, or the detail or attributes are illegal.

NotAllowed: If an attempt is made to update an input or output pipeline with an
insufficient license.

NotFound: If the resource or any portion of path does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

updateDataSourceStatisticsConfig

Update the Cost Based Optimizer (CBO) statistics configuration for a data source.
See getDataSourceStatisticsConfig, page 118 for more information.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path of a resource.

type: The type of the resource. May only be a relational physical DATA_SOURCE.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

• dataSourceStatisticsConfig: The statistics configuration of the given resource:

• configured (optional): TRUE if statistics gathering is configured; otherwise
FALSE.

• useEnabled (optional): TRUE if gathered statistics are to be used by CBO;
otherwise FALSE. Can be used to temporarily disable CBO.
 TIBCO® Data Virtualization

214 | Operations Reference
• tableGatherDefault (optional): Unless overridden at table level, sets the
default table configuration. Values are ALL, COLUMN_BOUNDARY, NONE
or TABLE_BOUNDARY.

• numThreads (optional): Integer 1 to N; indicates how many threads should be
allocated to gather statistics for this data source.

• maxTime (optional): Integer 0 to n in minutes. Data source level default for
maximum amount of time the process should spend gathering data for each
table; 0 means no limit.

• refresh (optional): How the statistics data should be refreshed. See Refresh
Element, page 256.

Response Elements

dataSourceStatisticsConfig: Same structure as request elements if request detail is
not NONE; otherwise empty.

Faults

IllegalArgument: If the path is malformed or an illegal type is provided.

NotAllowed: If the resource is not of the write type.

NotFound: If the resource or any portion of the path to the resource does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access on the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

updateDataSourceTypeCustomCapabilities

Update the custom capabilities of the data source type.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

dataSourceTypeName: The name of the data source type

customCapabilities: List of custom capability attributes. See Attributes Element,
page 248.
TIBCO® Data Virtualization

Operations Reference |215
Response Elements

updated: Whether or not the update was successful.

Faults

IllegalArgument: If one of the capabilities cannot be updated.

NotFound: If the data source type does not exist.

updateDefinitionSet

Update the contents of a definition set.

The request can contain either sourceDocument or definitions, but not both. Both
are optional and it is legal to provide neither. If sourceDocument is provided, the
definitions are automatically generated.

XML_SCHEMA_DEFINITION_SET resources are specified with only a source
document, and SQL_DEFINITION_SET resources are specified with only a list of
definitions.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: A fully qualified path to the resource.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

sourceDocument (optional): An XML document set that defines this definition set
for XML_SCHEMA_DEFINITION_SET resources. If this is a request element,
definitions (below) cannot be a request element.

• contents

• charset (optional)

• targetNamespace (optional)

• locationURI (optional)

• schemaLocation (optional)

definitions (optional): Complete list of definitions defined by this definition set
for SQL_DEFINITION_SET resources. If this is a request element,
sourceDocument (above) cannot be a request element.
 TIBCO® Data Virtualization

216 | Operations Reference
• name

• type

• namespace (optional)

• dataType: Information for each data type:

• sqlType (definition plus optional characteristics)

• xmlType (name, namespace, plus optional characteristics)

• pseudoType (definition)

• annotation (optional)

• attributes (optional): Lists of attributes. See Attributes Element, page 248.

• value (optional)

annotation (optional): A description of the resource. If not provided, the
annotation is left unaltered.

attributes (optional): Resource specific attributes. Sets the specified attributes but
does not alter the values of unspecified attributes.

Response Elements

resources: List of the updated resources. See Resources Element, page 257.

Faults

IllegalArgument: If path is malformed, the detail is illegal, or any of the attributes,
or definition elements are illegal.

IllegalState: If sourceDocument is provided for a SQL_DEFINITION_SET, or if
definitions is provided for an XML_SCHEMA_DEFINITION_SET.

NotFound: If the resource or any portion of the path does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

updateDomain

Update a domain. Sets the specified attributes, but does not alter the values of
unspecified attributes.
TIBCO® Data Virtualization

Operations Reference |217
Location

/services/webservices/system/admin/user/operations/

Request Elements

domainName: The domain name.

annotation (optional): A description of the domain. If not provided, the
annotation is left unaltered.

attributes (optional): List of attributes. The required attributes vary by domain
type. Use getDomainTypeAttributeDefs, page 123 to get the list of attributes that
can be updated. See Attributes Element, page 248.

Response Elements

N/A

Faults

IllegalArgument: If any of the given attributes are not valid.

NotAllowed: If any of the given attributes are not updatable.

NotAllowed: If an attempt is made to use this operation with an insufficient
license.

NotFound: If the domain does not exist.

Security: If the user does not have the ACCESS_TOOLS and
MODIFY_ALL_USERS rights.

updateExternalSqlProcedure

Update the definition of an External SQL procedure (packaged query) resource. If
the procedure is updated with a path to a data source that does not exist, the
resource becomes impacted, and it does not execute until this is corrected.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: A fully qualified path to the resource.
 TIBCO® Data Virtualization

218 | Operations Reference
detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

externalSqlText: The native SQL source text.

externalDataSourcePath (optional): A path to the data source in which to run the
native SQL. If not provided, the data source is left unaltered.

parameters (optional): List of parameter definitions for this procedure. If not
provided, the parameters are left unaltered. See Parameters Element, page 255.

• annotation (optional): A description of this parameter.

annotation (optional): A description of the resource. If not provided, the
annotation is left unaltered.

attributes (optional): Resource-specific attributes. Sets the specified attributes but
does not alter the values of unspecified attributes. See Attributes Element,
page 248.

Response Elements

resources: List of the updated resources. See Resources Element, page 257.

Faults

IllegalArgument: Either one of the given paths is malformed, or the detail is
invalid.

NotFound: If the resource does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

updateGeneralSettings

Update the general settings for authentication. If a request element is not
specified, it is left unchanged.

Location

/services/webservices/system/util/security/operations/
TIBCO® Data Virtualization

Operations Reference |219
Request Elements

enablePAM (optional): Whether or not to enable PAM.

mayDisallowUser (optional): Whether or not user may be disallowed.

logAuthFailures (optional): Whether or not to log authorization failures.

logPerformance (optional): Whether or not to log performance.

assignModuleGroups (optional): Whether or not to assign module groups.

Response Elements

Resulting settings. Same definitions as for request elements.

Faults

Invalid Input: If the SecurityConfiguration element is missing.

Security: If the user is not composite\admin.

updateGroup

Update a domain group.

Location

/services/webservices/system/admin/user/operations/

Request Elements

domainName: The domain name.

groupName: The group name.

userNames (optional): Names (and optional domains) of users belonging to this
group. If not provided, the list of users in the group is left unaltered.

explicitRights (optional): A bit mask for a group’s rights. For a table of values, see
User and Group Rights Mask, page 259.

annotation (optional): A description of the group. If not provided, the annotation
is left unaltered.

Response Elements

N/A
 TIBCO® Data Virtualization

220 | Operations Reference
Faults

NotAllowed: If the group cannot be updated as requested. The annotation may
not be updatable and the group membership may not be updatable like the
composite domain’s.

NotAllowed: If an attempt is made to use this operation with an insufficient
license.

NotFound: If the domain does not exist.

NotFound: If the group does not exist.

NotFound: If any of the provided users do not exist.

Security: If the group does not have the ACCESS_TOOLS and
MODIFY_ALL_USERS rights.

updateImplementationContainer

Deprecated as of API version 6.0.

Updates the implementation container of a TDV data service.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: A fully qualified path to the resource.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

InputPipeline (optional)

inputMappingType (optional)

inputMappingOptions (optional)

outputPipeline (optional)

outputMappingType (optional)

outputMappingOptions (optional)

annotation (optional): A description of the resource. If not provided, the
annotation is left unaltered.
TIBCO® Data Virtualization

Operations Reference |221
Response Elements

resources: List of the updated resources. See Resources Element, page 257.

Faults

IllegalArgument: If the path is malformed, or the detail or attributes are illegal.

NotAllowed: If an attempt is made to update an input or output pipeline with an
insufficient license.

NotFound: If the resource or any portion of path does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

updateLink

Update the definition of a link resource.

If the target resource does not exist, the link becomes impacted.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: A fully qualified path to the resource.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

targetPath (optional): The fully qualified path of the resource to link to. If not
provided, the target path is left unaltered.

targetType (optional): The type of the resource to link to. If not provided, the
target type is left unaltered. Only TABLE and PROCEDURE types allowed.

annotation (optional): A description of the resource. If not provided, the
annotation is left unaltered.

Response Elements

resources: List of the updated resources. See Resources Element, page 257.
 TIBCO® Data Virtualization

222 | Operations Reference
Faults

IllegalArgument: The path or targetPath is malformed, targetType, or detail are
illegal.

NotAllowed: If the targetType is not allowed to be linked. Only TABLE and
PROCEDURE resources can be used as the target of a link.

NotAllowed: If an attempt is made to update an input or output pipeline with an
insufficient license.

NotFound: If the target resource or any portion of path does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

updateLoginModule

Update the definition of a login module.

Location

/services/webservices/system/util/security/operations/

Request Elements

id: ID of the login module.

group (optional): Group to which the login module belongs.

enabled (optional): Whether or not the login module is enabled.

properties (optional): Name-value pairs of login module properties.

annotation (optional)

Response Elements

id: ID of the login module.

name: Name of the login module.

bundleName: Name of the bundle to which the login module belongs.

group (optional): Name of the group to which the login module belongs.

enabled (optional): Whether or not the login module is enabled.
TIBCO® Data Virtualization

Operations Reference |223
bundleEnabled (optional): Whether or not the bundle is enabled.

properties (optional): Name-value pairs of login module properties.

annotation (optional)

Faults

Invalid Input: If an element is malformed, or a required element is missing.

Security: If the user is not composite\admin.

updateLoginModuleList

Update the list of login modules to be used, changing their order in the login
sequence.

Location

/services/webservices/system/util/security/operations/

Request Elements

id: One or more login module IDs.

Response Elements

N/A

Faults

Invalid Input: If any ID is not a valid login module.

Missing Identifier: If an ID from the sign-on list is not present in the input list.

Security: If the user is not composite\admin.

updatePrincipalMapping

Update the definition of an existing principal mapping.

Location

/services/webservices/system/util/security/operations/
 TIBCO® Data Virtualization

224 | Operations Reference
Request Elements

id: ID of the principal mapping.

type: Type of the principal mapping.

identifier (optional): Text identifier of the principal mapping.

group (optional): Group to which the principal mapping belongs.

Response Elements

Current settings of the same elements as the request elements.

Faults

Invalid Input: If the principal mapping is missing or invalid.

Security: If the user is not composite\admin.

updateResourceAnnotation

Update the annotation of a resource.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: A fully qualified path to the resource.

type: The type of the resource specified by the given path. Valid values are
CONTAINER, DATA_SOURCE, DEFINITION_SET, LINK, PROCEDURE,
TABLE, TREE, and TRIGGER.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

annotation: A description of the resource.

Response Elements

resources: List of the updated resources. See Resources Element, page 257.

Faults

IllegalArgument: If the path is malformed, or if the type or detail is illegal.
TIBCO® Data Virtualization

Operations Reference |225
NotFound: If the resource does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

updateResourceCacheConfig

Update the cache configuration for a resource.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

The updateResourceCacheConfig request has five levels of elements. Elements at
the fourth and fifth levels are preceded by their level number in square brackets
([4] and [5]).

path: The path of a cacheable resource.

type: The type of a cached resource can be TABLE or PROCEDURE.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

cacheConfig: The cache configuration of the given resource.

• allOrNothing (optional): This flag only applies to cache groups. TRUE if cache
group refresh policy should be all or nothing; FALSE if cache group refresh
policy should be best effort. For individual cache groups, this flag always
returns TRUE and setting this flag has no effect.

• configured (optional): TRUE if caching should be configured for the given
resource; otherwise FALSE. If not provided, the configured setting is left
unaltered. If configured is FALSE, all other elements are ignored.

• enabled (optional): TRUE if the cache is enabled; otherwise FALSE. If not
provided, the enabled setting is left unaltered.

• incremental (optional): TRUE if the cache is incrementally maintained;
otherwise FALSE. If not provided, the incrementally maintained setting is left
unaltered.
 TIBCO® Data Virtualization

226 | Operations Reference
• storage (optional): How the cached is stored. If not provided, the storage
settings is left unaltered.

– useDefaultCacheStorage (optional): If TRUE, TDV uses the default cache
data source to store cache tables. Only numBuckets and dropCreateIdx
values are considered when this value is set to TRUE; the rest are ignored.

– mode (optional): The type of storage used for the cache. It is required when
useDefaultCacheStorage is not set, or is set to FALSE. May be
AUTOMATIC, DATA_SOURCE or DATA_SOURCE_OTPS.

– bucketMode (optional): Present when storage mode is
DATA_SOURCE_OTPS, ignored otherwise. May be AUTO_GEN or
MANUAL.

– bucketProperties (optional): Present when bucketMode is AUTO_GEN,
otherwise ignored.

– [4] bucketCatalog (optional): Database catalog in which to create the
bucket.

– [4] bucketSchema (optional): Database schema in which to create the
bucket.

– [4] bucketPrefix (optional): Short string which begins the name of each
bucket.

– [4] numBuckets: Number of buckets to use for caching.

– dropCreateIdx (optional): If TRUE, TDV automatically drops indexes
before loading cache data, and creates them after loading.

– storageDataSourcePath (optional): If the mode is DATA_SOURCE or
DATA_SOURCE_OTPS, this identifies the path to the data source being
used to store cache data.

– storageTargets (optional): List of targets used for storing cache data. If the
mode is DATA_SOURCE or DATA_SOURCE_OTPS, this is a list of the
tables. If the mode is DATA_SOURCE_OTPS, storageTargets is required
when bucketMode is MANUAL; otherwise, storageTargets is ignored.

– [4] entry (optional):

– [5] targetName: For a TABLE resource and storage mode
DATA_SOURCE this is always result, For a TABLE resource and storage
mode DATA_SOURCE_OTPS this may be result, result1, result2, etc. For a
PROCEDURE resource, this is the name of a cursor parameter, or an empty
string for the scalar output parameters.

– [5] path: The path to the table used for storing this data.

– [5] type: Always TABLE.
TIBCO® Data Virtualization

Operations Reference |227
• refresh (optional): How the cache should be refreshed. If not provided, the
refresh settings is left unaltered. See Refresh Element, page 256.

– mode: How the cache should be refreshed. May be MANUAL or
SCHEDULED.

– schedule (optional): If the mode is SCHEDULED, this element has the
following child elements:

– [4] mode (optional): Always INTERVAL.

– [4] startTime (optional): When the first refresh should occur.

– [4] fromTomeInADay (optional):

– [4] endTimeInADay (optional):

– [4] recurringDay (optional):

– [4] interval (optional): The number of seconds between refreshes.

– [4] period (optional):

– [4] count (optional):

– [4] isCluster (optional):

• expirationPeriod (optional): The amount of time, in milliseconds, after which
the cache is cleared after it is refreshed. If less than zero, the period is set to
zero (meaning the cache never expires). If not provided, the enable setting is
left unchanged.

• firstRefreshCallback (optional): A path to a procedure with zero input
elements that should be invoked before the cache refresh.

• secondRefreshCallback (optional): A path to a procedure with zero input
elements that should be invoked after a successful or failed cache refresh.

• clearRule (optional): NONE, ON_LOAD, or ON_FAILURE.

The normal behavior is that old cache data is cleared on expiration, or when a
cache refresh successfully completes and the old cache data is replaced by the
new cache data. If no clearRule is provided, the enable setting is left unaltered.

– If NONE, just the normal behavior occurs.

– If ON_LOAD, the normal behavior occurs, but the old cache data is
immediately cleared as the refresh is started.

– If ON_FAILURE, the normal behavior occurs, and the old cache data is
cleared if the refresh fails.
 TIBCO® Data Virtualization

228 | Operations Reference
Response Elements

cacheConfig (optional): The cache configuration of the given resource. This
element is only present in the response if the detail level is not NONE. Response
subelements are the same as request elements, but with updated values.

Faults

IllegalArgument: If the path is malformed or an illegal type is provided.

IllegalState: If the resource type does not support caching.

NotFound: If the resource or any portion of the path to the resource does not exist.

Security: The user must have READ access on all items in path.

Security: If the user does not have WRITE access on the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

updateResourceEnabled

Update the enabled state of a resource. DATA_SOURCE and TRIGGER resources
can be enabled or disabled.

Note: This web services operation is different from the procedure of the same
name, which is in the resource tree under /lib/resource.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path to the resource.

type: The resource type either DATA_SOURCE or TRIGGER.

detail: The level of detail to include in the response. Valid values are NONE,
SIMPLE, and FULL.

enabled: If TRUE, the resource becomes enabled. If FALSE, the resource becomes
disabled.

Response Elements

resources: List of the updated resources. See Resources Element, page 257.
TIBCO® Data Virtualization

Operations Reference |229
Faults

IllegalArgument: If the path is malformed, or the type or detail is illegal.

IllegalState: If the target resource does not support enabling or disabling.
DATA_SOURCE and TRIGGER resources can be enabled or disabled.

NotFound: If the target resource or any portion of path does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

updateResourcePrivileges

Set the privilege information for a list of resources.

Only a user with GRANT privilege on a resource can modify the privileges for
that resource. The owner of a resource always has GRANT privilege, as do users
with the MODIFY_ALL_RESOURCES right.

When mode is OVERWRITE_APPEND, or is not supplied, privileges are applied
by user or by group, so that updating privileges for one user or group does not
alter privileges from any other user or group. The privileges applied for a user or
group replace the previous value for that user or group. When mode is
SET_EXACTLY, all privileges on the resource are made to look exactly like the
provided privileges.

When updateRecursively is FALSE, the privileges are applied only to the
specified resources. When it is TRUE, the privileges are recursively applied into
any CONTAINER or DATA_SOURCE resource specified. When recursively
applying privileges, the privilege change is ignored for any resource for which
the user lacks owner privileges.

Privileges that are not applicable for a given resource type are automatically
reduced to the set that is legal for each resource:

• TABLE resources support NONE, READ, WRITE, SELECT, INSERT,
UPDATE, and DELETE.

• PROCEDURE resources support NONE, READ, WRITE, and EXECUTE.

• All other resource types only support NONE, READ, and WRITE.

The combinedPrivs and inheritedPrivs elements on each privilegeEntry are
ignored and can be left unset.

Note: Operations Reference, page 37, contains an example of how to set the
request elements for this operation.
 TIBCO® Data Virtualization

230 | Operations Reference
Location

/services/webservices/system/admin/resource/operations/

Request Elements

updateRecursively: If TRUE, all children of the given resources are recursively
updated with the privileges assigned to their parent.

updateDependenciesRecursively (optional): If TRUE, all dependencies of the
given resources are recursively updated with the privileges assigned to their
parent.

privilegeEntries: List of resource names, types, and privileges.

mode (optional): Determines whether to merge privileges with existing ones:

• OVERWRITE_APPEND: Merges and does not update privileges for users or
groups not mentioned. Default.

• SET_EXACTLY: Makes privileges look exactly like those provided in the call.

Response Elements

N/A

Faults

IllegalArgument: If any path is malformed, or any type or privilege entry is
illegal, or mode is not one of the legal values.

NotAllowed: If an attempt is made to use this operation with an insufficient
license.

NotFound: If a path refers to a resource that does not exist.

NotFound: If an unknown domain is provided.

NotFound: If an unknown user is provided.

NotFound: If an unknown group is provided.

Security: If for a given entry path the user does not have READ access on any item
in a path other than the last item, or does not have GRANT access on the last item.

Security: If the user does not have the ACCESS_TOOLS right.

updateResources

Update resources.
TIBCO® Data Virtualization

Operations Reference |231
Location

/services/webservices/system/admin/resource/operations/

Request Elements

resources: List of the resources. See Resources Element, page 257.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

Response Elements

resources: List of the updated resources. See Resources Element, page 257.

Faults

IllegalArgument: If any of the given paths, types, or detail levels are malformed.

NotAllowed: If an attempt is made to update a custom Java procedure, SQL
script, or a trigger with an insufficient license.

NotFound: If the resource does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

updateResourceStatisticsConfig

Update the statistics configuration for a resource.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: The path of a resource.

type: The type of the resource can only be a physical relational TABLE.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

statisticsConfig: The statistics configuration of the given resource.
 TIBCO® Data Virtualization

232 | Operations Reference
• cardinalityMin (optional): Minimum cardinality for this resource. Setting this
value overrides gathered statistics.

• cardinalityMax (optional): Maximum cardinality for this resource. Setting this
value overrides gathered statistics.

• cardinalityExpected (optional): Expected cardinality for this resource. Setting
this value overrides gathered statistics.

• gatherEnabled (optional): Defines what statistics should be gathered for this
resource. Valid values are DEFAULT, CUSTOM, DISABLED or
TABLE_BOUNDARY. If not provided, the enable setting is left unaltered.

• maxTime (optional): From -1 to n in milliseconds. If not provided, the enable
setting is left unaltered. 0 means no timeout; -1 means use data source default;
0 or greater overrides data source setting.

• columns (optional): Only applicable if gatherEnabled is set to CUSTOM.

• column: What specific data to get for each column.

name: Column name.

flags: Valid values are NONE, BOUNDARY or ALL.

Response Elements

statisticsConfig (optional): The statistics configuration of the given resource. This
element is only present in the response if the detail level is not NONE.

• cardinalityMin (optional): Minimum cardinality for this resource.

• cardinalityMax (optional): Maximum cardinality for this resource.

• cardinalityExpected (optional): Expected cardinality for this resource.

• gatherEnabled (optional): What statistics should be gathered for this resource.

• maxTime (optional): Maximum amount of time the process should spend
gathering data; 0 means no limit.

• columns (optional): Only available if gatherEnabled is set to CUSTOM.

• name: Simple column name.

• flags: NONE, BOUNDARY or ALL.

Faults

IllegalArgument: If the path is malformed or an illegal type is provided.

IllegalArgument: If statsGatherEnabled is not one of the valid values.

IllegalArgument: If a column does not support supplied flags.
TIBCO® Data Virtualization

Operations Reference |233
NotAllowed: If the resource type is not of the right type or its parent data source
is not configured.

NotFound: If the resource or any portion of the path to the resource does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access on the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

updateServerAttributes

Update the server with the given attributes.

Location

/services/webservices/system/admin/server/operations

Request Elements

attributes: List of attributes to update. The names of the attributes should be fully
qualified paths in the server attribute namespace. See Attributes Element,
page 248.

Response Elements

N/A

Faults

IllegalArgument: If any of the provided attributes are malformed.

NotFound: If any of the attributes do not exist in the server.

Security: If the user does not have MODIFY_ALL_CONFIG right.

updateServerName

Update the server display name.

Location

/services/webservices/system/admin/server/operations
 TIBCO® Data Virtualization

234 | Operations Reference
Request Elements

serverName: New server display name.

Response Elements

N/A

Faults

Security: If the user does not have both ACCESS_TOOLS and
MODIFY_ALL_CONFIG rights.

updateSqlScriptProcedure

Update the definition of a SQL Script procedure resource.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: A fully qualified path to the resource.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

scriptText: The SQL Script source text.

scriptModel (optional): A model of the SQL Script. If this element is not provided,
the model is cleared.

isExplicitDesign (optional): TRUE if the parameters were provided by the
resource designer in the following element. FALSE if they were derived from the
resource.

parameters (optional): The parameter definitions of the procedure. This element
is ignored (even if provided) unless isExplicitDesign is present and TRUE.

annotation (optional): A description of the resource. If not provided, the
annotation is left unaltered.

attributes (optional): Resource-specific attributes. Sets the specified attributes, but
does not alter the values of unspecified attributes.
TIBCO® Data Virtualization

Operations Reference |235
Response Elements

resources: List of the updated resources. See Resources Element, page 257.

Faults

IllegalArgument: If the path is malformed, or the detail or attributes are illegal.

NotAllowed: If an attempt is made to use this operation with an insufficient
license.

NotFound: If the resource or any portion of path does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

updateSqlTable

Update the definition of a SQL Table resource.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: A fully qualified path to the resource.

• detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

sqlText: The SQL source text.

sqlModel (optional): A model for the display of the SQL. If this element is not
provided, the model is cleared.

• version: Version of the SQL model.

• type: SQL model type.

• proprietaryModel (optional)

isExplicitDesign (optional): TRUE if the parameters were provided by the
resource designer; FALSE if they were derived from the resource.
 TIBCO® Data Virtualization

236 | Operations Reference
columns (optional): The column definitions of the table. This element is ignored
(even if provided) unless isExplicitDesign is present and TRUE. See Column
Element, page 249.

annotation (optional): A description of the resource. If not provided, the
annotation is left unaltered.

attributes (optional): List of resource-specific attributes. Sets the specified
attributes but does not alter the values of unspecified attributes. See Attributes
Element, page 248.

Response Elements

resources: List of the updated resources. See Resources Element, page 257.

Faults

IllegalArgument: If the path is malformed, or the detail or attributes are illegal.

NotFound: If the resource or any portion of path does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

updateStreamTransformProcedure

Update the definition of any Stream Transform procedure resource. If the source
resource does not currently exist or is not compatible with the transformation, the
resource becomes impacted. Only a PROCEDURE with a single output
parameter, of type XML or a TREE (XML file) is supported.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: A fully qualified path to the resource.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

transformSourcePath: The location of the resource to be transformed.
TIBCO® Data Virtualization

Operations Reference |237
transformSourceType: PROCEDURE is the type of the resource to be
transformed.

streamModel (optional): A model of the stream transformation. If not present, the
model is cleared.

isExplicitDesign (optional): TRUE if the parameters were provided by the
resource designer; FALSE if they were derived from the resource.

parameters (optional): The parameter definitions of the procedure. This element
is ignored (even if provided) unless isExplicitDesign is both present and TRUE.

annotation (optional): A description of the resource. If not provided, the
annotation is left unaltered.

attributes (optional): Resource-specific attributes. Sets the specified attributes but
does not alter the values of unspecified attributes. See Attributes Element,
page 248.

Response Elements

resources: List of the updated resources.

Faults

IllegalArgument: If the path is malformed, or the detail or attributes are illegal.

NotAllowed: If parameters includes INOUT parameters.

NotFound: If the resource or any portion of path does not exist.

Security: If user does not have READ access on all items in path.

Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

updateTransformProcedure

Update the definition of a transform procedure resource.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: A fully qualified path to the resource.
 TIBCO® Data Virtualization

238 | Operations Reference
detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

transformModel (optional): A model of the transformation:

• version: Version of the transformation model.

• type: Transformation model type.

• proprietaryModel (optional)

annotation (optional): A description of the resource. If not provided, the
annotation is left unaltered.

attributes (optional): List of resource-specific attributes. Sets the specified
attributes but does not alter the values of unspecified attributes. See Attributes
Element, page 248.

Response Elements

resources: List of the updated resources. See Resources Element, page 257.

Faults

IllegalArgument: If the path or transformModel is malformed, or detail or
attributes are illegal.

NotAllowed: If an attempt is made to use this operation with an insufficient
license.

NotFound: If the target resource or any portion of path does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

updateTrigger

Update the definition of a trigger resource.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: A fully qualified path to the resource.
TIBCO® Data Virtualization

Operations Reference |239
detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

enabled (optional): TRUE to enable the trigger, FALSE to disable it.

conditionType (optional): The type of condition the trigger should wait for.

conditionSchedule (optional): See Schedule Element, page 258.

conditionAttributes (optional): The attributes that define the filter for the
conditionType. This element must be provided if (and only if) conditionType is
provided. See Attributes Element, page 248.

actionType (optional): The type of action the trigger should take when the
condition occurs.

actionAttributes (optional): List of the attributes that define the action that should
be taken when the trigger occurs. This element must be provided if (and only if)
actionType is provided. See Attributes Element, page 248.

maxEventsQueued (optional): The maximum number of triggering events to
queue.

annotation (optional): A description of the resource. If not provided, the
annotation is left unaltered.

attributes (optional): Resource specific attributes. Sets the specified attributes but
does not alter the values of unspecified attributes. See Attributes Element,
page 248.

Response Elements

resources: List of the updated resources. See Resources Element, page 257.

Faults

IllegalArgument: If the path or detail are illegal.

IllegalState: If the specified conditionType or actionType is not supported, or the
attributes for that type are not properly configured.

NotAllowed: If an attempt is made to use this operation with an insufficient
license.

NotFound: If the target resource or any portion of path does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.
 TIBCO® Data Virtualization

240 | Operations Reference
updateUser

Update a domain user’s password, group membership, rights or annotation.

The password element is ignored for non-COMPOSITE domains. The
oldPassword element is required when callers are changing their own password.
Users with the MODIFY_ALL_USERS right do not need to specify the
oldPassword element when changing other users’ passwords.

Updating a user’s group membership is a set operation.

Only users with the MODIFY_ALL_USERS right can use the updateUser call.

Location

/services/webservices/system/admin/user/operations/

Request Elements

domainName: The domain name.

userName: The user name.

oldPassword (optional): An old user password. This is silently ignored if the
domain is not a COMPOSITE domain.

password (optional): A new user password. This is silently ignored if the domain
is not a COMPOSITE domain.

groupNames (optional): Names and optional domains of groups to which the
user belongs. If not provided, the group membership is left unaltered.

explicitRights (optional): A bit mask for a user’s rights. For a table of values, see
User and Group Rights Mask, page 259.

annotation (optional): A description of the user. If not provided, the annotation is
left unaltered.

Response Elements

N/A

Faults

NotAllowed: If the user cannot be updated as requested. For example, the
annotation may not be updatable (such as the composite user admin), the
password may not be updatable in an LDAP domain, or the group membership
may not be updatable to omit the “all” group.
TIBCO® Data Virtualization

Operations Reference |241
NotAllowed: If an attempt is made to use this operation with an insufficient
license.

NotFound: If the domain does not exist.

NotFound: If the user does not exist.

NotFound: If any of the provided groups do not exist.

Security: If the user does not have the ACCESS_TOOLS right.

Security: If the user does not have the MODIFY_ALL_USERS right and is
updating any user other than self or is updating anything other than the
password.

Security: If the user is modifying his or her own password and oldPassword is not
correct.

updateUserLockState

Change the lockout state for a user.

Location

/services/webservices/system/admin/user/operations/

Request Elements

userName: user@domain

lockUser: whether the user is to be locked or unlocked

Response Elements

locked: Whether the new status of the user is locked or unlocked; note that a user
attempting to sign on rapidly could trigger a new locked state during invocation,
so an unlock returning FALSE is not necessarily a failure.

Faults

Security: If the user does not have MODIFY_ALL_USERS right.

updateXQueryProcedure

Update the definition of a XQuery procedure resource.
 TIBCO® Data Virtualization

242 | Operations Reference
Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: A fully qualified path to the resource.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

xqueryText: The XQuery source text.

isExplicitDesign (optional): TRUE if the parameters were provided by the
resource designer in the following element. FALSE if they were derived from the
resource.

parameters (optional): The parameter definitions of the procedure. This element
is ignored (even if provided) unless isExplicitDesign is present and TRUE. See
Parameters Element, page 255.

annotation (optional): A description of the resource. If not provided, the
annotation is left unaltered.

attributes (optional): Resource specific attributes. Sets the specified attributes, but
does not alter the values of unspecified attributes.

Response Elements

resources: List of the updated resources. See Resources Element, page 257.

Faults

IllegalArgument: If the path is malformed, or the detail or attributes are illegal.

NotAllowed: If an attempt is made to use this operation with an insufficient
license.

NotFound: If the resource or any portion of path does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

updateXQueryTransformProcedure

Update the definition of an XQuery Transform procedure resource.
TIBCO® Data Virtualization

Operations Reference |243
If OUTPUT parameters are provided in the parameters element, they are ignored.
The OUTPUT parameter is always derived from the model, even if the
explicitlyDesigned element is TRUE.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: A fully qualified path to the resource.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

xqueryText (optional): The XQuery source text.

xqueryModel (optional): A model of the XQuery transformation. If this element is
provided, neither the xqueryText nor parameter elements should be provided.

• version: Version of the XQuery transformation procedure.

• type: Type of the XQuery transformation procedure.

• proprietaryModel (optional)

isExplicitDesign (optional): TRUE if the parameters were provided by the
resource designer. FALSE if they were derived from the resource.

parameters (optional): List of parameter definitions for the procedure. This
element is ignored (even if provided) unless isExplicitDesign is both present and
TRUE. See Parameters Element, page 255.

annotation (optional): A description of the resource. If not provided, the
annotation is left unaltered.

attributes (optional): Resource specific attributes. Sets the specified attributes but
does not alter the values of unspecified attributes. See Attributes Element,
page 248.

Response Elements

resources: List of the updated resources. See Resources Element, page 257.

Faults

IllegalArgument: If the path is malformed, or the detail or attributes are illegal.

NotAllowed: If the call contains both the xqueryModel and xqueryText elements,
or the xqueryModel and parameters elements.
 TIBCO® Data Virtualization

244 | Operations Reference
NotAllowed: If parameters includes INOUT parameters.

NotFound: If the target resource or any portion of path does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

updateXSLTProcedure

Update the definition of an XSLT procedure resource.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: A fully qualified path to the resource.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

xsltText: The XSLT source text.

isExplicitDesign (optional): TRUE if the parameters were provided by the
resource designer in the following element. FALSE if they were derived from the
resource.

parameters (optional): List of parameter definitions of the procedure. This
element is ignored (even if provided) unless isExplicitDesign is present and
TRUE. See Parameters Element, page 255.

annotation (optional): A description of the resource. If not provided, the
annotation is left unaltered.

attributes (optional): Resource specific attributes. Sets the specified attributes, but
does not alter the values of unspecified attributes. See Attributes Element,
page 248.

Response Elements

resources: List of the updated resources. See Resources Element, page 257.
TIBCO® Data Virtualization

Operations Reference |245
Faults

IllegalArgument: If the path is malformed, or the detail or attributes are illegal.

NotAllowed: If an attempt is made to use this operation with an insufficient
license.

NotFound: If the resource or any portion of path does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

updateXsltTransformProcedure

Update the definition of an XSLT Transform procedure resource.

If the source resource does not currently exist or is not compatible with the
transformation, the resource becomes impacted.

Only a PROCEDURE with a single output parameter of type XML, or a TREE
(XML file), is supported.

Location

/services/webservices/system/admin/resource/operations/

Request Elements

path: A fully qualified path to the resource.

detail: The level of detail about the resources to include in the response. Valid
values are NONE, SIMPLE, and FULL.

transformSourcePath: The location of the resource to be transformed.

transformSourceType: The type of resource to be transformed.

xsltText (optional): The XSLT source text.

xsltModel (optional): A model of the XSLT transformation. If this element is
provided, neither the xsltText nor parameters elements should be provided.

• version: Version of the XSLT transformation procedure.

• type: Type of the XSLT transformation procedure.

• proprietaryModel (optional)
 TIBCO® Data Virtualization

246 | Recurring Element Structures
isExplicitDesign (optional): TRUE if the parameters were provided by the
resource designer. FALSE if they were derived from the resource.

parameters (optional): List of parameter definitions of the procedure. This
element is ignored (even if provided) unless isExplicitDesign is both present and
TRUE. See Parameters Element, page 255.

• annotation (optional): Description of the parameter.

annotation (optional): A description of the resource. If not provided, the
annotation is left unaltered.

attributes (optional): Resource specific attributes. Sets the specified attributes but
does not alter the values of unspecified attributes.

Response Elements

resources: List of the updated resources. See Resources Element, page 257.

Faults

IllegalArgument: If the path is malformed, or the detail or attributes are illegal.

NotAllowed: If the call contains both the xsltModel and xsltText elements, or the
xsltMode and parameters elements.

NotAllowed: If parameters includes INOUT parameters.

NotFound: If the target resource or any portion of path does not exist.

Security: If the user does not have READ access on all items in path other than the
last one.

Security: If the user does not have WRITE access to the last item in path.

Security: If the user does not have the ACCESS_TOOLS right.

Recurring Element Structures

This section describes hierarchies of elements that occur frequently in operation
requests and responses. Rather than listing each of these structures repeatedly in
detail, this section lists each structure once so it can be cross-referenced from the
operations in which it occurs.

This section has the following topics:

• Attribute Definitions Element, page 247

• Attributes Element, page 248
TIBCO® Data Virtualization

Recurring Element Structures |247
• Column Element, page 249

• Connector Element, page 249

• Domains Element, page 250

• Filter Policy Definition, page 250

• Groups Element, page 251

• Import Hints, page 252

• Introspection Plan Element, page 252

• Introspection Report Status Element, page 253

• Licenses Element, page 254

• Messages Element, page 255

• Parameters Element, page 255

• Refresh Element, page 256

• Reintrospect Report Element, page 257

• Resources Element, page 257

• Schedule Element, page 258

• User and Group Rights Mask, page 259

• User Element, page 259

• Users Element, page 260

Attribute Definitions Element

The attributeDefs element contains a list of attribute definitions, each of which
has the following format:

• attributeDef (optional):

• name: Name of the attribute. In some contexts, includes a full path name.

• type: Attribute type; for example, LIST, BOOLEAN, INTEGER, STRING, or
PASSWORD_STRING.

• updateRule: Whether the attribute is READ_ONLY or READ_WRITE.

• annotation (optional): Text notes about the attribute.

• required (optional): A BOOLEAN indicating whether or not the attribute
must be present.
 TIBCO® Data Virtualization

248 | Recurring Element Structures
• defaultValue (optional): Value if none is explicitly set; for example, TRUE or
expr$1 or 100.

• pattern (optional): Template to use for strings, passwords, and so on.

• minValue (optional): Minimum allowed value for the attribute.

• maxValue (optional): Maximum allowed value for the attribute.

• allowedValues (optional): List of allowed values:

• item: A member of a list of allowed values.

• suggestedValues (optional): List of suggested values:

• item: A member of a list of suggested values.

• displayName (optional): Text string to display in connection with this
attribute.

• unitName (optional)

• parentName (optional): Required unless this is the root attribute definition.

• visible (optional): Whether or not the attribute is visible in the UI.

• editorHint (optional)

• dependencyExpression (optional)

Attributes Element

The attributes element appears in many request and response elements, and even
in multiple places inside other elements. It can also be iterative; for example, an
item in the valueList can itself contain a valueList, an entry in a valueMap can
have a key element with its own valueMap, and so on, down to many levels.

An attributes element is a list of one or more attributes, each of which has the
following format:

• attribute:

– name: Name of the attribute.

– type: Attribute type.

– value (optional): The attribute’s value. The attribute can have a list of
values instead (next).

– valueList (optional): List of value items.

item:

type: Item type.
TIBCO® Data Virtualization

Recurring Element Structures |249
value: Item value.

valueList: List of values, if the item has more than one.

valueMap

valueArray: Array of value items.

– valueMap (optional):

entry:

• key (type, value, valueList, valueMap, valueArray)

• value (type, value, valueList, valueMap, valueArray)

– valueArray (optional): Array of value items.

– item

– unset (optional)

Column Element

The column element defines one column in a table.

• column: Column ID.

• name: Name of column.

• dataType: Information for each data type:

– sqlType (definition plus optional characteristics)

– xmlType (name, namespace, plus optional characteristics)

– pseudoType (definition)

• isPrimaryKey (optional): Whether this column is a primary key in the
database.

• attributes (optional): See Attributes Element, page 248.

• isNullable (optional): Whether or not the column can contain NULL values.

• annotation (optional): A description of the column.

Connector Element

A connector element has the following format:

• name: Identifies the connector to update.

• groupName (optional): Connector group.
 TIBCO® Data Virtualization

250 | Recurring Element Structures
• annotation (optional): A description of the connector. If not provided, the
annotation is left unaltered.

• connectorType: The type of connector.

• attributes (optional): List of connector-type-specific attributes. In the
connector request element, only specified attributes can change attribute
values. Response values and attributes reflect the new connector state. See
Connector Element, page 249.

Domains Element

The domains element contains a list of domain elements, each describing one
domain. If the detail request element is SIMPLE only the name, domainType, and
annotation are returned. If FULL, attributes are also returned.

• domain (optional):

– name: The name of the domain.

– domainType The domain type.

– annotation: A description of the domain.

– attributes: List of attributes. See Attributes Element, page 248.

Filter Policy Definition

A policy element contains a filter policy definition. The definition has the
following format:

• name: The short name of the filter policy.

• folder: The folder path of the procedure to create to implement the policy.

• enabled: Whether the policy is enabled or disabled.

• form: Whether the filter policy is specified in tabular form (FORM) or using
explicit SqlScript code (CODE).

• policyGroup (optional):

– joinType: INNER, OUTER or UNION.

– policyList (may be optional): List of policy procedure paths.

– policyProcedurePath (optional): Path to a policy procedure.
TIBCO® Data Virtualization

Recurring Element Structures |251
• defaultRule (optional): For FORM policies, the default rule to follow if no
users or groups match the current user.

– filter: ALL (all rows), NONE (no rows), PREDICATE (SQL predicate), or
PROCEDURE (predicate computed by procedure).

– data (optional): For PREDICATE, the SQL text to be used. For
PROCEDURE, the path of the procedure to invoke.

• memberRuleList: For FORM policies, list of rules to apply when user or group
criteria match. For each:

– memberRule (optional): Name of rule.

– member: The user or group to which the rule applies.

– domain: The user/group domain.

– name: The user/group name.

– type: USER or GROUP.

– filter: ALL (all rows), NONE (no rows), PREDICATE (SQL predicate), or
PROCEDURE (predicate computed by procedure).

– data (optional): For PREDICATE, the SQL text to use. For PROCEDURE,
the path of the procedure to invoke.

• assignmentList: List of assignments:

– assignment (optional)

• notes (optional): Any notes or descriptive text.

Groups Element

The groups element contains one or more group elements with the following
format:

• name: Name of the group.

• domainName: Name of domain to which the group belongs.

• id: Group ID.

• explicitRights. For a table of values, see User and Group Rights Mask,
page 259.

• effectiveRights. For a table of values, see User and Group Rights Mask,
page 259.

• inheritedRights. For a table of values, see User and Group Rights Mask,
page 259.
 TIBCO® Data Virtualization

252 | Recurring Element Structures
• annotation (optional): Description of the group.

• userNames (optional): List of user entry elements:

– entry: Name of the entry.

– name: Name of the user.

– domain (optional): User’s domain.

Import Hints

The importHints element is a list of hints to use during import.

• rebindResources: List of path-type pairs of resources that should be rebound
when imported.

– entry: Name of the entry.

– path: Path to the resource to rebind.

– type: Type of resource to rebind.

• rebindUsers: List users that should be mapped to other users on import.

– domain (0 or more): A domain that contains exported users.

– name: The name of the domain containing the users.

– all (optional): If set, all users within this domain are exported.

– userNames (optional): A space-delimited list of user names.

• name: List of names within the domain.

• remapAttributes: List of resource attributes that should be mapped during
import:

– resource: List of resources to remap. For each:

– path: Path to the attribute to remap.

– type: Type of attribute to remap.

– attributeNames: A space-delimited list of remapped-attribute names.

Introspection Plan Element

An plan element for introspection contains the following:

• updateAllIntrospectedResources (optional): Whether or not to update all
currently introspected resources.
TIBCO® Data Virtualization

Recurring Element Structures |253
• failFast (optional): If TRUE, the introspection fails when the first error occurs.
If FALSE (the default), the plan runs to completion as a best effort.

• commitOnFailure (optional): If TRUE, the introspection commits whatever it
can. If fastFail is also TRUE, only resources successfully introspected up to
that point are committed. The default is FALSE.

• autoRollback (optional): If TRUE, the introspection task rolls back rather than
being committed. Supersedes all commit options. This enables you to perform
a dry run of resource introspection. If TRUE, you can use
introspectResourcesResult, page 167. If FALSE or unset, the introspection is
not automatically rolled back.

• scanForNewResourcesToAutoAdd (optional): If TRUE, the introspection task
scans for native resources that have been newly added to the data source. If a
newly added resource is found and its parent container has autoAddChildren
set, that child is automatically introspected.

• entries (optional): List of resources to introspect and the action to take for
each.

– entry (optional): Name of the resource.

– resourceId: Identifier for the resource.

– path: Path to the resource.

– type: Type of resource (CONTAINER, DATA_SOURCE,
DEFINITION_SET, LINK, PROCEDURE, TABLE, TREE, TRIGGER).

– subtype

– action

– attributes (optional): List of attributes. See Attributes Element, page 248.

Introspection Report Status Element

An introspection report status element has the following format:

• status: Status of the status element.

• introspectorVersion: Version number of the introspector used.

• startTime (optional): Timestamp of the time the introspection began.

• endTime (optional): Timestamp of the time the introspection ended.

• addedCount

• removedCount

• updatedCount
 TIBCO® Data Virtualization

254 | Recurring Element Structures
• skippedCount

• totalCompletedCount

• toBeAddedCount

• toBeUpdatedCount

• totalToBeCompletedCount

• warningCount

• errorCount

• report (optional):

– entry:

– path

– type

– subtype

– action

– durationMs: Elapsed time to introspect this data source, in milliseconds.

– status

– messages (optional) See Messages Element, page 255.

Licenses Element

The licenses element is a list of license elements and their subelements. See
Licenses Element, page 254.
TIBCO® Data Virtualization

Recurring Element Structures |255
• license:

– id

– product

– version

– creationDate

– activationDate (optional)

– duration

– expirationDate (optional)

– type (optional)

– restriction

– owner

– valid

– encryptionStrength

Messages Element

The messages element contains one or more entry elements, each of which
contains the information for one message (a fault message, an archive report, or
some other type of message).

• entry:

– code

– name

– message (optional)

– detail (optional)

– severity (optional)

Parameters Element

The parameters element is a list of definitions, one per parameter.

• name
 TIBCO® Data Virtualization

256 | Recurring Element Structures
• dataType

– sqlType

– xmlType

– pseudoType

• direction

• isNullable

• attributes (optional): See Attributes Element, page 248.

• annotation (optional): A description of this parameter.

Refresh Element

A refresh element contains information on how cache data is to be refreshed or a
trigger is to be updated. For some operations, this element contains mode and
schedule only.

• mode: How the data, cache, or trigger should be refreshed: MANUAL or
SCHEDULED.

• schedule (if the mode is SCHEDULED): See Schedule Element, page 258.

• expirationPeriod (optional): The number of milliseconds after which the cache
is cleared when it has been refreshed. If zero, the cache never expires.

• firstRefreshCallback (optional): An optional path pointing to a procedure with
zero input elements that should be invoked before the cache refresh.

• secondRefreshCallback (optional): An optional path pointing to a procedure
with zero input elements that should be invoked after a successful or failed
cache refresh.

• clearRule: NONE, ON_LOAD, or ON_FAILURE.

The normal behavior is that old cache data is cleared on expiration, or when a
cache refresh successfully completes and the old cache data is replaced by the
new cache data. If no clearRule is provided, the enable setting is left unaltered.

– If NONE, just the normal behavior occurs.

– If ON_LOAD, the normal behavior occurs, but the old cache data is
immediately cleared as the refresh is started.

– If ON_FAILURE, the normal behavior occurs, and the old cache data is
cleared if the refresh fails.
TIBCO® Data Virtualization

Recurring Element Structures |257
Reintrospect Report Element

A reinstrospectReport element can contain multiple changeEntry elements, each
of which has the following format:

• changeEntry:

– code

– name

– message (optional)

– detail (optional)

– severity (optional)

– path

Resources Element

A resources element can contain one or more resources, each of which has the
following format:

• resource (optional):

• name

• path

• type

• subtype

• id (optional)

• changeId (optional)

• version (optional)

• IntrospectState (optional)

• ownerDomain (optional)

• ownerName (optional)

• impactLevel (optional)

• impactMessage (optional)

• enabled (optional)

• lockState (optional)

• lockOwnerDomain

• lockOwnerName
 TIBCO® Data Virtualization

258 | Recurring Element Structures
• lockCreateTime

• lockParentPath (optional)

• hints (optional): List of hints:

• name

• type

• value (optional)

• valueList (optional)

• valueMap (optional; key-value pairs)

• valueArray (optional)

• unset (optional)

• annotation (optional)

• attributes (optional): List of attributes. See Attributes Element, page 248.

Schedule Element

In the Refresh Element, page 256, if the mode element is SCHEDULED, the
schedule element exists; otherwise it does not. For updateTrigger, page 238, the
schedule element has the name conditionSchedule.

• schedule (optional):

– mode (optional): INTERVAL or CALENDAR. (For cache, always
INTERVAL.)

– startTime (optional): When the first refresh should occur.

– fromTimeInADay (optional)

– endTimeInADay (optional)

– recurringDay (optional)

– interval (optional): The number of seconds between refreshes.

– period (optional): Present if mode is CALENDAR. Values are HOUR, DAY,
WEEK, MONTH.

– count (optional): Present if mode is CALENDAR.

– isCluster (optional)
TIBCO® Data Virtualization

Recurring Element Structures |259
User and Group Rights Mask

Several Web Services operations (createUser, page 80; updateUser, page 240;
createGroup, page 72; and updateGroup, page 219) use a bit mask to designate
explicitRights among the request elements. The table below lists the bit
assignments for user and group rights. These values are additive and expressed
in decimal. For example, to grant a user ACCESS_TOOLS,
READ_ALL_RESOURCES, and MODIFY_ALL_STATUS rights explicitly, specify
a bit mask value of 517.

User Element

The user element contains elements describing an individual user:

• name

• domainName

• id

• explicitRights

• effectiveRights

• inheritedRights

User Right Bit Mask Value

ACCESS_TOOLS 1

[reserved] 2

READ_ALL_RESOURCES 4

MODIFY_ALL_RESOURCES 8

READ_ALL_USERS 16

MODIFY_ALL_USERS 32

READ_ALL_CONFIG 64

MODIFY_ALL_CONFIG 128

READ_ALL_STATUS 256

MODIFY_ALL_STATUS 512

UNLOCK_RESOURCE 1024
 TIBCO® Data Virtualization

260 | Recurring Element Structures
• annotation (optional)

• groupNames (optional): List of groups to which the user belongs:

– entry:

– name

– domain (optional)

Users Element

The users element specifies either all users or subsets of users based on domains,
groups, user names, or combinations of them.

• all (optional): If set, all domains, users, and groups.

• domains (optional): List of domains in their entirety.

– all (optional): If set, all domains.

– domains: A space-delimited list of domain names.

• users (optional): List of users.

– domain (0 or more): A domain that contains users.

– name: The name of the domain containing the users.

– all (optional): If set, all users within this domain.

– userNames (optional): A space-delimited list of user names.

• groups (optional): List of groups in their entirety. Includes user membership.

– domain (0 or more): A domain that contains groups.

– name: The name of the domain containing the groups.

– all (optional): If set, all groups within this domain.

– group (optional): List of groups and their definitions.

• name: The name of the group.

• all (optional): If set, all users within this group are listed as part of the group.

• userNames (optional): List of users to be listed as members of the group.
TIBCO® Data Virtualization

TDV Resource Types and Subtypes |261
TDV Resource Types and Subtypes

The following table lists the types and subtypes of TDV resources.

Resource Type / Subtype Description

CONTAINER /
CATALOG_CONTAINER

A catalog folder within a data source, under
/services/databases.

CONTAINER /
CONNECTOR_CONTAINER

A container for connectors.

CONTAINER /
DIRECTORY_CONTAINER

A TDV directory.

CONTAINER /
FOLDER_CONTAINER

A TDV folder. It can be created only in another folder
under /services/webservices.

CONTAINER /
OPERATIONS_CONTAINER

A web service container for operations.

CONTAINER / PORT_CONTAINER A port container. It can be created only within a SERVICE
under /services/webservices.

CONTAINER /
SCHEMA_CONTAINER

A schema container. It can be created only within a catalog
under /services/databases.

CONTAINER /
SERVICE_CONTAINER

A service container. It can be created only within a data
source that is under /services/webservices.

CONNECTOR / JMS A JMS connector, created with no connection information.

CONNECTOR / HTTP An HTTP connector, created with no connection
information.

DATA_SOURCE /
FILE_DATA_SOURCE

A comma-separate file data source.

DATA_SOURCE / NONE A custom Java procedure data source.

DATA_SOURCE /
RELATIONAL_DATA_SOURCE

A relational database source.

DATA_SOURCE /
WSDL_DATA_SOURCE

A TDV web service data source.
 TIBCO® Data Virtualization

262 | TDV Resource Types and Subtypes
DATA_SOURCE /
XML_FILE_DATA_SOURCE

An XML file data source.

DATA_SOURCE /
XML_HTTP_DATA_SOURCE

An HTTP XML data source.

DEFINITION_SET /
ABSTRACT_WSDL_DEFINITION_S
ET

An abstract WSDL definition set such as the ones
imported from Designer.

DEFINITION_SET /
SCDL_DEFINITION_SET

An SCA definition set imported from Designer.

DEFINITION_SET /
SQL_DEFINITION_SET

A SQL definition set.

DEFINITION_SET /
WSDL_DEFINITION_SET

A WSDL definition set.

DEFINITION_SET /
XML_SCHEMA_DEFINITION_SET

An XML schema definition set.

LINK / NONE A resource published in /services.

PROCEDURE /
BASIC_TRANSFORM_PROCEDURE

A Basic XSLT Transformation procedure. It is created with
no target procedure and no output columns, so it is not
runnable.

PROCEDURE /
DATABASE_PROCEDURE

A database stored procedure.

PROCEDURE /
EXTERNAL_SQL_PROCEDURE

A packaged query. It is created with no SQL text, so it is
not runnable.

PROCEDURE / JAVA_PROCEDURE A procedure created from a Java data source (JAR file).

PROCEDURE /
OPERATION_PROCEDURE

A web service or HTTP procedure operation.

PROCEDURE /
SQL_SCRIPT_PROCEDURE

A SQL procedure, created with a simple default script
body that is runnable.

PROCEDURE /
STREAM_TRANSFORM_PROCEDU
RE

An XSLT streaming transformation procedure. It is created
with no target procedure and no output columns, so it is
not runnable.

Resource Type / Subtype Description
TIBCO® Data Virtualization

TDV Resource Types and Subtypes |263
PROCEDURE /
XQUERY_TRANSFORM_PROCEDU
RE

An XQUERY transformation procedure. It is created with
no target schema and no model, so it is not runnable.

PROCEDURE /
XSLT_TRANSFORM_PROCEDURE

An XSLT transformation procedure. It is created with no
target procedure and no output columns, so it is not
runnable.

TABLE / DATABASE_TABLE A database table.

TABLE / DELIMITED_FILE_TABLE A delimited file table.

TABLE / SQL_TABLE A TDV view. It is created with no SQL text or model, so it
is not runnable.

TABLE / SYSTEM_TABLE A system table view.

TREE / XML_FILE_TREE The XML tree structure associated with a file-XML data
source.

TRIGGER / NONE A TDV trigger. It is created disabled.

Resource Type / Subtype Description
 TIBCO® Data Virtualization

264 | TDV Resource Types and Subtypes
TIBCO® Data Virtualization

Built-in Procedures |265
Built-in Procedures

TDV provides a standard procedure library, similar to a utility library for an
Oracle database. The built-in procedures extend the TDV SQL Script language
through classes. These procedures function exactly like TDV’s custom Java
procedures.

This topic describes the TDV built-in procedures, and provides the syntax for the
debugging and general utility groups of procedures. This chapter also provides
an extended example that invokes several JMS procedures, and lists the SQL
definition sets that accompany various groups of procedures.

• About TDV Built-in Procedures, page 265

• Naming Conflicts between User-Defined and Built-in Procedures, page 266

• Sample JMS Built-in Procedure, page 266

• Procedures Reference, page 267

• SQL Definition Sets, page 336

About TDV Built-in Procedures

You can call built-in procedures from any other procedure. You can also publish
built-in procedures under Data Services and call them from client applications.
Some procedures are available as published resources when TDV is installed.

Note: For a general description of how to design procedures to query and
manipulate data stored in data sources, see “Designing Procedures” in the TDV
User Guide.

The path to a built-in procedure (for example, /lib/debug/) is automatically
added to every script. There is no need to provide fully qualified names for
built-in procedures when you call them from other procedures.

• You can let the cursor hover over the name of the built-in procedure in the
Studio resource tree to see a tool tip with a short description.

• You can open any procedure and select the Info tab to find a short description
for the procedure, as well as its inputs, outputs, and exceptions.

• You can view valid procedure input parameters by pointing a browser to the
admin or util Web services definition and displaying the contracts at these
URLs:
 TIBCO® Data Virtualization

266 | Naming Conflicts between User-Defined and Built-in Procedures
http://[SERVERNAME]:[PORT]/services/system/admin?wsdl

http://[SERVERNAME]:[PORT]/services/system/util?wsdl

For example, active links for the admin.wsdl and the util.wsdl when TDV is
locally installed with default values are:

http://localhost:9400/services/system/admin?wsdl

http://localhost:9400/services/system/util?wsdl

Naming Conflicts between User-Defined and Built-in Procedures

If a user-defined procedure has a name that is identical to the name of any TDV
built-in procedure, the result is a naming conflict. In such cases, the path to the
built-in system procedure always takes precedence.

For example, any procedure named print automatically maps to the path of the
built-in print procedure (/lib/debug/print)–even if the full path to a
user-defined procedure named print is specified.

Sample JMS Built-in Procedure

As an introduction to how built-in procedures can be used, here is an example
that uses several built-in procedures from /lib/jms:
PROCEDURE jmsExampleProc()
BEGIN
-- Create queue_connector and topic_connector beforehand using

Manager.
-- Declare a row type variable to send a map message.
-- The message has keys named using the attributes of the
-- following ROW type variable.

 DECLARE mapmsg ROW(A INT, B VARCHAR);
-- Declare a variable to send JMS properties.

 DECLARE complexProperties ROW (uname VARCHAR, utime INT);
 SET mapmsg = (1, 'var');

-- Set a simple JMS property.
 CALL SetMessageProperty('userId', 'admin');
-- Send the map message.

 CALL SendMapMessage('topic_connector', 'my.topic', mapmsg);
-- Clear all properties.

 CALL ClearMessageProperties();
TIBCO® Data Virtualization

http://localhost:9400/services/system/admin?wsdl
http://localhost:9400/services/system/admin?wsdl
http://localhost:9400/services/system/admin?wsdl

Procedures Reference |267
-- Set values for the ROW type variable, which is used to set JMS
properties.
-- The names of such properties are created using the attributes
-- of the ROW variable.
-- The value of the property is specified by the following
assignment.
 SET complexProperties = ('admin', 1001);
 CALL SetMessageProperties(complexProperties);
-- Send several messages. Each message uses the properties in
effect.
 CALL SendTextMessage('queue_connector', 'my.queue', 'hello world'
);
 CALL SendTextMessage('queue_connector', 'my.queue', 'hello
world2');
-- Properties are cleared upon returning.
END

Procedures Reference

This section describes all TDV/Studio built-in procedures in alphabetical order,
along with their resource tree location, inputs, outputs, and exceptions.

Note: Several procedures (two for lineage and five for Deployment Manager) are
in a second location as published resources.

AddUsernameToken

Add a WS-Security UsernameToken to a SOAP envelope.

The UsernameToken is added to the SOAP header that is identified by the actor
and mustUnderstand arguments. If the SOAP message does not contain a SOAP
header with the specified actor and mustUnderstand values, the header is
created.

The passwordType argument (DIGEST (default) or TEXT) determines how the
password is encoded in the UsernameToken.

For details on WS-Security UsernameTokens, see:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token
-profile-1.0.pdf

This procedure is discussed in the “Adding a Username Token Pipeline Step”
section of the TDV User Guide.
 TIBCO® Data Virtualization

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf

268 | Procedures Reference
Location

/lib/services/

Inputs

envelope: A SOAP envelope, which may include a WS Security header.

actor: Determines which WS Security header to process. May be NULL.

mustUnderstand: Indicate whether or not the receiver must understand this
header. It may be NULL. If NULL, mustUnderstand defaults to TRUE.

username: The username.

password: The user’s password.

passwordType: The password type. Must be TEXT or DIGEST.

Outputs

envelope: The SOAP envelope.

Exceptions

IllegalArgumentException: If any of the arguments are invalid.

CancelDataSourceReintrospect

Cancel an in-progress, non-blocking reintrospection process that was started
using ReintrospectDataSource, page 313.

Note: This procedure is different from the web services operation of the same
name, which is in the resource tree under
/services/webservices/system/admin/resource/operations/.

Location

/lib/resource/

Input

reintrospectId: The reintrospection ID provided by the initial
StartDataSourceReintrospect call.

Output

status:
TIBCO® Data Virtualization

Procedures Reference |269
• CANCELED if reintrospection was successfully canceled.

• SUCCESS or FAIL (as appropriate) if reintrospection already completed prior
to this call. These three values can be found on the Constants tab of the
/lib/util/System SQL definition set.

Exceptions

NotFoundException: If reinstrospectId does not exist. This can occur if the
reintrospection was previously canceled using this procedure, or if the report has
already been retrieved using GetDataSourceReintrospectReport, page 289.

CancelResourceStatistics

Asynchronously cancel statistics that are currently being gathering on a resource.
RELATIONAL_DATA_SOURCE, FILE_DATA_SOURCE, DATABASE_TABLE
and DELIMITED_FILE_TABLE are the only resources that support statistics
gathering.

Note: This procedure is different from the web services operation of the same
name, which is in the resource tree under
/services/webservices/system/admin/resource/operations/.

Location

/lib/resource/

Inputs

path: The path to the resource.

type: The type of the resource.

Outputs

N/A

Exceptions

IllegalArgumentException: If the path is malformed or an illegal type is provided.

NotAllowedException: If the resource type does not support statistics.
RELATIONAL_DATA_SOURCE, FILE_DATA_SOURCE, DATABASE_TABLE
and DELIMITED_FILE_TABLE are the only resources that support statistics.

NotFoundException: If the resource or any portion of the path to the resource
does not exist.
 TIBCO® Data Virtualization

270 | Procedures Reference
SecurityException: If the user does not have READ access on all items in the path.

ClearAllDataSourceCredentials

Clear all credential data previously stored using the setDataSourceCredentials
JDBC method or the SetDataSourceCredentials, page 323 procedure. This
procedure provides access to the facility described in “Multiple Credentials for
JDBC Connection” in the TDV User Guide.

An example of this built-in procedure can be found in the “Example of Java JDBC
Client Application Code” section of the TDV Client Interfaces Guide.

Location

/lib/util/

Inputs

N/A

Outputs

N/A

Exceptions

N/A

ClearAlternatePrincipal

Remove the effects of setting an alternate principal. (See also
SetAlternatePrincipal, page 322.)

Location

/lib/util/

Inputs

N/A

Outputs

N/A
TIBCO® Data Virtualization

Procedures Reference |271
Exceptions

N/A

ClearMessageProperties

Clear all JMS headers and properties that were set using SetMessageProperties,
page 326.

Locations

/lib/jms/

/lib/util/

Inputs

N/A

Outputs

N/A

Exceptions

N/A

ClearResourceCache

Clear the cache on a resource. Both procedures and SQL_TABLE resources
support clearing of the resource cache.

This built-in procedure is discussed in the “TDV Caching” section of the TDV
User Guide.

Note: This procedure is different from the web services operation of the same
name, which is in the resource tree under
/services/webservices/system/admin/resource/operations/.

Location

/lib/resource/

Inputs

path: The path to the resource.
 TIBCO® Data Virtualization

272 | Procedures Reference
type: The type of the resource.

Outputs

N/A

Exceptions

IllegalArgumentException: If the path is malformed or an illegal type is provided.

IllegalStateException: If the cache is disabled.

NotAllowedException: If the resource type does not support caching. Only
SQL_TABLE resources support caching.

NotFoundException: If the resource or any portion of the path to the resource
does not exist.

SecurityException: If the user does not have READ access on all items in the path
other than the last one.

SecurityException: If the user does not have WRITE access to the last item in the
path.

ClearResourceStatistics

Clear the statistics on a resource. Statistics are recomputed at the next scheduled
refresh.

RELATIONAL_DATA_SOURCE, FILE_DATA_SOURCE, DATABASE_TABLE
and DELIMITED_FILE_TABLE are the only resources that support statistics.

Note: This procedure is different from the web services operation of the same
name, which is in the resource tree under
/services/webservices/system/admin/resource/operations/.

Location

/lib/resource/

Inputs

path: The path to the resource.

type: The type of the resource.
TIBCO® Data Virtualization

Procedures Reference |273
Outputs

N/A

Exceptions

IllegalArgumentException: If the path is malformed or an illegal type is provided.

IllegalStateException: If statistics gathering is disabled.

NotAllowedException: If the resource type does not support statistics.
RELATIONAL_DATA_SOURCE, FILE_DATA_SOURCE, DATABASE_TABLE
and DELIMITED_FILE_TABLE are the only resources that support statistics.

NotFoundException: If the resource or any portion of the path to the resource
does not exist.

SecurityException: If the user does not have READ access on all items in the path.

CopyResource

Copy the specified resource into a folder using a new name.

The copyMode parameter controls behavior in cases where a resource exists with
the same name and type in the container specified by newPath.

The copyMode options are:

• ALTER_NAME_IF_EXISTS: If a resource of the same name and type as the
source resource already exists in the target container, avoid conflicts by
automatically generating a new name. Names are generated by appending a
number to the end of the provided name.

• FAIL_IF_EXISTS: Fail if a resource of the same name and type of the source
resource already exists in the target container. If this occurs, the resource is
not copied.

• OVERWRITE_MERGE_IF_EXISTS: If a resource of the same name and type as
the source resource already exists in the target container, overwrite the
resource in the target container. If the source resource is a container, merge
the contents of the source container with the corresponding resource in the
target. All resources in the source container overwrite those in the target, but
existing resources in the target that are not overwritten remain unaltered.

• OVERWRITE_REPLACE_IF_EXISTS: If a resource of the same name and type
as the source resource already exists in the target container, overwrite the
resource in the target container. If the source resource is a container, replace
the container within the target container with the source container. This is
equivalent to deleting the container in the target before copying the source.
 TIBCO® Data Virtualization

274 | Procedures Reference
Location

/lib/resource/

Inputs

path: A source path of the resource to be copied.

type: The type of the source resource to be copied.

newPath: The path of the target container to copy the resource into.

newName: The new name to call the copied resource.

copyMode: Valid values: ALTER_NAME_IF_EXISTS, FAIL_IF_EXISTS,
OVERWRITE_MERGE_IF_EXISTS, or OVERWRITE_REPLACE_IF_EXISTS.
These values can be found on the Constants tab of the
/lib/resource/ResourceDefs SQL definition set.

Outputs

N/A

Exceptions

DuplicateNameException: If a resource in the target container exists with the
same type as the source and the same name as newName, and the copy mode is
FAIL_IF_EXISTS.

IllegalArgumentException: If any of the given paths or types are malformed, or if
copyMode is not a legal value.

IllegalStateException: If the source resource is not allowed to be copied.
Resources in /services/databases/system, /services/webservices/system, or
within any physical data source may not be copied.

NotAllowedException: If the source resource is not allowed to exist within the
target container. Resources cannot be copied into a physical data source. a LINK
resource can only be copied into a RELATIONAL_DATA_SOURCE, SCHEMA,
or PORT under /services. Non-LINK resources cannot be copied into any location
under /services.

NotFoundException: If the source resource or any portion of the new path does
not exist.

SecurityException: If the user does not have READ access on all items in the
source path.

SecurityException: If the user does not have READ access on the items in the
newPath other than the last item.
TIBCO® Data Virtualization

Procedures Reference |275
SecurityException: If the user does not have WRITE access to the last item in
newPath.

SecurityException: If the user does not have WRITE access to a resource that is to
be overwritten in one of the overwrite modes.

CreateElement

Create a child element in an XML document or element. This method creates an
element in an XML document or element. The parentXPath expression selects the
parent element, relative to root, of the element to create. The namespacePrefixes
and namespaceURIs are used to resolve prefixes to namespaces in the
parentXPath expression. Each item in namespacePrefixes must have a
corresponding item in xpathNamespaces. The empty string is used to specify the
default namespace.

Location

/lib/services/

Inputs

root: An XML document or element.

elementName: The fully qualified name of the element. May not be NULL. For
example: {http://examples.com/}Example.

position: The position of the element, relative to its siblings. Use 0 to indicate the
element should be created before any existing children. Use -1 to indicate that the
element should be created after all existing children. The default value is 0.

parentXPath: An XPath expression that is evaluated against the root to identify
the parent of the element that is to be created. May not be NULL.

namespacePrefixes: An array of namespace prefixes used in the parentXPath
expression. May be NULL.

namespaceURIs: An array of namespace URIs used in the parentXPath
expression. May be NULL.

Outputs

envelope: The modified XML document or element.

Exceptions

IllegalArgumentException: If any of the arguments are invalid.
 TIBCO® Data Virtualization

276 | Procedures Reference
IllegalArgumentException: If the parentXPath expression does not resolve to an
element.

CreateResourceCacheKey

Create a cache key for a given resource. Used together with
UpdateResourceCacheKeyStatus, page 334 and GetResourceCacheStatus,
page 297 to support external cache loading.

This built-in procedure is discussed in the “TDV Caching” section of the TDV
User Guide.

Location

/lib/resource/

Inputs

path: The path to the resource.

type: The type of the resource.

Outputs

cachekey: The new cache key for the resource.

Exceptions

IllegalArgumentException: If the path is malformed or the type is illegal.

IllegalStateException: If the resource type does not support being cached.

IllegalStateException: If the resource is not configured for caching.

IllegalStateException: If the data source used by the resource for caching is not
properly configured.

NotFoundException: If the resource does not exist.

SecurityException: If the user does not have READ access on all items in the path
other than the last one.

SecurityException: If the user does not have WRITE access to the last item in path.

DeleteElement

Delete one or more element nodes from an XML document or element.
TIBCO® Data Virtualization

Procedures Reference |277
The XPath expression selects the nodes to delete. The XPath is evaluated against
the root node. All resulting nodes are deleted.

The namespacePrefixes and namespaceURIs are used to resolve prefixes to
namespaces in the parentXPath expression. Each item in namespacePrefixes must
have a corresponding item in xpathNamespaces. The empty string specifies the
default namespace.

Location

/lib/services/

Inputs

root: An XML document or element.

xpath: An XPath expression to evaluate against the root node to select the nodes
to delete.

namespacePrefixes: An array of namespace prefixes used in the XPath expression.
May be NULL.

namespaceURIs: An array of namespace URIs used in the XPath expression. May
be NULL.

Outputs

envelope: The XML document or element.

Exceptions

IllegalArgumentException: If any of the arguments are invalid.

EncryptElement

Encrypt an element in the specified SOAP envelope using a symmetric key that is
encrypted by a certificate or public key.

The elementName argument determines which element in the message to
encrypt. Typically this procedure is used to encrypt either the header or body of
the SOAP message.

This method adds WS-Security artifacts to a header in the SOAPenvelope.

Artifacts are added to the SOAP header that is identified by the actor and
mustUnderstand arguments. If the SOAP message does not contain a SOAP
header with the specified actor and mustUnderstandvalues, the header is created.
 TIBCO® Data Virtualization

278 | Procedures Reference
The encryptionAlgorithm determines the method of encryption. The default
value (AES_128) is sufficient for most purposes. Stronger encryption algorithms,
such as AES_192 or AES_256, require an unrestricted Java Cryptography
Extension (JCE) policy file to be installed in the server’s JVM.

Location

/lib/services/

Inputs

envelope: A SOAP envelope. It may not be NULL.

actor: Determines which WS Security header to process. It may be NULL.

mustUnderstand: Indicates whether or not the receiver must understand this
header. If NULL, mustUnderstand defaults to TRUE.

elementName: The name of the element in the envelope to encrypt. If NULL,
elementName defaults to {http://schemas.xmlsoap.org/soap/envelope/}Body.

encryptionAlgorithm: The symmetric encryption algorithm used to encrypt the
data. It may be NULL, TRIPLE_DES, AES_128, AES_192, AES_256. If NULL,
encryptionAlgorithm defaults to AES_128.

certificateAlias: The alias of a certificate or public key in the key store to use to
encrypt the symmetric key that is used to encrypt the element. It may not be
NULL.

keyStore: A serialized Java key store. It may be NULL.

keyStoreType: The type of key store. It must be JKS or PKCS12. It may not be
NULL.

keyStorePassword: The password of the key store and of all private keys within it.
It may be NULL or empty if there is no password.

Output

envelope: The SOAP envelope containing the encrypted element and the
generated WS Security artifacts in a SOAP header.

Exceptions

IllegalArgumentException: If any of the arguments are invalid.

SecurityException: If the element could not be encrypted.
TIBCO® Data Virtualization

Procedures Reference |279
ExecuteBasicTransform

Execute a basic transformation on the input XML value and retrieve metadata
information.

Location

/lib/resource/

Syntax
executeBasicTransform(IN inputXmlValue XML, OUT outputs CURSOR (
ID INTEGER,
PARENT_ID INTEGER,
"DEPTH" INTEGER,
NAME VARCHAR(255),
"XPATH" VARCHAR(255),
"PATH" VARCHAR(255),
"POSITION" INTEGER,
"VALUE" VARCHAR(65536)
)

Input

inputXmlValue: The input XML value.

Output

columnDependencies: A cursor whose rows have the following columns:

– ID: The node ID.

– PARENT_ID: The parent node ID.

– DEPTH: Depth in the XML tree.

– NAME: The element node name.

– XPATH: The XPath for the node.

– PATH: The path to the node.

– POSITION: The position of the node.

– VALUE: The node value.

Exceptions

N/A
 TIBCO® Data Virtualization

280 | Procedures Reference
ExplainAttributes

Retrieve the list of attributes in a resource set.

Location

/lib/resource/ (procedure)
/services/databases/system/deployment/ (published resource)

Inputs

resourceSetDefinition: The definition of the resource set to analyze.

Outputs

attributeList: A cursor whose rows encode the attributes of the data sources
included in the specified resource set:

• resourcePath: Path to the resource.

• resourceType Type of resource.

• attributeName: Name of attribute

• attributeType: Type of attribute.

• attributeValue: Value of the attribute, serialized as a JSON value.

• isEndpoint: True if the attribute value is a physical property of a data source;
false if it is a logical property of a data source as a TDV metadata artifact.

Exceptions

IllegalArgumentException: If the specified resource set definition is invalid.

ExplainPrincipals

Retrieve the list of principals included in the specified resource set.

Location

/lib/users/ (procedure)
/services/databases/system/deployment/ (published resource)

Inputs

resourceSetDefinition: The definition of the resource set to analyze.
TIBCO® Data Virtualization

Procedures Reference |281
Outputs

principalList: A cursor whose rows encode the principals included in the
specified resource set:

• domain: The domain name.

• name: The resource type.

• isGroup: True if the member is a group.

Exceptions

IllegalArgumentException: If the specified resource set definition is invalid.

ExplainResources

Retrieve the list of resources included in the specified resource set.

The second through fifth inputs (highlighted in bold) support paged, random
resource access. When it is employed by the Deployment Manager UI client, it
alleviates the performance issues related to large resource sets.

Location

/lib/resource/ (procedure)
/services/databases/system/deployment/ (published resource)

Inputs

resourceSetDefinition: The definition of the resource set to analyze.

searchPath: Applicable only when resourceSetDefinition contains a tree root
which is set to “/”; otherwise ignored. If set and effective, searchType must also
be set and searchLevel must be non-zero. When searchPath is set, the matched
resource is not included in the result.

searchType: Applicable only when resourceSetDefinition contains a tree root
which is set to “/”; otherwise ignored. Accepts the set of resource type values
accepted by the Web Services operations (“Admin API calls”)–for example,
CATALOG_CONTAINER, SCHEMA_CONTAINER. If set and effective,
searchLevel must also be set.

searchSubtype: Applicable only when resourceSetDefinition contains a tree root
which is set to “/”; otherwise ignored.

Accepts the set of resource subtype values accepted by the Web Services
operations (“Admin API calls”)–for example, CATALOG_CONTAINER,
SCHEMA_CONTAINER.
 TIBCO® Data Virtualization

282 | Procedures Reference
searchLevel: 0 denotes the resources matching the search criteria. A negative
value denotes unlimited depth. A positive value denotes the maximum depth,
relative to the matched resources, at which descendent resources are to be
included in the result.

Outputs

resourceList: A cursor whose rows encode the resources included in the specified
resource set:

• resourcePath: The resource path.

• resourceType: The resource type.

• isNonRelocatableOnTarget: True if the resource cannot be relocated on the
target; false if it can.

• owner: The resource owner.

• createTime: Time the resource was created.

• modifyTime: Time the resource was last modified.

• modifyUser: User who last modified the resource.

• resourceId: The resource id.

• parentId: The parent resource id.

• depthLevel: The depth level of the resource within the resource tree.

Exceptions

IllegalArgumentException: If the specified resource set definition is invalid.

GenerateEvent

Generate a custom event with the specified name and value. This event can be
used to activate a trigger that has been configured to listen for this event name.

Location

/lib/util/

Syntax
generateEvent (IN eventName VARCHAR (255), IN value VARCHAR (4096))
TIBCO® Data Virtualization

Procedures Reference |283
Inputs

eventName: The name of the event.

value: The value for the event.Output: The cs_server_events.log file records
events generated by this procedure.

Exceptions

N/A

Remarks

The input eventName is the name of the event.

The input value is the value for the event.

The cs_server_events.log file records events generated by this procedure.

Example
PROCEDURE CallsGenEv()
 BEGIN
 CALL GenerateEvent('runAReport', ' ');
 END

GetClaim

Returns the Claim value from the bearer token for the specific Claim provided in
the argument. The built-in procedure is also discussed in the TDV Administration
Guide chapter OAuth Administration.

Location

/lib/users

Input

The claim name that is carried in the bearer token sent by the Client Application.
The bearer token is encoded token in JSON format with name-value pairs.

Output

Returns the Claims value for the Claim name thats passed as the argument.
 TIBCO® Data Virtualization

284 | Procedures Reference
GetColumnDependencies

Retrieve the column dependencies of the specified view. The analysis is done
based on the view definition, regardless of whether or not the view is cached.

This built-in procedure is discussed in the section “View Column Dependencies
and References” in the TDV User Guide.

Location

/lib/resource/ (procedure)
/services/databases/system/lineage/ (published resource)

Inputs

resourcePath: The path to the resource to analyze. The supported resource types
are TDV SQL views in plain or published form.

columnFilter (optional): A comma-separated sequence of case-insensitive column
names, indicating the columns whose dependencies should be analyzed. An
empty string or NULL indicates all view columns.

ignoreCaches: TRUE if the analysis should ignore whether dependent resources
are cached or not, otherwise FALSE. The default is FALSE.

recursively: TRUE if the analysis should be performed recursively down to
base-level dependencies. FALSE if the analysis should be performed at a single
dependency level.

Outputs

columnDependencies: A cursor whose rows encode column dependencies,
having the following columns:

• columnName: The name of the resource column having the column
dependency encoded in the row.

• dependencyDatasourcePath: The path to the data source containing the
resource that owns the dependency. Empty if not applicable.

• dependencyDatasourceType: The type of the data source containing the
resource that owns the dependency. Empty if not applicable. The set of data
source types consists of all the data source adapter names accepted by TDV.

• dependencyResourcePath: The path to the resource owning the dependency.
Empty if not applicable.

• dependencyResourceType: The type of the resource owning the dependency.
Empty if not applicable. The set of table or procedure resource types accepted
by TDV is as follows:
TIBCO® Data Virtualization

Procedures Reference |285
• Database table

• Delimited file

• Excel table

• TDV SQL view

• System table

• SAP RT table

• SAP RFC table

• SAP AQ query table

• SAP Infoset query table

• Siebel table

• Database stored procedure

• Packaged query

• Java procedure

• Web Service operation

• TDV SQL Script procedure

• XQuery procedure

• XSLT procedure

• Transform procedure

• Basic transform procedure

• Stream transform procedure

• XQuery transform procedure

• XSLT transform procedure

• dependencyIdentifier: The column name if the dependency is on a column;
otherwise, a literal.

• dependencyKind: One of the following:

• column: A dependency on a column.

• literal: A dependency on a constant value.

• parameter: A dependency on a dynamic value provided at runtime.

• derivationKind: One of the following:

• direct: The value of the dependency is preserved by the dependent column.
 TIBCO® Data Virtualization

286 | Procedures Reference
• indirect: The value of the dependency is transformed by the dependent
column.

• cardinalityInfo: When applicable, one of the following:

• aggregate: An aggregate function is involved in the derivation of the
dependent column.

• analytic: An analytic function is involved in the derivation of the dependent
column.

• derivations: When the dependent column is not a direct projection of the
dependency, this field denotes how the dependent column is derived.

• position: The line number and column number of the dependency formatted
as [line number],[column number].

Exceptions

IllegalArgumentException: If the viewPath is malformed, the specified resource
cannot be found, or the specified resource is impacted.

GetColumnProfiles

Retrieve statistical and auxiliary data type information about the specified set of
published table columns. Cardinality statistics must be enabled and gathered on
the data source to enable gathering of profiling information. Please note that the
table or view may have underlying procedures and column profiles can be got for
such views if cardinality statistics are enabled. This procedure is present in
“/services/databases/system/profile/GetColumnProfiles”.

When a published resource has an underlying view, caching and cardinality
statistics must be enabled and gathered before using the profile APIs. Enabling
cardinality statistics at the data source level may not be sufficient in gathering
profile information.

Inputs

database: The name of the published database to which the column belongs.
Special character '*' can be used as a wildcard to denote any database. This
parameter is required.

catalog: The name of the published catalog to which the column belongs. Special
character '*' can be used as a wildcard to denote any/no catalog. This parameter is
optional (i.e. it may be set to NULL to denote no catalog).
TIBCO® Data Virtualization

Procedures Reference |287
schema: The name of the published schema to which the column belongs. Special
character '*' can be used as a wildcard to denote any/no schema. This parameter
is optional (i.e. it may be set to NULL to denote no schema).

table: The name of the published table to which the column belongs. Special
character '*' can be used as a wildcard to denote any table. This parameter is
required.

columnFilter: A comma-separated list of column names. This parameter is
optional. If set to NULL all table columns will be profiled.

Outputs

A cursor whose rows encode table column profiles, having the following
columns:

database: The name of the published database to which the column belongs.

catalog: The name of the published catalog to which the column belongs. May be
NULL.

schema: The name of the published schema to which the column belongs. May be
NULL.

table: The name of the published table to which the column belongs.

column: The name of the published column.

minValue: The textual representation of the column's minimum value. NULL if
unknown or not applicable.

maxValue: The textual representation of the column's maximum value. NULL if
unknown or not applicable.

distinctCount: The number of distinct column values. NULL if unknown or not
applicable.

nullCount: The number of NULL column values. NULL if unknown or not
applicable.

partitionable: TRUE if partitions can be defined against the specified column;
otherwise, FALSE.

message: A message specifying any detected reason preventing the analysis of the
specified table column.

Exceptions:
 TIBCO® Data Virtualization

288 | Procedures Reference
An IllegalArgumentException is thrown when the specified resources cannot be
found. An exception is also thrown when the user does not have the authorization
to read the specified resource(s).

GetColumnReferences

Retrieve the column references of the specified view, table or procedure. The
analysis is done whether or not the specified view or table is cached.

This built-in procedure is discussed in the section "View Column Dependencies
and References" in the TDV User Guide.

Location

/lib/resource (procedure)
/services/databases/system/lineage/ (published resource)

Inputs

resourcePath: The path to the resource to analyze. This parameter is required.

columnFilter (optional): A comma-separated list of case-insensitive column
names, indicating the columns whose references should be analyzed. Empty
string or NULL indicates all columns in the view or table.

Outputs

columnReferences: A cursor whose rows encode column references, having the
following columns:

• columnName: The name of the resource column having the column reference
encoded in the row.

• referentResourcePath: The path to the resource containing the column
reference.

• referentResourceType: The type of the resource containing the column
reference. The supported resource types are TDV SQL views in plain or
published form.

• referenceContext: One of the following:

• In WITH clause: A reference within a WITH clause.

• In SELECT clause as output: A reference that is projected by a SELECT clause.

• In SELECT clause as input: A reference that is used, but not projected, by a
SELECT clause.
TIBCO® Data Virtualization

Procedures Reference |289
• In FROM clause: A reference within a FROM clause.

• In WHERE clause: A reference within a WHERE clause.

• In TIMESERIES clause: A reference within a TIMESERIES clause.

• In GROUP BY clause: A reference within a GROUP BY clause.

• In HAVING clause: A reference within a HAVING clause.

• In ORDER BY clause: A reference within a ORDER BY clause.

• referentColumnName: The name of the referent column. Populated only if
referenceContext is in SELECT clause as output; otherwise, empty.

• derivationKind: Populated only if referenceContext is in SELECT clause as
output; otherwise, empty. One of the following:

• direct: The value of the dependency is preserved by the dependent column

• indirect: The value of the dependency is transformed by the dependent
column.

• cardinalityInfo: Populated only if referenceContext is in SELECT clause as
output; otherwise, empty. When applicable, one of the following:

• aggregate: An aggregate function is involved in the derivation of the
dependent columns.

• analytic: An analytic function is involved in the derivation of the dependent
column.

• reference: A textual representation of the column reference.

• position: The line number and column number of the reference formatted as
[line number],[column number]

Exceptions

IllegalArgumentException: If the viewPath is malformed, the specified resource
cannot be found, or the specified resource is impacted.

GetDataSourceReintrospectReport

Get the reintrospect report for a reintrospection, if available. A reintrospection is
started using ReintrospectDataSource, page 313. Retrieving the report using this
call invalidates reintrospectID.

Location

/lib/resource/
 TIBCO® Data Virtualization

290 | Procedures Reference
Inputs

reintrospectId: The reintrospection ID provided by the ReintrospectDataSource
procedure.

isBlocking: If TRUE, this call does not return until reintrospection has completed
or has been canceled by another thread. If FALSE, this call returns immediately,
regardless of completion.

Outputs

status: SUCCESS or FAIL (as appropriate) if the reintrospection completed during
or prior to this call. INCOMPLETE if isBlocking is FALSE and the reintrospection
is still in progress. CANCELED if the reintrospection was canceled by a separate
call during this call. These values are available on the Constants tab of the
/lib/util/System SQL definition set.

report: The reintrospection report.

Exceptions

NotFoundException: If the reinstrospectId does not exist. It does not exist if it was
canceled or if a previous GetDataSourceReintrospectReport already retrieved the
report.

GetEnvironment

Get the value of an environment variable from the last operation.

Note: These environment variables are local to individual procedure executions;
they are not global.

All built-in variable names are available on the Constants tab of the
/lib/util/System SQL definition set. The variable names are:

• System.CASE_SENSITIVE_IN_COMPARISONS: TRUE or FALSE. Reflects
the case sensitivity being used in string comparisons for SQL and SQL Script
operations in this scope.

• System.IGNORE_TRAILING_SPACES_IN_COMPARISONS: TRUE or
FALSE. Reflects whether or not trailing spaces are ignored in string
comparisons for SQL and SQL script operations in this scope.

• System.NUM_ROWS_AFFECTED: A numeric value.

• System.TRIGGER_EVENT_NAME: The trigger name if the current request is
the result of a trigger. NULL otherwise.
TIBCO® Data Virtualization

Procedures Reference |291
• System.TRIGGER_EVENT_TYPE: The trigger type if the current request is the
result of a trigger. NULL otherwise.

• System.TRIGGER_EVENT_VALUE: The trigger value if the current request is
the result of a trigger. NULL otherwise.

• System.TRIGGER_PATH: Path if the current request is result of a trigger.
NULL otherwise.

• System.CACHED_RESOURCE_PATH: The path to the resource whose cache
is being refreshed, if the current request is the result of a cache refresh
callback. NULL otherwise.

• System.CACHED_RESOURCE_TYPE: The type of the resource whose cache
is being refreshed, if the current request is the result of a cache refresh
callback. NULL otherwise.

• System.CACHED_RESOURCE_PARAM_KEY: The parameter key of the
resource whose cache is being refreshed, if the current request is the result of a
cache refresh callback. NULL otherwise.

• System.CACHE_DATASOURCE_PATH: The path of the cache data source, if
the current request is the result of a cache refresh callback. NULL otherwise.

• System.CACHED_RESOURCE_CACHE_KEY: The cache key used by cache
refresh, if the current request is the result of a cache refresh callback. NULL
otherwise.

• System.CACHED_RESOURCE_BUCKET_PATH: The path of the cache table
used by cache refresh, if (1) the current request is the result of a cache refresh
callback, and (2) the cache refresh mode is one table per snapshot (OTPS).
NULL otherwise.

• System.CACHED_RESOURCE_REFRESH_OUTCOME: The outcome of the
cache refresh, if the current request is the result of a cache refresh callback.
NULL otherwise. TRUE for success, FALSE for failure and NULL for
unknown.

• System.CACHED_RESOURCE_ERROR_MESSAGE: The error message
generated by the cache refresh, if the current request is the result of a cache
refresh callback and the cache refresh failed. NULL otherwise.

For backward compatibility, the following are also accessible without the System.
prefix:

• CASE_SENSITIVE_IN_COMPARISONS

• IGNORE_TRAILING_SPACES_IN_COMPARISONS

• NUM_ROWS_AFFECTED

• TRIGGER_EVENT_NAME
 TIBCO® Data Virtualization

292 | Procedures Reference
• TRIGGER_EVENT_TYPE

• TRIGGER_EVENT_VALUE

• TRIGGER_PATH

Location

/lib/util/

Syntax
getEnvironment (IN variableName VARCHAR (40),
OUT propValue VARCHAR (2048))

Inputs

variableName: The name of a variable. Variable names are not case-sensitive. For
example, both sample and SAMPLE are the same variable.

Outputs

propValue: The value stored in the variable, or NULL if no value is stored.

Example
PROCEDURE proc4()
 BEGIN
 PATH /shared/sources/scripts;
 DECLARE x VARCHAR(4096);

 CALL insertProc(); -- This procedure is in the PATH
 CALL getEnvironment('NUM_ROWS_AFFECTED', x);
 CALL log(x);
 END

GetPartitionClauses

Retrieve the partition SQL clauses (predicates) to be used in order to define
partition queries against the specified published table using the specified column.
Cardinality statistics must be enabled and gathered on the data source to enable
gathering of profiling information. Please note that the table or view may have
underlying procedures and partition clauses can be got for such views if
cardinality statistics are enabled. This procedure is present in
“/services/databases/system/profile/GetPartitionClauses”.
TIBCO® Data Virtualization

Procedures Reference |293
When a published resource has an underlying view, caching and cardinality
statistics must be enabled and gathered before using the profile APIs. Enabling
cardinality statistics at the data source level may not be sufficient in gathering
profile information.

Inputs

database: The name of the published database to which the partition column
belongs. This parameter is required.

catalog: The name of the published catalog to which the partition column belongs.
This parameter is optional (i.e. it may be set to NULL to denote no catalog).

schema: The name of the published schema to which the partition column
belongs. This parameter is optional (i.e. it may be set to NULL to denote no
schema).

table: The name of the published table to which the partition column belongs.
This parameter is required.

column: The name of the partition column. This parameter is required.

partitionCount: A numeric value indicating the desired number of partitions. This
parameter is optional.

nullsFirst: A boolean value indicating whether NULL values should be returned
by the first partition clause or the last.

Outputs

A cursor whose rows encode partition SQL clauses (predicates), having the
following columns:

partitionClause: The SQL-encoded partition clause to be used in order to retrieve
a partition.

Exceptions:

IllegalArgumentException: If the specified resources cannot be found or the
values of the specified column cannot be partitioned or access to the specified set
of column values is not allowed.

GetPrincipalSet

Retrieve the list of principals included in the specified principal set.
 TIBCO® Data Virtualization

294 | Procedures Reference
Location

/lib/resource/ (procedure)
/services/databases/system/deployment/ (published resource)

Inputs

principalMapping: The principal mapping.

operation:

• Add: The CAR file contains only the clone domain, group or user information.

• Remove: The CAR file contains the deleted domain, group or user
information.

Outputs

principalSetArchive: The archive containing the principal set.

Exceptions

IllegalArgumentException: If the specified principal set is invalid.

GetTableProfiles

Retrieve statistical and data source lineage information about the specified set of
published tables or views. Cardinality statistics must be enabled and gathered on
the data source to enable gathering of profiling information. This procedure is
present in “/services/databases/system/profile/GetTableProfiles”.

When a published resource has an underlying view, caching and cardinality
statistics must be enabled and gathered before using the profile APIs. Enabling
cardinality statistics at the data source level may not be sufficient in gathering
profile information.

Inputs

database: The name of the published database to which the table belongs. Special
character '*' can be used as a wildcard to denote any database.%This parameter is
required. Specifying null will throw an error.

catalog: The name of the published catalog to which the table belongs. Special
character '*' can be used as a wildcard to denote any/no catalog.%This parameter
is optional (i.e. it may be set to NULL to denote no catalog).
TIBCO® Data Virtualization

Procedures Reference |295
schema: The name of the published schema to which the table belongs. Special
character '*' can be used as a wildcard to denote any/no schema.%This parameter
is optional (i.e. it may be set to NULL to denote no schema).

table: The name of the published table. Special character '*' can be used as a
wildcard to denote any table.%This parameter is required. Specifying null will
throw an error.

Outputs

A cursor whose rows encode table profiles, having the following columns:

database: The name of the published database to which the table belongs.

catalog: The name of the published catalog to which the table belongs. May be
NULL.

schema: The name of the published schema to which the table belongs. May be
NULL.

table: The name of the published table.

rowCount: The number of rows. NULL if unknown.

partitionColumn: The name of the column to be used to define partition queries
against this table. NULL if unknown.

dataSourceType: The name and version of the data source this published table
retrieves data from. Applicable only to published tables that serve SELECT *
queries against them using pass-through requests that are fully executed within
the underlying data source; otherwise, this value is set to NULL.

message: A message specifying any detected reason preventing the analysis of the
specified table.

Exceptions:

An IllegalArgumentException is thrown when the specified resources cannot be
found. An exception is also thrown when the user does not have the authorization
to read the specified resource(s).

GetProperty

Get the value of a system property. The properties are global and shared across
scripts.
 TIBCO® Data Virtualization

296 | Procedures Reference
All property names are available on the Constants tab of the /lib/util/System
SQL definition set.

Any one of the following property names can be submitted to get its value:

• CLUSTER_ID: The server’s cluster ID.

• CURRENT_USER_DOMAIN: The current user’s domain.

• CURRENT_USER_ID: A current user’s ID as a numeric value.

• CURRENT_USER_NAME: The current user’s name.

• SERVER_HOSTNAME: The server’s host name.

• SERVER_ID: The server’s ID.

• SERVER_JDBC_PORT: The server’s JDBC port.

• SERVER_VERSION: The server’s software version string.

• SERVER_VERSION_NUMBER: The server’s software version number only.

• SERVER_WEB_PORT: The server’s HTTP port.

• SESSION_ID: The session ID.

• TRANSACTION_ID: The transaction ID.

Location

/lib/util/

Syntax
getProperty (
IN propertyName VARCHAR (255),
OUT propertyValue VARCHAR (4096))

Input

propertyName: The name of the property. (See list above.)

Output

propertyValue: The text to write to the debug console.

Exception

IllegalArgumentException: If an unsupported property name is requested.
TIBCO® Data Virtualization

Procedures Reference |297
Example
PROCEDURE proc5()
 BEGIN
 DECLARE x VARCHAR(4096);
 CALL getProperty('CURRENT_USER_ID', x);
 CALL log(x);
 CALL getProperty('CURRENT_USER_NAME', x);
 CALL log(x);
 CALL getProperty('CURRENT_USER_DOMAIN', x);
 CALL log(x);
 END

GetResourceCacheStatus

Used together with CreateResourceCacheKey, page 276 and
UpdateResourceCacheKeyStatus, page 334 to support external cache loading.
Returns cache status information for a given cache key.

Location

/lib/resource/

Inputs

path: The path to the resource.

type: The type of the resource.

cacheKey: the key returned by CreateResourceCacheKey.

Outputs

status: Internal cache status.

bucket: TDV path to the chosen target table for resources in OTPS (one table per
snapshot) mode, NULL for other resources.

message: Additional information.

Exceptions

IllegalArgumentException: If the path is malformed or the type is illegal.

IllegalStateException: If the resource type does not support being cached.

IllegalStateException: If the resource is not configured for caching.
 TIBCO® Data Virtualization

298 | Procedures Reference
IllegalStateException: If the data source used by the resource for caching is not
properly configured.

NotFoundException: If the resource does not exist.

SecurityException: If the user does not have READ access on all items in the path
other than the last one.

SecurityException: If the user does not have WRITE access to the last item in path.

GetResourceSet

Retrieve the list of resources included in a specified resource set.

Location

/lib/resource/ (procedure)
/services/databases/system/deployment/ (published resource)

Inputs

resourceSetDefinition: Definition of the resource to analyze.

resourceSetIndex: The index of the resources included in the specified resource
set during the last deployment session.

principalMapping: The principal mapping containing the principals to be selected
in the source site and mapped to target site principals.

preview (optional; default is false): True if this procedure should return only the
changes (resourceSetIndexDelta) since the last deployment; otherwise false. If
resourceSetIndex is NULL, all resources within the specified resource set are
listed as CREATED.

Outputs

createdResourceArchive: The archive containing the resources created since the
last deployment, if one exists, otherwise all resources, that are included in the
specified resource set. NULL if preview input argument is set to true.

updatedResourceArchive: The archive containing the resources updated since the
last deployment, if one exists, that are included in the specified resource set.
NULL if preview input argument is set to true.

resourceSetIndexDelta: The set of resources in the specified resource set that were
CREATED, UPDATED, RELOCATED or DELETED since the last deployment
session, based on the resourceSetIndex provided.
TIBCO® Data Virtualization

Procedures Reference |299
Exceptions

IllegalArgumentException: If the specified resource set definition is invalid.

HasClaim

Returns a boolean value to indicate if a specific Claim provided exists or not in the
bearer token. The built-in procedure is also discussed in the TDV Administration
Guide chapter OAuth Administration.

Location

/lib/users

Input

The claim name that is carried on the bearer token sent by the Client Application.

Output

Returns TRUE if the claim name exists in the token and FALSE if it does not.

ListAttributes

Retrieve the resources and attributes for a specified resource set on a given site.

Location

/lib/resource/ (procedure)
/services/databases/system/deployment/ (published resource)

Inputs

siteName: Location of the resource.

kind: The content type–RESOURCE_SET_REFERENCE or
RESOURCE_SET_DEFINITION.

resourceSet: Resource set name or set definition. If this is NULL, the procedure
lists both names and definitions.

Outputs

attributeList: A cursor whose rows encode the attributes of the data sources
included in the specified resource set:
 TIBCO® Data Virtualization

300 | Procedures Reference
• resourcePath: Path to the resource.

• resourceType Type of resource.

• attributeName: Name of attribute

• attributeType: Type of attribute.

• attributeValue: Value of the attribute, serialized as a JSON value.

• isEndpoint: True if the attribute value is a physical property of a data source;
false if it is a logical property of a data source as a TDV metadata artifact.

Exceptions

IllegalArgumentException: If the specified resource set definition is invalid.

ListPrincipals

Retrieve the list of principals included in the specified resource set.

Location

/lib/users/ (procedure)
/services/databases/system/deployment/ (published resource)

Inputs

siteName: The site name.

kind: The content type–RESOURCE_SET_REFERENCE or
RESOURCE_SET_DEFINITION.

resourceSet: Resource set name or set definition. If this is NULL, the procedure
lists both names and definitions.

Outputs

principalList: A cursor whose rows encode the principals included in the
specified resource set:

• domain: The domain name.

• name: The resource type.

• isGroup: True if the member is a group.
TIBCO® Data Virtualization

Procedures Reference |301
Exceptions

IllegalArgumentException: If the specified resource set definition is invalid.

ListResources

Retrieve the list of resources included in the specified resource set.

The fourth through seventh inputs (highlighted in bold) support paged, random
resource access. When it is employed by the Deployment Manager UI client, it
alleviates the performance issues related to large resource sets.

Location

/lib/resource/ (procedure)
/services/databases/system/deployment/ (published resource)

Inputs

siteName: The site name.

kind: The content type–RESOURCE_SET_REFERENCE or
RESOURCE_SET_DEFINITION.

resourceSet: Resource set name or set definition. If this is NULL, the procedure
lists all resources.

searchPath: Applicable only when resourceSetDefinition contains a tree root
which is set to “/”; otherwise ignored. If set and effective, searchType must also
be set and searchLevel must be non-zero. When searchPath is set, the matched
resource is not included in the result.

searchType: Applicable only when resourceSetDefinition contains a tree root
which is set to “/”; otherwise ignored. Accepts the set of resource type values
accepted by the Web Services operations (“Admin API calls”)–for example,
CATALOG_CONTAINER, SCHEMA_CONTAINER. If set and effective,
searchLevel must also be set.

searchSubtype: Applicable only when resourceSetDefinition contains a tree root
which is set to “/”; otherwise ignored. Accepts the set of resource subtype values
accepted by the Web Services operations (“Admin API calls”)–for example,
CATALOG_CONTAINER, SCHEMA_CONTAINER.

searchLevel: 0 denotes the resources matching the search criteria. A negative
value denotes unlimited depth. A positive value denotes the maximum depth,
relative to the matched resources, at which descendent resources are to be
included in the result.
 TIBCO® Data Virtualization

302 | Procedures Reference
Outputs

resourceList: A cursor whose rows encode the resources included in the specified
resource set:

• resourcePath: The resource path.

• resourceType: The resource type.

• isNonRelocatableOnTarget: True if the resource does not belong to the core
resource set and is a (direct or indirect) dependency of a resource in the core
resource set.

• owner: The resource owner.

• createTime: Time the resource was created.

• modifyTime: Time the resource was last modified.

• modifyUser: The user who last modified the resource.

• resourceId: The resource id.

• parentId: The parent resource id.

• depthLevel: The depth level of the resource within the resource tree.

Exceptions

IllegalArgumentException: If the specified resource set definition is invalid.

LoadResourceCacheStatus

Load the status for a resource cache. Also check for any data that is not accessible
in the cache, and clear it.

This built-in procedure is discussed in the “TDV Caching” section of the TDV
User Guide.

Location

/lib/resource/

Inputs

path: The path to the resource.

type: The type of the resource.
TIBCO® Data Virtualization

Procedures Reference |303
Outputs

N/A

Exceptions

IllegalArgumentException: If the path is malformed or the type is illegal.

IllegalStateException: If the resource type does not support being cached.

IllegalStateException: If the resource is not configured for caching.

NotFoundException: If the resource does not exist.

SecurityException: If the user does not have READ access on all items in the path
other than the last one.

SecurityException: If the user does not have WRITE access to the last item in path.

Log

Write the text you provide to the log file, with severity level INFO.

Location

/lib/debug/

Syntax
log (IN textToLog VARCHAR (4096))

Input

textToLog: The text to write to the log.

Outputs

N/A

Exceptions

N/A

Example
PROCEDURE proc1()
 BEGIN
 CALL Log('Hello');
 CALL Log('Hello World');
 TIBCO® Data Virtualization

304 | Procedures Reference
 END

LogError

Write the text you provide to the log file, with severity level ERROR.

Location

/lib/debug/

Syntax
logError (IN textToLog VARCHAR (4096))

Input

textToLog: The text to write to the log.

Outputs

N/A

Exceptions

N/A

Example
PROCEDURE proc2()
 BEGIN
 CALL logError('There is an error.');
 END

LogMessageToFile

Write the contents of a message to a file at a specified path.

Location

/lib/services/

Inputs

element: An XML document or element.
TIBCO® Data Virtualization

Procedures Reference |305
filePath: The path of the file to write log messages to. The path is relative to the
log directory of the server.

fileMode: OVERWRITE or APPEND. OVERWRITE indicates that the message
should overwrite the current contents of the file. APPEND indicates that the
message should be appended to the end of the file.

header: If present, this value is written to the file immediately before the message
contents. It may be NULL.

footer: If present, this value is written to the file immediately after the message
contents. It may be NULL.

prettyPrint: If true, the message is indented to make it easier to read.

Output

element: The modified XML document or element.

Exceptions

IllegalArgumentException: If any of the arguments are invalid.

ServerException: If an error occurs while writing to the file.

MoveResource

Move the specified resource into a folder using a new name.

Note: This procedure is different from the web services operation of the same
name, which is in the resource tree under
/services/webservices/system/admin/resource/operations/.

Location

/lib/resource/

Inputs

path: The path to the resource to move.

type: The type of the source resource to move.

newPath: The path of the target container to move the resource into.

newName: The new name to call the moved resource.
 TIBCO® Data Virtualization

306 | Procedures Reference
overwrite: If a resource exists in the target container with the same name and type
as the target resource, and overwrite is TRUE, the resource within the target
container is overwritten. If overwrite is FALSE, DuplicateNameException is
generated and the resource is not moved.

Outputs

N/A

Exceptions

DuplicateNameException: If a resource in the target container exists with the
same name and type as the source, and overwrite is FALSE.

IllegalArgumentException: If any of the given paths or types are malformed.

IllegalStateException: If the source resource is not allowed to be moved.
Resources in /services/databases/system, /services/webservices/system, or
within any physical data source may not be moved.

NotAllowedException: If the source resource is not allowed to exist within the
target container. Resources cannot be moved into a physical data source. A LINK
resource can only be moved into a RELATIONAL_DATA_SOURCE, SCHEMA,
or PORT under /services. Non-LINK resources cannot be moved into any location
under /services.

NotFoundException: If the source resource or any portion of the path to the target
container does not exist.

SecurityException: If the user does not have READ access on all items in the
source path.

SecurityException: If the user does not have READ access on the items in the
newPath other than the last item.

SecurityException: If the user does not have WRITE access to the last item in
newPath.

SecurityException: If the user does not have WRITE access to a resource that is to
be overwritten.

Pause

Specify a sleep time, in milliseconds, for script execution. A value of less than zero
is treated as zero.
TIBCO® Data Virtualization

Procedures Reference |307
Location

/lib/util/

Syntax
pause (IN timeInMilliSeconds INTEGER)

Input

timeInMilliSeconds: The number of milliseconds to pause.

Outputs

N/A

Exceptions

N/A

Example
PROCEDURE proc6()
 BEGIN
 CALL log('pausing for 3 secs');
 CALL pause(3000);
 CALL log('pause completed');
 END

PreviewResourceSet

Retrieve the list of resource changes since the last deployment of the specified
resource set, by the specified deployment plan.

Location

/lib/resource/ (procedure)
/services/databases/system/deployment/ (published resource)

Inputs

resourceSet: A resource set name.

deploymentPlan: The path to a deployment plan using the specified resource set.
 TIBCO® Data Virtualization

308 | Procedures Reference
Output

resourceSetIndexDelta: The resources in the specified resource set that were
CREATED, UPDATED, RELOCATED or DELETED since the last deployment
session of the specified deployment plan.

Exceptions

IllegalArgumentException: If the specified resource set or deployment plan is
invalid.

Print

Write debug messages to the console when running from Studio.

These print messages are available for the specific script being run, and are not
carried across scripts. The print messages are displayed in Studio, as shown in the
procedure that follows the syntax and example. If you turn on tracing, the
message also appears in the log file.

Location

/lib/debug/

Syntax
print (IN textToPrint VARCHAR (4096))

Input

textToPrint: The text to write to the debug console.

Outputs

N/A

Exceptions

N/A

Example
PROCEDURE proc3()
 BEGIN
 CALL print('Test printing built-in.');
 END
TIBCO® Data Virtualization

Procedures Reference |309
To verify a print message that you have defined

1. Right-click the examples node in the resource tree and select New SQL Script.

2. Type a name for the script and click OK.

3. On the SQL Script panel, type the “CALL print...” line shown in the example
above.

4. Click the Execute button.

5. Verify that the text you specified appears on the Console panel.

ProcessSecurityHeader

Process a WS Security SOAP header in a SOAP envelope. If the envelope contains
a WS Security header with the specified actor, it is processed. All security
elements in the header are evaluated. If any header security elements indicate that
the envelope contains signed elements, the signatures of those elements is
verified. If any header security elements indicate that the envelope contains
encrypted elements, those elements are decrypted.

Location

/lib/services/

Inputs

envelope: A SOAP envelope, which may include a WS Security header.

actor: Which WS Security header to process. It may be NULL.

keyStore: A serialized Java key store containing certificates used to verify
signatures and decrypt elements. It may be NULL.

keyStoreType: The type of key store. It must be JKS or PKCS12. May be NULL
only if keyStore is NULL.

keyStorePassword: The password of the key store and of all private keys within it.
May be NULL.

Output

envelope: The SOAP envelope. Some elements may have been decrypted.

Exceptions

IllegalArgumentException: If any of the arguments are invalid.
 TIBCO® Data Virtualization

310 | Procedures Reference
SecurityException: If the security elements in the message are invalid or
unsupported.

SecurityException: If a signature could not be verified.

SecurityException: If an encrypted element could not be decrypted.

RefreshResourceCache

Refresh the cache for a table, procedure, or policy. Refreshes preexisting
procedure cache variants, or only the NULL variant (when acceptable) if no
others are present. This procedure launches an asynchronous process in the
server which runs in its own transaction.

This built-in procedure is discussed in the “TDV Caching” section of the TDV
User Guide.

Note: This procedure is different from the web services operation of the same
name, which is in the resource tree under
/services/webservices/system/admin/resource/operations/.

Location

/lib/resource/

Syntax
RefreshResourceCache "path" "type" [pollingInterval]

Inputs

path: The path to the resource, or the cache policy name.

type: The type of the resource (TABLE, PROCEDURE, or POLICY).

Outputs

• N/A

Example
/lib/resource/RefreshResourceCache
"/shared/examples/ds_orders/cache" "TABLE"

Exceptions

Exception: If any problems with connecting to or retrieving data from the data
source when refreshing.
TIBCO® Data Virtualization

Procedures Reference |311
IllegalArgumentException: If the path is malformed or an illegal type is provided.

IllegalStateException: If the cache is disabled.

NotAllowedException: If the resource type does not support caching. Only
SQL_TABLE resources support caching.

NotFoundException: If the resource or any portion of the path to the resource
does not exist.

SecurityException: If the user does not have READ access on all items in the path
other than the last one.

SecurityException: If the user does not have WRITE access to the last item in path.

RefreshResourceCacheSynchronously

Refresh the cache on a resource synchronously.

Location

/lib/resource/

Syntax
RefreshResourceCacheSynchronously "path" "type"

Inputs

path: The path to the resource, or the cache policy name, enclosed in
double-quotes.

type: The type of the resource (TABLE or POLICY), enclosed in double-quotes.

pollingInterval: An optional parameter denoting how frequently (timed in
milliseconds) to poll for the cache refresh outcome. The default value is 1 second.

Outputs

N/A

Exceptions

RuntimeException: If the cache refresh fails.

IllegalArgumentException: If the path is malformed or an illegal type is provided.

IllegalStateException: If the cache is disabled.
 TIBCO® Data Virtualization

312 | Procedures Reference
NotAllowedException: If the resource type does not support caching. Only
SQL_TABLE resources support caching.

NotFoundException: If the resource or any portion of the path to the resource
does not exist.

SecurityException: If the user does not have READ access on all items in the path
other than the last one.

SecurityException: If the user does not have WRITE access to the last item in path.

RefreshResourceStatistics

Refresh the statistics on a resource for use by the cost-based optimizer.

RELATIONAL_DATA_SOURCE, FILE_DATA_SOURCE, DATABASE_TABLE
and DELIMITED_FILE_TABLE are the only resources that support statistics.

Note: This procedure is different from the web services operation of the same
name, which is in the resource tree under
/services/webservices/system/admin/resource/operations/.

Location

/lib/resource/

Inputs

path: The path to the resource.

type: The type of the resource.

isBlocking: Indicates whether the call blocks until completion.

Outputs

N/A

Exceptions

IllegalArgumentException: If the path is malformed or an illegal type is provided.

IllegalStateException: If the statistics gathering is disabled.

NotAllowedException: If the resource type does not support statistics.
RELATIONAL_DATA_SOURCE, FILE_DATA_SOURCE, DATABASE_TABLE
and DELIMITED_FILE_TABLE are the only resources that support statistics.
TIBCO® Data Virtualization

Procedures Reference |313
NotFoundException: If the resource or any portion of the path to the resource
does not exist.

SecurityException: If the user does not have READ access on all items in path.

ReintrospectDataSource

Perform a reintrospection of the given data source. This is a non-blocking call that
returns before reintrospection is complete. To block until the reintrospection is
complete and also get the report, use GetDataSourceReintrospectReport,
page 289. To cancel reintrospection, use CancelDataSourceReintrospect, page 268.
If reintrospection is not complete before committing the transaction, the commit
blocks until reintrospection is complete.

Note: This procedure is different from the web services operation of the same
name, which is in the resource tree under
/services/webservices/system/admin/resource/operations/.

Location

/lib/resource/

Input

path: The path to the data source being reintrospected.

Output

reintrospectId: The reintrospection ID. This value be used in calls to
CancelDataSourceReintrospect or GetDataSourceReintrospectReport.

Exceptions

IllegalArgumentException: If the path is malformed.

NotFoundException: If a data source resource cannot be found at the given path.

SecurityException: If the user does not have READ access on all items in the path
other than the last one.

• SecurityException: If the user does not have WRITE access to the last item in
path.

RenameResource

Rename a resource.
 TIBCO® Data Virtualization

314 | Procedures Reference
Note: This procedure is different from the web services operation of the same
name, which is in the resource tree under
/services/webservices/system/admin/resource/operations/.

Location

/lib/resource/

Inputs

path: A source path of the resource to rename.

type: The type of the source resource to rename.

newName: The new name of the resource.

Outputs

N/A

Exceptions

DuplicateNameException: If a resource already exists with the new name and
that is the same type as the resource being renamed.

IllegalArgumentException: If the path is malformed or the type is illegal.

IllegalStateException: If the resource is not allowed to be renamed. Resources
within a physical data source, user home folders, the /shared folder,
/services/databases, and /services/webservices cannot be renamed.

NotFoundException: If the resource does not exist.

SecurityException: If the user does not have READ access on all items in the path
other than the last one.

SecurityException: If the user does not have WRITE access to the last item in path.

ResourceExists

Check to see if a resource exists.

Note: This procedure is different from the web services operation of the same
name, which is in the resource tree under
/services/webservices/system/admin/resource/operations/.
TIBCO® Data Virtualization

Procedures Reference |315
Location

/lib/resource/

Inputs

path: The path to the resource to check.

type: The type of the resource to check.

version: Reserved for future use. (Only accepts NULL.)

Output

exists: TRUE if the resource exists, otherwise FALSE.

Exceptions

IllegalArgumentException: If the path is malformed, if an illegal type is provided,
or if version is not NULL.

SecurityException: If the user does not have READ access on all items in path
other than the last one.

Search

This is a packaged query used to perform a free text search in the TDV metadata.
The search is performed across TDV resources such as datasources, tables,
procedures, folders, catalogs, schemas and flows. Details that are fetched as
search results include details about the resource - resource id, name, type, the
field type (name/annotation/column/parameter/definition), contents of the
matching field types, the parent name, id and path and the field type rank. Web
service operations are also searched as part of the procedure.

Location

/lib/resource/
 TIBCO® Data Virtualization

316 | Procedures Reference
Inputs

Name Datatype Null Description

query LONGVARC
HAR

Yes When the specified query is null or empty, no
results will be returned. Search text can be single
or multi-word. When multiple words are
specified, results contain records matching
any/all the words.

fieldTypeFilter LONGVARC
HAR

Yes When specified fieldTypeFilter is null or empty,
all field types are matched for. Field type filter
can be a single type filter or multiple
comma-separated allowable values. The allowed
values for this are "name", "annotation",
"column", "parameter" and "definition". This
input allows for search to be restricted to the
specified comma-separated list of field types.
Field type names are not case-sensitive.

resourceTypeFilt
er

LONGVARC
HAR

Yes When specified resourceTypeFilter is null or
empty, all resource types are matched for.
Resource type filter can be a single filter or
multiple comma-separated allowable values. The
allowed values for this are "datasource", "table",
"procedure" , "folder", "catalog", "schema" and
"flow". This input allows for search to be
restricted to the specified comma-separated list of
resource types. Resource type names are not
case-sensitive.

annotateResult BIT Yes Default value is 0. Allowed values are 0 and 1.
When set to 1, results are annotated with the
specified or default markers in "startMarker" and
"stopMarker".

startMarker VARCHAR Yes Used for annotating the start of the result. The
default value is "".

stopMarker VARCHAR Yes Used for annotating the end of the result. The
default value is "".
TIBCO® Data Virtualization

Procedures Reference |317
Outputs

The result output is a cursor. The rows encode resources matching the search
query under the specified conditions, having the following columns

resourceId : The id of the resource.

resourceName : The name of the resource.

resourceType : The resource type.

matchingFieldTypes : The types of the resource fields, delimited by the character
“\”, matching the search term. Example : name\column\definition

matchingFieldContents : The contents of the matching fields, within single quotes
and delimited by the character “\”, listed in the same order as the value of
matchingFieldTypes.

parentDatasource : The name of the parent data source of the matching resource.
Applicable only to resources that are contained within a data source.

reportDataFlows BIT Yes Default value is 0. Allowed values are 0 and 1.
When set to 1, resource_type in results will be
“Flow” if the specific folder/view/sql script
were created from WebUI as a flow. When null or
0, the matching folder/view/sql script though
created as flows from WebUI will show up as
their original resource types respectively.

nameRankWeigh
t

INTEGER Yes This parameter is used for designating rank
weight to "name" field type. When unspecified,
the rank weight for the "name" field type is
defaulted to 10.

annotationRank
Weight

INTEGER Yes This parameter is used for designating rank
weight to "column" and "parameter" field types.
When unspecified, the rank weight for the
"column" and "parameter" field types is defaulted
to 5.

definitionRankW
eight

INTEGER Yes This parameter is used for designating rank
weight to "definition" field type. When
unspecified, the rank weight for the "definition"
field type is defaulted to 2.

Name Datatype Null Description
 TIBCO® Data Virtualization

318 | Procedures Reference
parentDatasourceId : The id of the parent data source of the matching resource.
Applicable only to resources that are contained within a data source.

parentPath : The parent path of the matching resource.

rank : The search rank of the result. This is the sum of all field types ranks for the
matching resource.

SendEMail

Send an email message with the specified headers and content. It supports only
NULL for the from address.

Location

/lib/util/

Syntax
SendEmail (IN from VARCHAR (4096),
IN replyTo VARCHAR (4096),
IN to VARCHAR (4096),
IN cc VARCHAR (4096),
IN bcc VARCHAR (4096),
IN subject VARCHAR (4096),
IN contentType VARCHAR (4096),
IN content VARCHAR (4096))

Inputs

from: The address the message is from. NULL causes use of the server’s
configured from-address. Only NULL is supported.

replyTo: The address to place in the replyTo field of the message.

to: A comma-separated list of email addresses.

cc: A comma-separated list of email addresses.

bcc: A comma-separated list of email addresses.

subject: The message subject.

contentType: TEXT_PLAIN or TEXT_HTML.

content: The message body.

Outputs

N/A
TIBCO® Data Virtualization

Procedures Reference |319
Exceptions

IllegalArgumentException: If from is not NULL.

IllegalArgumentException: If any of the address lines are malformed.

IllegalArgumentException: If there is not at least one to-address.

IllegalArgumentException: If there is more than one address in replyTo.

IllegalArgumentException: If contentType is not TEXT_PLAIN or TEXT_HTML.

IllegalStateException: If the server’s from-address is not configured.

Example
PROCEDURE proc_SendEMail()
 BEGIN
 PATH /shared/sources/proceduresForDoc;
 CALL proc_GetProperty();
 CALL SendEMail(NULL, NULL, 'joe@smith.com',

NULL, NULL, 'hi', 'TEXT_PLAIN', NULL);
 END

SendMapMessage

Send a JMS map message based on a ROW type variable.

Locations

/lib/jms/

/lib/util/

Inputs

connectorName: Name of the JMS connector.

destinationName: JNDI name of the JMS queue or topic.

row: Message body keyed using the fields in the ROW type variable.

Outputs

N/A

Exceptions

N/A
 TIBCO® Data Virtualization

320 | Procedures Reference
SendResultsInEMail

Send an email message with the specified headers and content, and with the
results of the given view or procedure as attachments.

The option keywords are used to control behavior. If options is NULL, the default
is SUMMARY, CSV_ATTACH. The options are:

• CSV_ATTACH: Causes cursor result sets to be attached as CSV files.

• SEND_ERROR: Causes any errors from the executed procedure or table to be
sent instead of being reported as an exception.

• SKIP_IF_NO_RESULTS: Sends no email if there are zero results.

• SUMMARY: Appends a summary of the results to the message content.

Location

/lib/resource/

Inputs

from: The address the message is from. NULL causes use of the server’s
configured from-address. Only NULL is supported.

replyTo: The address to place in the replyTo field of the message.

to: A comma-separated list of email addresses.

cc: A comma-separated list of email addresses.

bcc: A comma-separated list of email addresses.

subject: The message subject.

contentType: This can be TEXT_PLAIN or TEXT_HTML.

content: The message body.

path: The path to a view or procedure to execute.

type: Either TABLE or PROCEDURE, as appropriate.

parameters: If executing a PROCEDURE with any parameters, this is a
comma-separated list of parameter values. Otherwise this should be NULL.

options: A comma-separated list of option keywords.

Outputs

N/A
TIBCO® Data Virtualization

Procedures Reference |321
Exceptions

IllegalArgumentException: If from is not NULL.

IllegalArgumentException: If any of the address lines are manformed.

IllegalArgumentException: If to, cc, and bcc are all NULL.

IllegalArgumentException: If there is more than one address in replyTo.

IllegalArgumentException: If contentType is not TEXT_PLAIN or TEXT_HTML.

IllegalArgumentException: If type is not TABLE or PROCEDURE.

IllegalArgumentException: If path is malformed.

IllegalArgumentException: If parameters does not contain the right number or
type of parameter values.

IllegalArgumentException: If options contains any unknown options.

IllegalStateException: If the server’s from-address is not configured.

NotFoundException: If the specified view or procedure does not exist.

SecurityException: If the user does not have READ permission on all items in
path other than the last one.

SecurityException: If the user does not have EXECUTE or SELECT permission on
the last item in the list as appropriate.

SendTextMessage

Send a JMS text message.

Locations

/lib/jms/

/lib/util/

Inputs

connectorName: Name of the JMS connector.

destinationName: JNDI name of the JMS queue or topic.

text: Message body text.

Outputs

N/A
 TIBCO® Data Virtualization

322 | Procedures Reference
Exceptions

N/A

SetAlternatePrincipal

Establish an alternate identity within the current session, preserving the original
identity for afterwards. This allows upstream servers to pool connections to TDV.

Location

/lib/util/

Inputs

user: The new user’s name.

domain: The user’s domain.

password: The user’s password.

Outputs

N/A

Exceptions

SecurityException: If the identity specified is not known.

SecurityException: If the password is not valid for the user.

SetAlternateSecurityProperty

Set an alternate security property value to the identity within the current session.
This is used to allow user passing security property to data source.

Location

/lib/users/

Inputs:

name: the security property name

value: the security property value
TIBCO® Data Virtualization

Procedures Reference |323
Outputs:

N/A

SetDataSourceCredentials

Set a username and password to use with pass-through authentication and a
specific data source.

This procedure provides access to the facility described in the “Multiple
Credentials for JDBC Connection” section of the TDV User Guide.

This procedure can be used in place of the JDBC facility when the incoming
connection is received from a source other than JDBC (for example, Web Service
or ODBC), or when the JDBC client cannot be modified.

The JDBC facility allows a NULL value to be specified for dbPath. This built-in
procedure does not support a NULL dbPath, but an empty string for dbPath can
be used to access the same behavior.

If the client does any sort of connection pooling or connection reuse, a subsequent
user may have access to data accessible from these credentials. Always discard
the connection or call either the clearAllDataSourceCredentials JDBC method or
ClearAllDataSourceCredentials, page 270 before returning the connection to a
connection pool.

Location

/lib/util/

Inputs

dbPath: The path identifying the data source to which these credentials pertain. If
an empty string is provided, it is used as the default pass-through authentication
credential.

username: The username to use when attempting to connect to a pass-through
authentication data source.

password: The password to use when attempting to connect to a pass-through
authentication data source.

Outputs

N/A
 TIBCO® Data Virtualization

324 | Procedures Reference
Exceptions

IllegalArgumentException: If any variable is set to an illegal value.

SetEnvironment

Set an environment variable to a value.

Location

/lib/util/

Syntax
setEnvironment (IN variableName VARCHAR (40),
IN propValue VARCHAR (2048))

Inputs

variableName: The name of a variable. Variable names are not case-sensitive. For
example, both sample and SAMPLE are the same variable.

value: The new value for the variable.

Input Variable Names and Values

Note: Environment variables starting with System. are system-defined and may
have restricted sets of legal values.

All built-in variable names are available on the Constants tab of the
/lib/util/System SQL definition set. The variable names and their legal values
are:

• System.CASE_SENSITIVE_IN_COMPARISONS: TRUE or FALSE. Reflects
the case sensitivity being used in string comparisons for SQL and SQL script
operations in this scope.

• System.IGNORE_TRAILING_SPACES_IN_COMPARISONS: TRUE or
FALSE. Reflects whether or not trailing spaces are ignored in string
comparisons for SQL and SQL script operations in this scope.

• System.NUM_ROWS_AFFECTED: A numeric value.

• System.TRIGGER_EVENT_NAME: The trigger name if the current request is
the result of a trigger. NULL otherwise.

• System.TRIGGER_EVENT_TYPE: The trigger type if the current request is the
result of a trigger. NULL otherwise.
TIBCO® Data Virtualization

Procedures Reference |325
• System.TRIGGER_EVENT_VALUE: The trigger value if the current request is
the result of a trigger. NULL otherwise.

• System.TRIGGER_PATH: A path if the current request is the result of a
trigger. NULL otherwise.

For backward compatibility, the following are also accessible without the System.
prefix:

• CASE_SENSITIVE_IN_COMPARISONS

• IGNORE_TRAILING_SPACES_IN_COMPARISONS

• NUM_ROWS_AFFECTED

• TRIGGER_EVENT_NAME

• TRIGGER_EVENT_TYPE

• TRIGGER_EVENT_VALUE

• TRIGGER_PATH

Outputs

N/A

Exceptions

IllegalArgumentException: If an unsupported variable name is requested.

IllegalArgumentException: If an illegal value is set to a variable.

Example
PROCEDURE proc7()
 BEGIN
 DECLARE x VARCHAR(4096);
 CALL getEnvironment('NUM_ROWS_AFFECTED', x);
 CALL log(x);
 SET x = '100';
 CALL setEnvironment('NUM_ROWS_AFFECTED', x);
 CALL getEnvironment('NUM_ROWS_AFFECTED', x);
 CALL log(x);
 END
 TIBCO® Data Virtualization

326 | Procedures Reference
SetEnvironmentFromNodeValue

Evaluate an XPath expression against the envelope, and store the result in the
specified environment variable. The result of the XPath expression is interpreted
as a single string.

The namespacePrefixes and namespaceURIs are used to resolve prefixes to
namespaces in the XPath expression. Each item in namespacePrefixes must have a
corresponding item in namespaceURIs. The empty string specifies the default
namespace.

Location

/lib/services/

Inputs

envelope: A SOAP envelope, which may include a WS Security header.

xpath: An XPath expression of the value.

namespacePrefixes: An array of namespace prefixes used in the XPath expression.
May be NULL.

namespaceURIs: An array of namespace URIs used in the XPath expression. May
be NULL.

variableName: The name of an environment variable. Variable names are not
case- sensitive. For example, both sample and SAMPLE are the same variable.

Output

envelope: The SOAP envelope. Some elements may have been decrypted.

Exception

IllegalArgumentException: If any of the arguments are invalid.

SetMessageProperties

Set JMS headers or properties for the subsequent JMS messages to be sent using
SendTextMessage, page 321.

Ordinarily this procedure is preferable to SetMessageProperty, page 327, which
sets many property values as strings.
TIBCO® Data Virtualization

Procedures Reference |327
Note: You can use this procedure to set header values like JMSExpiration, but the
values are overwritten by the producer using its own defaults. TDV cannot
control this messaging library behavior.

Locations

/lib/jms/

/lib/util/

Input

properties: A ROW type where the type name corresponds to the property name.
If the name matches a standard JMS header, a JMS header is created.

Outputs

N/A

Exceptions

N/A

SetMessageProperty

Set a JMS header or property for the subsequent JMS messages to be sent using
SendTextMessage, page 321.

Note: To make sure properties you set have correct data types, it is better to use
SetMessageProperties, page 326.

Locations

/lib/jms/

/lib/util/

Inputs

name: Property name. If the name corresponds to a standard JMS header, a JMS
header is created.

value: Property value as string. If the value is NULL, the named property is
cleared.
 TIBCO® Data Virtualization

328 | Procedures Reference
Outputs

N/A

Exceptions

N/A

SetNodeValueFromEnvironment

Set an element or attribute value from an environment variable.

The XPath expression is used to select a node from the envelope. The node value
is then set to the value of the specified environment variable. The
namespacePrefixes and namespaceURIs are used to resolve prefixes to
namespaces in the XPath expression.

Each item in namespacePrefixes must have a corresponding item in
namespaceURIs. The empty string is used to specify the default namespace.

Location

/lib/services/

Inputs

envelope: A SOAP envelope, which may include a WS Security header.

xpath: An XPath expression that evaluates to an element.

namespacePrefixes: An array of namespace prefixes used in the XPath expression.
May be NULL.

namespaceURIs: An array of namespace URIs used in the XPath expression. May
be NULL.

variableName: The name of an environment variable. Variable names are not
case-sensitive. For example, both sample and SAMPLE are the same variable.

attributeName: If NULL, the element value is set. If not NULL, the element
attribute value is set.

Output

envelope: The SOAP envelope. Some elements may have been decrypted.
TIBCO® Data Virtualization

Procedures Reference |329
Exception

IllegalArgumentException: If any of the arguments are invalid.

SignElement

Sign an element in the specified SOAP envelope using a private key.

Location

/lib/services/

Inputs

envelope: A SOAP envelope. It may not be NULL.

actor: Determines which WS Security header to process. It may be NULL.

mustUnderstand: Indicate whether or not the receiver must understand this
header. It may be NULL. If NULL, mustUnderstand defaults to TRUE.

elementName: The name of the element in the envelope to sign. It may be NULL.
If NULL, elementName defaults to
{http://schemas.xmlsoap.org/soap/envelope/}Body.

certificateAlias: The alias of a private key in the key store to use to sign the
element.

keyStore: A serialized Java key store containing the private key used to sign the
element. It may be NULL.

keyStoreType: The type of key store. It must be JKS or PKCS12. It may not be
NULL.

keyStorePassword: The password of the key store and of all private keys within it.
It may be NULL or empty if there is no password.

Outputs

envelope: The SOAP envelope containing the signed element and generated WS
Security header elements.

Exceptions

IllegalArgumentException: If any of the arguments are invalid.

SecurityException: If the element could not be signed.
 TIBCO® Data Virtualization

330 | Procedures Reference
SqlPerf

Run a SQL performance test. Each worker thread runs in a tight loop for the
specified amount of time. With each iteration, a new transaction is created, the
specified query is executed, and results are retrieved into TDV for evaluation and
then discarded.

Location

/lib/resource/

Inputs

sql: Any valid SELECT statement in TDV SQL.

threads: Number of worker threads to use.

duration: Time in seconds.

Outputs

numExecutions: Total number of times the query was executed.

queriesPerSecond: Throughput.

rowsPerQuery: Number or rows the query returns.

queryTimeMillis: Average time to execute the query, in milliseconds.

queryTimeMillisMin: Minimum time in milliseconds to execute the query and
retrieve results.

queryTimeMillisMax: Maximum time in milliseconds to execute the query and
retrieve results.

SyncDomain

Synchronize the local external domain with the specified external domain server.
Only domains other than COMPOSITE/DYNAMIC domains can be
synchronized.

Location

/lib/util/

Inputs

domainName: Local domain to synchronize with the external domain server.
TIBCO® Data Virtualization

Procedures Reference |331
Outputs

N/A

Exceptions

NotFoundException: If the local domain does not exist.

SecurityException: If the procedure fails to synchronize local domain with the
specified external domain server.

SecurityException: If the user does not have ACCESS_TOOLS and either
MODIFY_ALL_USERS or MODIFY_ALL_STATUS rights.

TestAllDataSourceConnections

Test all data sources to see if they are operational.

Location

/lib/resource/

Inputs

N/A

Outputs

status: If SUCCESS, all enabled data sources are operational. If FAIL, at least one
test failed. These values are available on the Constants tab of the
/lib/util/System SQL definition set.

messages: A list of the messages generated during the test. Messages may be
present in both SUCCESS and FAIL conditions. Messages are separated by
newline characters.

Exceptions

SecurityException: If the user is not an administrator.

TestDataSourceConnection

Test to see if a data source’s connection is operational.
 TIBCO® Data Virtualization

332 | Procedures Reference
Note: This procedure is different from the web services operation of the same
name, which is in the resource tree under
/services/webservices/system/admin/resource/operations/.

Location

/lib/resource/

Input

path: The path to the data source to be tested.

Outputs

status: If SUCCESS, the data source is operational. If FAIL, the test failed. These
values are available on the Constants tab of the /lib/util/System SQL definition
set.

messages: A list of the messages generated during the test. Messages may be
present both in SUCCESS and FAIL conditions. Messages are separated by
newline characters.

Exceptions

IllegalArgumentException: If path is malformed.

NotFoundException: If the data source does not exist.

SecurityException: If the user does not have READ access on all items in path.

TestUserIdentity

Allow a SQL script to determine if the current identity matches the one specified.

Location

/lib/util/

Inputs

type: USER or GROUP.

name: The user or group’s name.

domain: The user or group’s domain.
TIBCO® Data Virtualization

Procedures Reference |333
Output

result: TRUE if the current user or group corresponds to the inputs, otherwise
FALSE.

Exceptions

N/A

UpdateResourceCacheEnabled

Update the enabled state of a resource cache.

This built-in procedure is discussed in the “TDV Caching” section of the TDV
User Guide.

Location

/lib/resource/

Inputs

path: The path to the resource.

type: The type of the resource.

enabled: If TRUE, the resource cache is enabled. If FALSE, the resource cache is
disabled.

Outputs

N/A

Exceptions

IllegalArgumentException: If the path is malformed or the type is illegal.

IllegalStateException: If the resource type does not support being cached.

IllegalStateException: If the resource is not configured for caching.

NotFoundException: If the resource does not exist.

SecurityException: If the user does not have READ access on all items in the path
other than the last one.

SecurityException: If the user does not have WRITE access to the last item in path.
 TIBCO® Data Virtualization

334 | Procedures Reference
UpdateResourceCacheKeyStatus

Update the cache key for a specified resource of type TABLE, or of type
PROCEDURE with zero parameters. Also see CreateResourceCacheKey, page 276
and GetResourceCacheStatus, page 297. The cache key identifies a snapshot of
values for a query. The cache key and corresponding values are stored in the
cache storage table.

The user may wish to create a cache key to assist with the manual insertion of
data into the cache storage table. This procedure provides a switch to manually
set the status to TRUE after inserting the data, to let the cache system know when
the new snapshot is ready for use.

Use the message input to publish a note to the cache refresh status. All inputs are
required, although an empty string may be entered if no message is desired.

This built-in procedure is discussed in the “TDV Caching” section of the TDV
User Guide.

Location

/lib/resource/

Inputs

path: The path to the resource.

type: The type of the resource (TABLE or PROCEDURE).

cacheKey: The cache key from CreateResourceCacheKey.

status: Whether cache refresh succeeded (TRUE) or failed (FALSE).

startTime: Timestamp when the cache refresh starts.

message: If refresh failed, explains what was wrong.

Outputs

N/A

Exceptions

IllegalArgumentException: If the path is malformed or the type is illegal.

IllegalStateException: If the resource type does not support being cached.

IllegalStateException: If the resource is not configured for caching.

IllegalStateException: If the data source used by the resource for caching is not
properly configured.
TIBCO® Data Virtualization

Procedures Reference |335
NotFoundException: If the resource does not exist.

SecurityException: If the user does not have READ access on all items in the path
other than the last one.

SecurityException: If the user does not have WRITE access to the last item in path.

UpdateResourceEnabled

Update the enabled state of a DATA_SOURCE resource.

Note: This procedure is different from the web services operation of the same
name, which is in the resource tree under
/services/webservices/system/admin/resource/operations/.

Location

/lib/resource/

Inputs

path: The path to the DATA_SOURCE resource.

type: The type of the resource (DATA_SOURCE).

enabled: If TRUE, enables the resource; if FALSE, disables the resource.

Outputs

N/A

Exceptions

IllegalArgumentException: If the path is malformed or the type is illegal.

IllegalStateException: If the resource type is not DATA_SOURCE.

NotFoundException: If the resource does not exist.

SecurityException: If the user does not have READ access on all items in the path
other than the last one.

SecurityException: If the user does not have WRITE access to the last item in path.
 TIBCO® Data Virtualization

336 | SQL Definition Sets
SQL Definition Sets

Groups of TDV built-in procedures have SQL definition sets associated with
them. These definition sets define data types, exceptions, and constants for use in
the procedures.

Note: For a discussion of definition sets, see the “Definition Sets” chapter of the
TDV User Guide.

The SQL definition sets for TDV built-in procedures are these:

• extendedSql SQL Definition Set, page 336

• Jms SQL Definition Set, page 336

• ResourceDefs SQL Definition Set, page 337

• sql SQL Definition Set, page 340

• System SQL Definition Set, page 342

• UserDefs SQL Definition Set, page 346

extendedSql SQL Definition Set

The extendedSql SQL definition set defines data types for extended SQL (ESQL).

Location

/lib/types/extendedSql

Types Tab

The Types tab contains definitions for Extended SQL procedure data types.

Jms SQL Definition Set

The Jms SQL definition set defines one data type for use with JMS procedures.

Data Type Name Base Type

CURSOR CURSOR

ROW ROW

XML (anonymous)
TIBCO® Data Virtualization

SQL Definition Sets |337
Location

/lib/jms/Jms

Types Tab

The Types tab contains the definition for the JMS procedure data type.

ResourceDefs SQL Definition Set

The ResourceDefs SQL definition set defines data types and constants for use
with resource procedures.

Location

/lib/resource/ResourceDefs

Types Tab

The Types tab contains definitions for resource procedure data types.

Data Type Name Base Type

MapValue ROW

Data Type Name Base Type

CopyMode VARCHAR(255)

ParameterValues VARCHAR(4096)

ReintrospectID VARCHAR(255)

ReintrospectReport VARCHAR(255)

ResourceName VARCHAR(32767)

ResourcePath VARCHAR(4096)

ResourceType VARCHAR(40)

ResourceVersion VARCHAR(255)
 TIBCO® Data Virtualization

338 | SQL Definition Sets
Constants Tab

The Constants tab contains definitions of resource procedure constants.

Constant Name Type

ALTER NAME IF EXISTS VARCHAR(255)

CSV ATTACH VARCHAR(255)

FAIL IF EXISTS VARCHAR(255)

OVERWRITE MERGE IF EXISTS VARCHAR(40)

OVERWRITE REPLACE IF EXISTS VARCHAR(40)

RESOURCE SUBTYPE BASIC TRANSFORM
PROCEDURE

VARCHAR(40)

RESOURCE SUBTYPE CATALOG VARCHAR(40)

RESOURCE SUBTYPE COMPOSITE WEB SERVICE VARCHAR(40)

RESOURCE SUBTYPE DATABASE PROCEDURE VARCHAR(40)

RESOURCE SUBTYPE DATABASE TABLE VARCHAR(40)

RESOURCE SUBTYPE DELIMITED FILE VARCHAR(40)

RESOURCE SUBTYPE DIRECTORY VARCHAR(40)

RESOURCE SUBTYPE EXCEL NON ODBC POI
DATA SOURCE

VARCHAR(40)

RESOURCE SUBTYPE EXTERNAL SQL PROCEDURE VARCHAR(40)

RESOURCE SUBTYPE FILE DATA SOURCE VARCHAR(40)

RESOURCE SUBTYPE FOLDER VARCHAR(40)

RESOURCE SUBTYPE JAVA PROCEDURE VARCHAR(40)

RESOURCE SUBTYPE NATIVE FUNCTION VARCHAR(40)

RESOURCE SUBTYPE NONE VARCHAR(40)

RESOURCE SUBTYPE OPERATION VARCHAR(40)
TIBCO® Data Virtualization

SQL Definition Sets |339
RESOURCE SUBTYPE PORT VARCHAR(40)

RESOURCE SUBTYPE RELATIONAL DATA
SOURCE

VARCHAR(40)

RESOURCE SUBTYPE REST DATA SOURCE VARCHAR(40)

RESOURCE SUBTYPE SCHEMA VARCHAR(40)

RESOURCE SUBTYPE SERVICE VARCHAR(40)

RESOURCE SUBTYPE SQL SCRIPT PROCEDURE VARCHAR(40)

RESOURCE SUBTYPE SQL TABLE VARCHAR(40)

RESOURCE SUBTYPE STREAM TRANSFORM
PROCEDURE

VARCHAR(40)

RESOURCE SUBTYPE TRANSFORM PROCEDURE VARCHAR(40)

RESOURCE SUBTYPE WSDL DATA SOURCE VARCHAR(40)

RESOURCE SUBTYPE XML FILE VARCHAR(40)

RESOURCE SUBTYPE XML FILE DATA SOURCE VARCHAR(40)

RESOURCE SUBTYPE XML HTTP DATA SOURCE VARCHAR(40)

RESOURCE SUBTYPE XQUERY TRANSFORM
PROCEDURE

VARCHAR(40)

RESOURCE SUBTYPE XSLT TRANSFORM
PROCEDURE

VARCHAR(40)

RESOURCE TYPE CONTAINER VARCHAR(40)

RESOURCE TYPE DATA SOURCE VARCHAR(40)

RESOURCE TYPE DEFINITION SET VARCHAR(40)

RESOURCE TYPE LINK VARCHAR(40)

RESOURCE TYPE PROCEDURE VARCHAR(40)

RESOURCE TYPE TABLE VARCHAR(40)

Constant Name Type
 TIBCO® Data Virtualization

340 | SQL Definition Sets
sql SQL Definition Set

The sql SQL definition set defines data types and constants for use with SQL
procedures.

Location

/lib/types/sql

Types Tab

The Types tab contains definitions for SQL procedure data types.

RESOURCE TYPE TREE VARCHAR(40)

RESOURCE TYPE TRIGGER VARCHAR(40)

SEND ERROR VARCHAR(4096)

SKIP IF NO RESULTS VARCHAR(4096)

SUMMARY VARCHAR(4096)

Constant Name Type

Data Type Name Base Type

BIGINT BIGINT

BINARY BINARY(1024)

BIT BIT

BLOB BLOB

BOOLEAN BOOLEAN

CHAR CHAR(255)

CLOB CLOB

DATE DATE

DECIMAL DECIMAL(32,2)

DOUBLE DOUBLE
TIBCO® Data Virtualization

SQL Definition Sets |341
FLOAT FLOAT

INTEGER INTEGER

INTERVAL DAY INTERVAL DAY

INTERVAL DAY TO HOUR INTERVAL DAY TO HOUR

INTERVAL DAY TO MINUTE INTERVAL DAY TO MINUTE

INTERVAL DAY TO SECOND INTERVAL DAY TO SECOND

INTERVAL HOUR INTERVAL HOUR

INTERVAL HOUR TO MINUTE INTERVAL HOUR TO MINUTE

INTERVAL HOUR TO SECOND INTERVAL HOUR TO SECOND

INTERVAL MINUTE INTERVAL MINUTE

INTERVAL MINUTE TO SECOND INTERVAL MINUTE TO SECOND

INTERVAL MONTH INTERVAL MONTH

INTERVAL SECOND INTERVAL SECOND

INTERVAL YEAR INTERVAL YEAR

INTERVAL YEAR TO MONTH INTERVAL YEAR TO MONTH

LONGVARBINARY VARBINARY(1024)

LONGVARCHAR VARCHAR(2147483647)

NUMERIC NUMERIC(32,0)

REAL FLOAT

SMALLINT SMALLINT

TIME TIME

TIMESTAMP TIMESTAMP

TINYINT TINYINT

Data Type Name Base Type
 TIBCO® Data Virtualization

342 | SQL Definition Sets
Constants Tab

The Constants tab contains definitions for SQL procedure constants.

System SQL Definition Set

The System SQL definition set defines data types, exceptions, and constants for
use with system utility procedures.

Location

/lib/util/System

Types Tab

The Types tab contains definitions for system utility data types.

VARBINARY VARBINARY(1024)

VARCHAR VARCHAR(255)

Constant Name Type Value

BOOLEAN FALSE BOOLEAN false

BOOLEAN TRUE BOOLEAN true

Data Type Name Base Type

Data Type Name Base Type

Content VARCHAR(65535)

EMailAddress VARCHAR(1024)

MapValue ROW

MessageValue VARCHAR(64000)

OperationStatus VARCHAR(255)

PropertyName VARCHAR(255)

PropertyValue VARCHAR(4096)
TIBCO® Data Virtualization

SQL Definition Sets |343
Exceptions Tab

The Exceptions tab lists the System utility exceptions. For an explanation of these
exceptions, refer to the “TDV SQL Script” chapter of the TDV Reference Manual.

Text VARCHAR(2147483647)

Exception Name

CannotExecuteSelectException

CannotOpenCursorException

CannotOpenNonSelectException

CursorAlreadyOpenException

CursorNotOpenException

CursorTypeMismatchException

DuplicateNameException

EvaluationException

IllegalArgumentException

IllegalStateException

NotAllowedException

NotFoundException

NotSupportedException

NullVariableException

ParseException

PipeNotOpenException

ProcedureClosedException

ProtocolException

Data Type Name Base Type
 TIBCO® Data Virtualization

344 | SQL Definition Sets
Constants Tab

The Constants tab contains System utility constant definitions. The values of the
constants marked with an asterisk (*) begin with a “System.” prefix.

SOAPFaultException

SecurityException

SystemException

TransactionClosedException

TransactionFailureException

UnexpectedRowCountException

UnopenedCursorException

Constant Name Type

CACHED RESOURCE BUCKET PATH* VARCHAR(255)

CACHED RESOURCE CACHE KEY* VARCHAR(255)

CACHED RESOURCE ERROR MESSAGE* VARCHAR(255)

CACHED RESOURCE INCREMENTAL
MAINTENANCE LEVEL*

VARCHAR(255)

CACHED RESOURCE PARAM KEY* VARCHAR(255)

CACHED RESOURCE PATH* VARCHAR(255)

CACHED RESOURCE REFRESH
OUTCOME*

VARCHAR(255)

CACHED RESOURCE TYPE* VARCHAR(255)

CACHE DATASOURCE PATH* VARCHAR(255)

CACHE IS INCREMENTAL* VARCHAR(255)

CANCELED VARCHAR(255)

Exception Name
TIBCO® Data Virtualization

SQL Definition Sets |345
CASE SENSITIVE IN COMPARISONS* VARCHAR(255)

CLUSTER ID VARCHAR(255)

CURRENT USER DOMAIN VARCHAR(255)

CURRENT USER ID VARCHAR(255)

CURRENT USER NAME VARCHAR(255)

FAIL VARCHAR(255)

IGNORE TRAILING SPACES IN
COMPARISONS*

VARCHAR(255)

INCOMPLETE VARCHAR(255)

NUM ROWS AFFECTED* VARCHAR(255)

SERVER HOSTNAME VARCHAR(255)

SERVER ID VARCHAR(255)

SERVER JDBC PORT VARCHAR(255)

SERVER VERSION VARCHAR(255)

SERVER WEB PORT VARCHAR(255)

SESSION ID VARCHAR(255)

SUCCESS VARCHAR(255)

TEXT HTML VARCHAR(255)

TEXT PLAIN VARCHAR(255)

TRANSACTION ID VARCHAR(255)

TRIGGER EVENT NAME* VARCHAR(255)

TRIGGER EVENT TYPE* VARCHAR(255)

TRIGGER EVENT VALUE* VARCHAR(255)

TRIGGER PATH* VARCHAR(255)

Constant Name Type
 TIBCO® Data Virtualization

346 | SQL Definition Sets
UserDefs SQL Definition Set

The UserDefs SQL definition set defines data types for use with user-related
procedures.

Location

/lib/users/UserDefs

Types Tab

The Types tab contains definitions for user procedure data types.

Data Type Name Base Type

DomainName VARCHAR(255)

UserGroups CURSOR

type CHAR(1)

id INTEGER

domain VARCHAR(255)

name VARCHAR(255)

UserGroupsType CHAR(1)

UserName VARCHAR(255)
TIBCO® Data Virtualization

Server Actions |347
Server Actions

Server actions are basic TDV actions that can be made available to Web users.

• About Server Actions, page 347

• Server Actions Reference, page 347

About Server Actions

Server actions provide a way for Web services operations to perform basic actions
in the TDV Server by defining those actions in an XML payload sent to the server
by executing performServerAction, page 178.

Server Actions Reference

This section describes all TDV/Studio built-in server actions, in alphabetical
order.

CheckLicense

Test whether the TDV has a valid license for the specified component. If the
license is valid, this server action simply returns. Otherwise a fault is generated.

Argument

component (STRING): The license component name to check.

Faults

NotAllowed: If a valid license does not exist for the specified component.

Security: If the caller does not have the ACCESS_TOOLS rights.

ClearDataSourceConnectionPools

Clear the connection pools of the specified data sources.
 TIBCO® Data Virtualization

348 | Server Actions Reference
Argument

dataSourcePaths (STRING_ARRAY): Resource paths to the data sources for
which the connection pools are to be cleared.

Sample Request
<ns1:performServerAction
xmlns:ns1="http://www.compositesw.com/services/system/admin/server
" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<ns1:actionName>ClearDataSourceConnectionPools</ns1:actionName>
<ns1:attributes>
<ns2:attribute

xmlns:ns2="http://www.compositesw.com/services/system/util/common">
<ns2:name>dataSourcePaths</ns2:name>
<ns2:type>STRING_ARRAY</ns2:type>
<ns2:valueArray>
<ns2:item>/users/composite/admin/mysql</ns2:item>
</ns2:valueArray>
</ns2:attribute>
</ns1:attributes>

</ns1:performServerAction>

Sample Response
<server:performServerActionResponse
xmlns:server="http://www.compositesw.com/services/system/admin/ser
ver">
<status>SUCCESS</status>
<server:messages>
<common:entry

xmlns:common="http://www.compositesw.com/services/system/util/common">
<common:code>9901130</common:code>
<common:name>ClearDataSourceConnectionPools</common:name>
<common:message>Data source connection pool(s)

cleared</common:message>
</common:entry>
</server:messages>

</server:performServerActionResponse>

Fault

Security: If the caller does not have the ACCESS_TOOLS right and either the
MODIFY_ALL_STATUS right or WRITE access to the specified data sources.
TIBCO® Data Virtualization

Server Actions Reference |349
ClearRepositoryCache

Clear and reset the repository cache.

Fault

Security: If the caller does not have ACCESS_TOOLS and
MODIFY_ALL_STATUS rights.

ClearQueryPlanCache

Clear and reset the query plan cache.

Fault

Security: If the caller does not have ACCESS_TOOLS and
MODIFY_ALL_STATUS rights.

ClearServerProfile

Clear and reset the server profile.

Fault

Security: If the caller does not have ACCESS_TOOLS and
MODIFY_ALL_STATUS rights.

Echo

Echo the given message, with an optional prefix. The message is returned within
the messages element, optionally preceded with a prefix.

Arguments

message (STRING): The message to echo.

prefix (STRING; optional): An optional prefix for the message.

FreeUnusedMemory

Free all unused server memory.
 TIBCO® Data Virtualization

350 | Server Actions Reference
GetServerProfile

Get the current server profile statistics.

Fault

Security: If the caller does not have ACCESS_TOOLS and READ_ALL_STATUS
rights.

PurgeCompletedRequests

Purge all completed requests from the server.

Fault

Security: If the caller does not have ACCESS_TOOLS and
MODIFY_ALL_STATUS rights.

PurgeCompletedSessions

Purge all completed sessions from the server.

Fault

Security: If the caller does not have ACCESS_TOOLS and
MODIFY_ALL_STATUS rights.

PurgeCompletedTransactions

Purge all completed transactions from the server.

Fault

Security: The caller must have ACCESS_TOOLS and MODIFY_ALL_STATUS
rights.

RegenerateFiles

Regenerate all files that have CFGT templates.
TIBCO® Data Virtualization

Server Actions Reference |351
Fault

Security: If the caller does not have ACCESS_TOOLS and
MODIFY_ALL_CONFIG rights.

ResetSystemNamespace

Reset the system namespace; that is, destroy and recreate the
/services/databases/system, /services/webservices/system, and /lib portion of
the resource namespace.

The resetting is done in a separate transaction, and the results are not visible until
after the current transaction is closed.

Fault

Security: If the caller does not have ACCESS_TOOLS and
MODIFY_ALL_RESOURCES rights.

ShutdownServer

Shut down the server.

If the server is already shutting down, the server is shut down immediately. If this
shutdown action was not directly requested by the monitor, the monitor reports it
as an unplanned shutdown.

ShutdownServer is an asynchronous call that attempts to complete its processing
and return prior to commencement of the shutdown. Because it is possible for the
connection to be interrupted before the action can be completed, you can specify
delayMs to postpone when shutdown begins.

The server attempts to shut down as cleanly as possible. However, if doing so
takes longer than timeoutMs milliseconds after the end of delayMs, the server is
immediately shut down. Therefore, if both arguments are specified, the
maximum time for the server to be shut down is delayMs plus timeoutMs.

Arguments

delayMs (LONG; optional): The number of milliseconds to wait before shutting
down. A delayMs of less than or equal to 0 means no delay. Default is 0 ms.

timeoutMs (LONG; optional): The number of milliseconds to wait before forcing a
hard shutdown. If timeoutMs is negative, the server is allowed to take as long as
it needs to shut down. If timeoutMs is 0, the server is shut down without waiting.
Default is 10000 ms.
 TIBCO® Data Virtualization

352 | Server Actions Reference
Fault

Security: If the caller does not have ACCESS_TOOLS and
MODIFY_ALL_STATUS rights.

TerminateRequests

Terminate the specified server requests.

Argument

requestIds (LONG_ARRAY): The IDs of the requests to terminate.

Fault

Security: If the caller does not have ACCESS_TOOLS and
MODIFY_ALL_STATUS rights.

TerminateSessions

Terminate the specified server sessions.

Argument

sessionIds (LONG_ARRAY): The IDs of the sessions to terminate.

Fault

Security: If the caller does not have ACCESS_TOOLS and
MODIFY_ALL_STATUS rights.

TerminateTransactions

Terminate the specified server transactions.

Argument

transactionIds (LONG_ARRAY): The IDs of the transactions to terminate.

Fault

Security: If the caller does not have the MODIFY_ALL_STATUS right.
TIBCO® Data Virtualization

Server Actions Reference |353
TestAllDataSources

Update the status of all data sources in the server. Test results can be queried
using the SYS_DATA_SOURCES system table. This action returns after all tests
have been completed.

Fault

Security: If the caller does not have ACCESS_TOOLS and
MODIFY_ALL_STATUS rights.
 TIBCO® Data Virtualization

354 | Server Actions Reference
TIBCO® Data Virtualization

|355
DSL API

DSL (Domain Specific Language) API enables users to perform headless
development on the TDV server.

The DSL API can be executed through REST/JDBC/ODBC/ADO.Net or any
other client using which you can query the TDV Server.

This chapter explains the following resources that can be created/altered/deleted
using DSL:

• Relational Data Sources, page 357

• File Delimited Data Sources, page 359

• Excel Data Sources, page 361

• Data Views, page 366

• SQL Script Procedures, page 373

• Folders, page 381

• Virtual Databases, page 384

• Virtual Tables and Procedures, page 387

• Virtual Schemas, page 391

• Virtual Catalogs, page 394

Note: Refer to the chapter TDV Server REST APIs for more details on how to
perform the tasks explained in this chapter using REST APIs.

Data Sources

Using DSL & REST APIs, datasources (such as relational, file-delimited, excel) can
be created, deleted and updated. Relational datasource and its properties can be
read from system tables under /services/databases/system/model. The various
functions performed on the datasources can be specified using the DSL-based
specific keywords or by using the Native properties syntax. Native properties
syntax accepts property name value pairs in which attribute name and value can
be specified. Attribute definitions of a datasource may be obtained from the
system table:
/services/databases/system/model/SYS_DATASOURCE_ATTRIBUTE_DEFS.
 TIBCO® Data Virtualization

356 | Data Sources
Refer to System Tables for a detailed description of the system tables that stores
the information about different data sources.

The following data sources are discussed in this section:

Relational Data Sources, page 357

File Delimited Data Sources, page 359

Excel Data Sources, page 361

DSL Syntax

Following is the syntax for Create, Update Delete of a datasource. A data source
could be created using a database adapter and full introspection of the datasource
is performed. The datasource could be altered to specify connection properties,
authentication properties and annotation later on.

DROP DATASOURCE /path/name

———

CREATE|ALTER DATASOURCE /path/name

(RELOCATE AS /path/name)? //only for alter

BASED ON ADAPTER 'Oracle 11g (Thin Driver)| File-Delimited' //adapter name, maybe
relational, file-delimited, excel

(SET NATIVE PROPERTIES {json_object})?

(CONNECT USING

 (HOST 'xxx.xxx.xxx.xx')? //only for relational
 (PORT 1521)? //only for relational
 (DATABASE_NAME 'ordersDatabase')? //only for relational
 (SELECT_MODE 'Direct')? //for microsoft sql server
datasource url

 (LOCAL_ROOT_PATH 'localPath' | URL 'url')? //for file-delimited and MS
Excel (non ODBC)
 (FILE_FILTERS '*.xls,*.xlsx')? //for file-delimited(default
= *.csv,*.txt) and excel (default = *.xls,*.xlsx)

 (DSN 'excelodbc')? //for MS Excel (ODBC))?

-- relational
(AUTHENTICATE

 (IN [BASIC | KERBEROS] MODE)? //for relational default =
BASIC

 USING

 (DOMAIN 'domainName')? //for file-delimited

 (LOGIN 'username')? //for relational and
file-delimited
 (PASSWORD 'password')?
TIBCO® Data Virtualization

Data Sources |357
 (PASS_THROUGH_LOGIN [TRUE|FALSE])? //for relational basic mode
of authentication
 (TICKET_CACHE 'ticketCache' | NULL)? //for relational kerberos
mode of authentication
 (USE_PASS_THROUGH_CERTIFICATE_FOR_ENCRYPTION [TRUE|FALSE])?)? //for
relational kerberos mode of authentication default = false

)?

(FORMAT USING

 (CHARACTER_SET 'iso-8859-1')? //for file-delimited and
excel, defaults based on adapter for allowable values : Refer Section 1, 2, 3

 (DELIMITER ',')? //for file-delimited default
= ','allowable values : Refer Section 1, 2

 (TEXT_QUALIFIER '"')? //for file-delimited default
= '"' allowable values : Refer Section 1, 2

 (STARTING_ROW 1)? //for file-delimited default
= 1

 (HAS_HEADER_ROW [TRUE|FALSE])? //for file-delimited(default
= FALSE) and excel(default = TRUE)

 (IGNORE_TRAILING_DELIMITER)? //for file-delimited default
= TRUE

 (DATA_RANGE ‘A1’)? //for MS Excel (non-ODBC)
default = A1

 (BLANK_COLUMN_TYPE ‘Varchar')? //for excel default =
Varchar, allowable values: Varchar, Double, Boolean, Datetime

 (FIRST_ROW_CATEGORY [TRUE | FALSE])? //for excel default = true

 (IGNORE_INVALID_DATA_FETCH [TRUE | FALSE])? //for excel default = true

 (DATA_WYSIWYG [TRUE|FALSE])? //for excel default=true

 (BLANK_AS_NULL [TRUE|FALSE])? //for excel default = true)?

(SET ANNOTATION 'this is a datasource created using DSL api' | NULL)?

Relational Data Sources

This section describes the usage of DSL APIs for creating, altering or deleting a
relational data source.

Creating a Relational Data Source with Native Connection Properties

Native properties may be specified using "SET NATIVE PROPERTIES" in the DSL
syntax with name value pairs in JSON format. The JSON format can be specified
as key value pairs and the keys represent the definition_name taken from
model.SYS_DATASOURCE_ATTRIBUTE_DEFS table. The definition_name may
be specified in a case-insensitive manner.
 TIBCO® Data Virtualization

358 | Data Sources
Considerations

Listed below are some points to consider while working with Relational Data
sources using native properties syntax:

1. Collision between native properties with standard DSL expanded form will
throw error. For example if "urlIP" is specified as a property in SET NATIVE
PROPERTIES syntax and also specified in "CONNECT USING HOST 'xxx'"
syntax, error will be displayed indicating this.

2. Warning when properties are used when a DSL expanded syntax is available
for a property/definition. For example, if "urlIP" is specified as a property in
SET NATIVE PROPERTIES syntax and not specified using a standard DSL
syntax as "CONNECT USING HOST", a warning will be logged in the
cs_server.log indicating the syntax that can be used for this particular
property. This is done to encourage users to use DSL syntax whenever
possible. However, if there is no corresponding DSL syntax for a property,
then no warning is logged. Refer to the section Examples, page 358 for an
understanding of how to create or alter a data source.

Examples
curl -d "[\"CREATE DATASOURCE /shared/examples/relationalDS BASED ON
ADAPTER 'PostgreSQL 9.1' SET NATIVE PROPERTIES
{\\\"urlIP\\\":\\\"localhost\\\", \\\"urlPort\\\":9408,
\\\"urlDatabaseName\\\":\\\"orders\\\", \\\"login\\\":\\\"tutorial\\\",
\\\"password\\\":\\\"password\\\"} SET ANNOTATION 'this is a Postgres
datasource created using DSL api native properties'\"]" -u "admin:admin" -X
POST "http://localhost:9400/rest/execute/v1/actions/dsl/invoke" -H
"Content-Type:application/json"

Creating a datasource with DSL keywords

Considerations

Listed below are some points to consider while working with Relational Data
sources using DSL keywords:

1. When connection properties are not specified during creation, introspection is
not done on the datasource as its a required information for introspection.
Datasource is created without introspection. When the datasource is altered
later to add connection properties, full introspection of the datasource is done.

2. When no authentication properties are specified during creation, an error will
be displayed during introspection, but the datasource will be created
successfully.
TIBCO® Data Virtualization

Data Sources |359
3. For QUOTED_STRING ticket_cache, an explicit NULL keyword or 'NULL' (as
a quoted string) can be specified. If null is invalid for some reason during
introspection, an error will be displayed.

Note: If an unexpected input is given or if a resource is missing, an error is
displayed.

Examples

Create a Postgres datasource ds1
curl -d "[\"CREATE DATASOURCE /shared/examples/ds1 BASED ON ADAPTER
'PostgreSQL 9.1'
 CONNECT USING host 'localhost' port 5432 DATABASE_NAME 'orders'
 AUTHENTICATE IN BASIC MODE USING LOGIN 'tutorial' PASSWORD
'password' PASS_THROUGH_LOGIN_TRUE
 SET ANNOTATION 'this is a datasource created using DSL api'\"]"
-u "admin:admin" -X POST
"http://localhost:9400/rest/execute/v1/actions/dsl/invoke" -H
"Content-Type:application/json"

Create an Oracle datasource oracleds
curl -d "[\"CREATE DATASOURCE /shared/examples/oracleds BASED ON ADAPTER
'Oracle 11g (Thin Driver)'
 CONNECT USING host 'xxx.xx.x.xx' port 1521 DATABASE_NAME 'xxxxx'
 AUTHENTICATE IN BASIC MODE USING LOGIN 'user' PASSWORD 'password'
 SET ANNOTATION 'this is an oracle datasource created using DSL
api'\"]"
-u "admin:admin" -X POST
"http://localhost:9400/rest/execute/v1/actions/dsl/invoke" -H
"Content-Type:application/json"

Create a Postgres datasource ds1 with space in its name
curl -d "[\"CREATE DATASOURCE /shared/examples/\\\"ds 1\\\" BASED ON
ADAPTER 'PostgreSQL 9.1'
 CONNECT USING host 'localhost' port 5432 DATABASE_NAME 'orders'
 AUTHENTICATE IN BASIC MODE USING LOGIN 'tutorial' PASSWORD
'password' PASS_THROUGH_LOGIN_TRUE
 SET ANNOTATION 'this is a datasource created using DSL api'\"]"
-u "admin:admin" -X POST
"http://localhost:9400/rest/execute/v1/actions/dsl/invoke" -H
"Content-Type:application/json"

File Delimited Data Sources

This section describes the usage of DSL APIs for creating, altering or deleting a
file-delimited data source.
 TIBCO® Data Virtualization

360 | Data Sources
Considerations

Listed below are some points to consider while working with File-Delimited Data
Sources:

1. When the parameters "root" and "url" are both provided, an error message is
displayed.

2. During an alter operation, the properties that were previously set during a
create will not be altered unless a new value or NULL is specified.

Examples

Following are examples to create a file-delimited datasource:

Create a file-delimited datasource

curl -d "[\"CREATE DATASOURCE /shared/examples/excelds
 BASED ON ADAPTER 'File-Delimited'
 CONNECT USING LOCAL_ROOT_PATH '/Users/shared/csv' FILE_FILTERS
'*.csv'
FORMAT USING CHARACTER_SET 'utf-8'
 SET ANNOTATION 'this is a file delimited datasource created using
DSL api'
 \"]"
-u "admin:admin" -X POST
"http://localhost:9400/rest/execute/v1/actions/dsl/invoke"
-H "Content-Type:application/json"

Create with native properties

//Error: root path specified in both LOCAL_ROOT_PATH as well as native
properties syntax
curl -d "[\"CREATE DATASOURCE /shared/examples/fileds BASED ON ADAPTER
'File-Delimited' SET NATIVE PROPERTIES {\\\"root\\\":\\\"/Users/Shared\\\"}
CONNECT USING LOCAL_ROOT_PATH '/Users/Shared' FILE_FILTERS '*.csv,*.txt'
FORMAT USING CHARACTER_SET 'utf-8' SET ANNOTATION 'this is a file delimited
datasource created using DSL api'\"]" -u "admin:admin" -X POST
"http://localhost:9400/rest/execute/v1/actions/dsl/invoke" -H
"Content-Type:application/json"

'root' already specified in DSL as 'local root path'

//Warning logged in server_log but datasource created. root unspecified
using DSL syntax but specified in native properties
curl -d "[\"CREATE DATASOURCE /shared/examples/fileds BASED ON ADAPTER
'File-Delimited' SET NATIVE PROPERTIES {\\\"root\\\":\\\"/Users/Shared\\\"}
CONNECT USING FILE_FILTERS '*.csv,*.txt' FORMAT USING CHARACTER_SET 'utf-8'
SET ANNOTATION 'this is a file delimited datasource created using DSL
TIBCO® Data Virtualization

Data Sources |361
api'\"]" -u "admin:admin" -X POST
"http://localhost:9400/rest/execute/v1/actions/dsl/invoke" -H
"Content-Type:application/json"

WARN 2019-05-07 10:08:46.637 -0700 CreateOrAlterResourceFilter - 'root'
could be specified in DSL instead of native property using syntax like
'CONNECT USING local_root_path'

Excel Data Sources

This section describes the usage of DSL APIs for creating, altering or deleting a
Excel data source.

Considerations

Listed below are some points to consider while working with Excel Data Sources:

• During an alter operation, the properties that were previously set during a
create will not be altered unless a new value or NULL is specified.

Examples

MS Excel (non-ODBC) Data Source Creation
//create excel datasource using DSL syntax
curl -d "[\"CREATE DATASOURCE /shared/examples/excelds
 BASED ON ADAPTER 'Microsoft Excel (non-ODBC)'
 CONNECT USING LOCAL_ROOT_PATH '/Users/Shared/excel'
 FORMAT USING CHARACTER_SET 'utf-8'
 SET ANNOTATION 'this is a excel datasource created using DSL
api'\"]"
-u "admin:admin" -X POST
"http://localhost:9400/rest/execute/v1/actions/dsl/invoke" -H
"Content-Type:application/json"

//specify create ds using only native properties
curl -d "[\"CREATE DATASOURCE /shared/examples/excelds
 BASED ON ADAPTER 'Microsoft Excel (non-ODBC)'
 SET NATIVE PROPERTIES {\\\"root\\\":\\\"/Users/Shared/excel\\\",
 \\\"filters\\\":\\\"*.xls\\\",
 \\\"charset\\\":\\\"utf-8\\\"}
 SET ANNOTATION 'this is a excel datasource created using DSL
api'\"]"
-u "admin:admin" -X POST
"http://localhost:9400/rest/execute/v1/actions/dsl/invoke" -H
"Content-Type:application/json"
 TIBCO® Data Virtualization

362 | Data Sources
MS Excel (ODBC) only on windows
//create excel datasource DSL
curl -d "[\"CREATE DATASOURCE /shared/examples/excelds
 BASED ON ADAPTER 'Microsoft Excel'
 CONNECT USING DSN 'excelodbc'
 FORMAT USING CHARACTER_SET 'utf-8'
 SET ANNOTATION 'this is a excel ODBC datasource created using DSL
api'\"]"
-u "admin:admin" -X POST
"http://localhost:9400/rest/execute/v1/actions/dsl/invoke" -H
"Content-Type:application/json"

//specify create ds using native properties only --expect warning messages
in logs
curl -d "[\"CREATE DATASOURCE /shared/examples/nativeexcelds4
 BASED ON ADAPTER 'Microsoft Excel'
 SET NATIVE PROPERTIES {\\\"dsn\\\":\\\"excelodbc\\\",
\\\"charset\\\":\\\"utf-8\\\"}
 SET ANNOTATION 'this is a excel datasource created using DSL api native
properties'\"]"
-u "admin:admin" -X POST
"http://localhost:9400/rest/execute/v1/actions/dsl/invoke" -H
"Content-Type:application/json"

System Tables

There are 3 system tables under /services/databases/system/model directory,
representing information about datasources:

ALL_DATASOURCES

ALL_RESOURCE_PROPERTIES

SYS_DATASOURCE_ATTRIBUTE_DEFS

ALL_DATASOURCES

The model.ALL_DATASOURCES table is similar to
/services/databases/system/ALL_DATASOURCES, however, it includes both
published as well as non-published datasources. It also includes an extra column
"IS_PUBLISHED" that indicates if the datasource is published or not. Information
about these columns can be viewed from the "Info" tab of the respective system
table from Studio. The columns of this table are :

Column Name TDV JDBC
DataType Nullable Description

DATASOURCE_ID: INTEGER Identifier of the data source
TIBCO® Data Virtualization

Data Sources |363
DATASOURCE_NAME: VARCHAR Datasource Name

DATASOURCE_TYPE: VARCHAR Type of Datasource

ADAPTER_NAME VARCHAR Name of the Adapter

IS_PUBLISHED VARCHAR Identifies if datasource is
published or not

GUID: VARCHAR 128 bit unique identifier.

ANNOTATION VARCHAR Yes Annotation for the data
source

OWNER_ID INTEGER Identifier of the user who
created/owns the data
source.

OWNER VARCHAR User name of the person that
owns/created the data source

PARENT_PATH VARCHAR Path to the parent container

DATASOURCE_CREATOR_I
D

INTEGER Identifier of the user who
created this data source.

DATASOURCE_CREATION
_TIMESTAMP

BIGINT Timestamp when the data
source was created.

DATASOURCE_MODIFIER_
ID

INTEGER Identifier of the user who last
modified this data source.

DATASOURCE_MODIFICA
TION_TIMESTAMP

BIGINT Timestamp of the last
modification of this data
source.

ADAPTER_TYPE_CATEGO
RY

VARCHAR Adapter type category. Could
be one of RELATIONAL,
EXCEL_FILE, WEBSERVICE,
REST, DELIMITED_FILE,
XML_FILE, CJP.

Column Name TDV JDBC
DataType Nullable Description
 TIBCO® Data Virtualization

364 | Data Sources
ALL_RESOURCE_PROPERTIES

The columns of this table are:

SYS_DATASOURCE_ATTRIBUTE_DEFS

This table contains the datasource attribute definitions for all adapters. The
information from this table could be used in the SET NATIVE PROPERTIES
syntax of DSL API while creating datasources:

Column Name TDV JDBC Data
Type Nullable Description

METADATA_ID INTEGER Primary key identifier of the
table

PROPERTY_NAME VARCHAR Name of the property

DATA_TYPE VARCHAR Data type of the property

PROPERTY_VALUE VARCHAR Value of the property

Column Name TDV JDBC Data
Type Nullable Description

ADAPTER_NAME: VARCHAR Name of the database adapter

ADAPTER_TYPE VARCHAR Type of the adapter

ADAPTER_TYPE_CATEGO
RY

VARCHAR Adapter type category.

DEFINITION_NAME: VARCHAR Name of the attribute
definition

DISPLAY_NAME: VARCHAR Display name used for this
attribute definition

DEFINITION_TYPE: VARCHAR Type of the attribute
definition

REQUIRED: BIT Indicates if the attribute
definition is mandatory

DEFAULT_VALUE: VARCHAR Default value of the attribute
definition
TIBCO® Data Virtualization

Data Sources |365
Logging

To turn on debug logging, set the following in conf/server/log4j.properties
log4j.logger.com.compositesw.server.qe.physical.ddl=DEBUG

When a datasource is created, altered or dropped, the log messages will indicate
the command being executed.

ALLOWED_VALUES: VARCHAR Allowed values for this
attribute definition

EDITOR_HINT: VARCHAR Editor hint of this attribute
definition

IS_ADVANCED BIT Indicates if the attribute is an
advanced attribute

DISPLAY_PARENT_NAME VARCHAR Parent of the
DISPLAY_NAME column

DEPENDENCY_EXPRESSIO
N

VARCHAR Indicates the attribute
definition's "Depends on
Item" and "Depends on
Value”.

UPDATE_RULE VARCHAR Update rule. Could be one of
READ_ONLY,
READ_WRITE,
WRITE_ON_CREATE,WRIT
E_ON_EDIT,
WRITE_ON_IMPORT

ANNOTATION VARCHAR Annotation for the attribute
definition

DEFINITION_PARENT_NA
ME

VARCHAR Attribute definition's parent
name usually prefixed with
adapter name so as to resolve
similar definition names in
different adapters.

Column Name TDV JDBC Data
Type Nullable Description
 TIBCO® Data Virtualization

366 | Data Views
Data Views

Using DSL & REST APIs, Data Views can be created, altered or deleted. Data
View and its properties can be read from system tables under
/services/databases/system/model.

DSL Syntax

Using the DSL syntax mentioned below,, the "rest/execute/v1/
actions/dsl/invoke" REST API can be executed to CUD views:

DROP DATA VIEW (IF EXISTS)? /path/name

———

CREATE DATA VIEW (IF NOT EXISTS)? /path/name
DEFINE AS sql
(SET PROPERTIES {"name":{value}})?
(SET ANNOTATION 'this is a view created using DSL api' | NULL)?
———

ALTER DATA VIEW /path/name
(RELOCATE AS /path/newName)?
(DEFINE AS sql)?
(SET PROPERTIES {"name":{value}})?
(SET ANNOTATION 'this view is altered using DSL api' | NULL)?

———

SELECT * FROM model.ALL_TABLES where TABLE_NAME = 'name';

———

 SELECT * FROM model.ALL_RESOURCE_PROPERTIES WHERE

 PROPERTY_NAME = 'propName' AND

 METADATA_ID =
 (SELECT TABLE_ID FROM model.ALL_TABLES

 WHERE TABLE_NAME = 'name' AND //name of view

 PARENT_PATH = '/path'); //parent path of the view

Note: Properties and annotation are optional when creating a data view.
TIBCO® Data Virtualization

Data Views |367
Considerations

Listed below are some points to consider while working with Data Views:

1. SQL is an attribute of type String. When a data view is created with a
definition sql with a String value for it, the attribute "sql" is added with the
definition sql on the view resource that is created. The definition sql can also
be altered.

2. When renaming a view or relocating a view to a new location, RELOCATE AS
is used in the syntax. Both rename and relocate can be performed in the same
command.

3. When a data view is created or altered, the
model.ALL_RESOURCE_PROPERTIES table is updated with the properties
of the view : "sql". This is the attribute that is set on a data view when it is
created using the DSL api. To read the value of a property from
model.ALL_RESOURCE_PROPERTIES table, the "rest/execute/v1/actions/
query/invoke" can be used.

Examples

Create view with only sql
curl -d "[\"CREATE DATA VIEW /shared/examples/myview DEFINE AS SELECT
OrderID FROM /shared/examples/ViewOrder\"]" -u "admin:admin" -X POST
"http://localhost:9400/rest/execute/v1/actions/dsl/invoke" -H
"Content-Type:application/json"

Create view with sql and annotation
curl -d "[\"CREATE DATA VIEW /shared/examples/myview DEFINE AS SELECT
OrderID FROM /shared/examples/ViewOrder SET ANNOTATION 'this view is
created using DSL'\"]" -u "admin:admin" -X POST
"http://localhost:9400/rest/execute/v1/actions/dsl/invoke" -H
"Content-Type:application/json"

Create data view IF NOT EXISTS with sql and annotation
curl -d "[\"CREATE DATA VIEW IF NOT EXISTS /shared/examples/myview DEFINE
AS SELECT OrderID FROM /shared/examples/ViewOrder SET ANNOTATION 'this view
is created using DSL'\"]" -u "admin:admin" -X POST
"http://localhost:9400/rest/execute/v1/actions/dsl/invoke" -H
"Content-Type:application/json"

System Tables

The following system tables under /services/databases/system/model
directory, store the information about data sources:
 TIBCO® Data Virtualization

368 | Data Views
ALL_TABLES

This table displays both the published and non-published tables and views.
"VIEW" is displayed for TABLE_TYPE when the table is a view. The table
model.ALL_TABLES table has the following columns :

Column name TDV JDBC Data
Type Nullable Description

TABLE_ID: INTEGER Primary key identifier of the
table.

TABLE_NAME: VARCHAR Name of the table.

TABLE_TYPE: VARCHAR Possible values of this
column are ‘VIEW’ and
‘TABLE”.

SCHEMA_ID: INTEGER Yes See SCHEMA_ID in Table:
model.ALL_SCHEMAS

SCHEMA_NAME: VARCHAR Yes See SCHEMA_NAME in
Table:
model.ALL_SCHEMAS

CATALOG_ID: INTEGER Yes See CATALOG_ID in Table:
model.ALL_CATALOGS

CATALOG_NAME: VARCHAR Yes See CATALOG_NAME in
Table:
model.ALL_CATALOGS

DATASOURCE_ID: INTEGER See DATASOURCE_ID in
Table:
model.ALL_DATASOURCES

DATASOURCE_NAME: VARCHAR See DATASOURCE_NAME
in Table:
model.ALL_DATASOURCES

GUID: VARCHAR 128 bit unique identifier

ANNOTATION: VARCHAR Yes Annotation for the table.
TIBCO® Data Virtualization

Data Views |369
OWNER_ID: INTEGER Identifier of the person who
created/owns the table. Same
as USER_ID in Table:
ALL_USERS

OWNER: VARCHAR Name of the person who
created/owns the table.
Same as USERNAME in
Table: ALL_USERS

PARENT_PATH: VARCHAR Path to the parent container

TABLE_CREATOR_ID: INTEGER Identifier of the user who
created this table. Same as
USER_ID in Table:
ALL_USERS

TABLE_CREATION_TIMEST
AMP:

BIGINT Timestamp when the table
was created.

TABLE_MODIFIER_ID: INTEGER Identifier of the user who last
modified this table. Same as
USER_ID in Table:
ALL_USERS

TABLE_MODIFICATION_TI
MESTAMP:

BIGINT Timestamp of the last
modification of this table.

IMPACT_MESSAGE VARCHAR Impact message indicating
errors

IS_AUTO_GENERATED VARCHAR Indicates if the table has an
attribute called
“webui_model”. If the
attribute is present, then the
value of this column is 'YES'
else it is 'NO’.

Column name TDV JDBC Data
Type Nullable Description
 TIBCO® Data Virtualization

370 | Data Views
ALL_COLUMNS

When a data view is created, the columns of the view are added to the
model.ALL_COLUMNS table.

Column name TDV JDBC Data
Type Nullable Description

COLUMN_ID: INTEGER Primary key identifier of the
column

COLUMN_NAME: VARCHAR Name of the column

DATA_TYPE: VARCHAR String representation of the
data type

ORDINAL_POSITION: INTEGER Position of this column in
relation to other columns in
the same table

JDBC_DATA_TYPE: SMALLINT JDBC/ODBC data types. For
JDBC data types, see
http://java.sun.com/j2se/1.4
.2/docs/api/java/sql/Types.
html

COLUMN_LENGTH: INTEGER If it is a CHAR or VARCHAR,
the length is the maximum
length allowed. If it is a
DECIMAL or NUMERIC,
then the value is the total
number of digits. If it is none
of the above types, then the
value is NULL.

COLUMN_PRECISION: INTEGER If it is a DECIMAL or
NUMERIC data type, then it
is the number of digits. If it is
not a DECIMAL or
NUMERIC data type, then
the value is NULL.

COLUMN_SCALE: INTEGER

COLUMN_RADIX: INTEGER 10 for all numeric data types.
Null for all non-numeric
types.
TIBCO® Data Virtualization

Data Views |371
NULLABLE: SMALLINT Indicates whether the column
is nullable

0 if NULL is not allowed

1 if NULL is allowed

2 if it is unknown

IS_NULLABLE: VARCHAR Indicates whether the column
is nullable

YES if it is nullable

NO if it is not nullable

Blank string is returned if
value is not known

TABLE_ID: INTEGER See TABLE_ID in Table:
model.ALL_TABLES

TABLE_NAME: VARCHAR See TABLE_NAME in Table:
model.ALL_TABLES

SCHEMA_ID: INTEGER Yes See SCHEMA_ID in Table:
model.ALL_SCHEMAS

SCHEMA_NAME: VARCHAR Yes See SCHEMA_NAME in
Table:
model.ALL_SCHEMAS

CATALOG_ID: INTEGER Yes See CATALOG_ID in Table:
model.ALL_CATALOGS

CATALOG_NAME: VARCHAR See CATALOG_NAME in
Table:
model.ALL_CATALOGS

DATASOURCE_ID: INTEGER See DATASOURCE_ID in
Table:
model.ALL_DATASOURCES

DATASOURCE_NAME: VARCHAR See DATASOURCE_NAME
in Table:
model.ALL_DATASOURCES

Column name TDV JDBC Data
Type Nullable Description
 TIBCO® Data Virtualization

372 | Data Views
Logging

Create Data View

During creation of a data view, a debug message is logged like below :

DEBUG 2019-03-05 16:13:21.889 -0800 DDLNode - Data View
'/shared/examples/myviewWithProps' created with sql 'SELECT OrderID
FROM /shared/examples/ViewOrder'
DEBUG 2019-03-05 16:13:21.889 -0800 DDLNode - Set annotation on resource:

/shared/examples/myviewWithProps
Annotation: this view is created using DSL

"IF NOT EXISTS" can be specified in the CREATE DATA VIEW command
optionally. If the data view being created does not exist, its then created. If
resource already exists, no error is thrown when IF NOT EXISTS keywords are
specified.

Delete Data View

During deletion of a data view, if debug logging is enabled, the following is
logged

DEBUG 2019-03-05 16:11:52.452 -0800 DDLNode - Deleted :
/shared/examples/myviewWithProps

ANNOTATION: VARCHAR Yes Annotation for the column

OWNER_ID: INTEGER Identifier for the user who
created/owns the column.
Same as USER_ID in Table:
ALL_USERS

OWNER: VARCHAR User name of the person that
owns/created the data
source. Same as USERNAME
in Table: ALL_USERS

PARENT_PATH: VARCHAR Path to the parent container.

Column name TDV JDBC Data
Type Nullable Description
TIBCO® Data Virtualization

SQL Script Procedures |373
"IF EXISTS" can be specified optionally with the DROP DATA VIEW command. If
the data view being dropped exists, it is dropped. If the data view being dropped
does not exist, and "IF EXISTS" keywords are used, no error is thrown.

Alter Data View

When a data view is altered, a definition sql may or may not be provided. When a
definition sql is provided which is not the same as the existing definition sql, the
new sql is set on the view resource.

Annotation is optional, with the alter syntax.

When debug logging is enabled, the following is logged in cs_server.log

DEBUG 2019-03-05 16:18:16.521 -0800 DDLNode - Set annotation on resource:
/shared/examples/myviewWithProps
Annotation: this view is altered using DSL
DEBUG 2019-03-05 16:18:16.522 -0800 DDLNode - "Data View
'/shared/examples/myviewWithProps' altered with sql 'SELECT OrderID,
CompanyName
FROM /shared/examples/ViewOrder'

To turn on debug logging for these commands, please set the following in
conf/server/log4j.properties

log4j.logger.com.compositesw.server.qe.physical.ddl=DEBUG

SQL Script Procedures

Using DSL & REST APIs, SQL Script procedures can be created, altered and
deleted. SQL Script Procedure and its properties can be read from system tables
under /services/databases/system/model.

DSL Syntax

Using the following sample DSL syntax, the "rest/execute/v1/actions/
dsl/invoke" REST API can be executed to Create, Update and Delete sql script
procedures. The word "script" is used mainly in the DSL syntax because the
subtype of a procedure is "script".

DROP SCRIPT (IF EXISTS)? /path/name

 TIBCO® Data Virtualization

374 | SQL Script Procedures
———

CREATE SCRIPT (IF NOT EXISTS)? /path/name
DEFINE AS script
(SET PROPERTIES {"name":{value}})?
(SET ANNOTATION 'this is a script created using DSL api' | NULL)?

———

ALTER SCRIPT /path/name (RELOCATE AS /path/newName)?
(RELOCATE AS /newPath/newName)?
(DEFINE AS script)?
(SET PROPERTIES {"name":{value}})?
(SET ANNOTATION 'this is a script altered using DSL api' | NULL)?

———

SELECT * FROM model.ALL_RESOURCE_PROPERTIES WHERE

 PROPERTY_NAME = 'propName' AND

 METADATA_ID =
 (SELECT PROCEDURE_ID FROM model.ALL_PROCEDURES

 WHERE PROCEDURE_NAME = 'name' AND //name of script

 PARENT_PATH = '/path'); //parent path of the
script

Considerations

Listed below are some points to consider while working with SQL Script
Procedures:

• Properties and annotation are optional when creating a sql script procedure.

• “script” is an attribute of type String. The script mentioned while creating or
altering a sql script procedure is saved into the attribute "script" in the script
metadata.

• Annotation, if any specified on the script is saved into the script metadata as
well.

• The created script can be viewed from the Studio as well. Multiple statements
can be included in the script (for example, DROP TABLE can be used before a
CREATE TABLE.)

• When a script is altered, the definition script may or may not be provided.
When a definition script is provided, which is not the same as the existing
TIBCO® Data Virtualization

SQL Script Procedures |375
definition script, the new script is set on the script metadata. Properties and
annotation are optional as well, with the alter syntax.

• Script may be renamed or relocated, using the "RELOCATE AS" syntax.

• When a script is created or altered, the
model.ALL_RESOURCE_PROPERTIES table is updated with the properties
of the script. These are the attributes that are set on a script that is created
using the DSL api.

• Assuming a table exists, an INSERT script can be used in the create sql script
syntax. If the table in which records are inserted does not exist, then the script
is created , however it will remain impacted till the table is created.

• To read the value of "script" property from
model.ALL_RESOURCE_PROPERTIES table,
"rest/execute/v1/actions/query/ invoke" can be used.

Examples

Create script with a CTAS script
curl -d
"[\"CREATE SCRIPT /shared/examples/ctasScript DEFINE AS PROCEDURE
ctasScript()
 BEGIN CREATE TABLE
/shared/examples/ds_inventory/tutorial/OrdersTable as
 select OrderId, ProductID, Discount, OrderDate,
CompanyName, CustomerContactFirstName,
 CustomerContactLastName, CustomerContactPhone
 FROM /shared/examples/ViewOrder;
 END\"]"
-u "admin:admin" -X POST
"http://localhost:9400/rest/execute/v1/actions/dsl/invoke" -H
"Content-Type:application/json"

Create script with CTAS script and annotation
curl -d
"[\"CREATE SCRIPT /shared/examples/ctasScript DEFINE AS PROCEDURE
ctasScript()
 BEGIN CREATE TABLE
/shared/examples/ds_inventory/tutorial/OrdersTable as
 select OrderId, ProductID, Discount, OrderDate, CompanyName,
CustomerContactFirstName,
 CustomerContactLastName, CustomerContactPhone
 FROM /shared/examples/ViewOrder;
 END
 SET ANNOTATION 'this script is created using DSL'\"]"
 TIBCO® Data Virtualization

376 | SQL Script Procedures
-u "admin:admin" -X POST
"http://localhost:9400/rest/execute/v1/actions/dsl/invoke" -H
"Content-Type:application/json"

Create Script with an INSERT script

Assuming a table exists, an INSERT script can be used in the create sql script
syntax. If the table in which records are inserted does not exist, then the script is
created , however it will remain impacted till the table is created.
curl -d
"[\"CREATE SCRIPT /shared/examples/sqlScriptProc DEFINE AS PROCEDURE
sqlScriptProc()
 BEGIN INSERT INTO /shared/examples/ds_inventory/tutorial/T
 (SELECT OrderId, ProductID, Discount, OrderDate,
CompanyName, CustomerContactFirstName,
 CustomerContactLastName, CustomerContactPhone
 FROM /shared/examples/ViewOrder);
 END\"]"
-u "admin:admin" -X POST
"http://localhost:9400/rest/execute/v1/actions/dsl/invoke" -H
"Content-Type:application/json"

Delete script
curl -d "[\"DROP SCRIPT /users/composite/admin/dslscript\"]" -u
"admin:admin" -X POST
"http://localhost:9400/rest/execute/v1/actions/dsl/invoke" -H
"Content-Type:application/json"

Alter script
curl -d "[\"ALTER SCRIPT /shared/examples/ctasScript DEFINE AS PROCEDURE
ctasScript()
 BEGIN CREATE TABLE
/shared/examples/ds_inventory/tutorial/OrdersTable as
 select OrderId, ProductID, OrderDate,
CustomerContactFirstName, CustomerContactLastName
 FROM /shared/examples/ViewOrder;
 END
 SET ANNOTATION 'this SCRIPT is altered using DSL'\"]"
-u "admin:admin" -X POST
"http://localhost:9400/rest/execute/v1/actions/dsl/invoke" -H
"Content-Type:application/json"

Relocate/Rename Script
//script relocate -- rename only
curl -d "[\"ALTER SCRIPT /shared/examples/ctasScript RELOCATE AS
/shared/examples/dslscript\"]" -u "admin:admin" -X POST
"http://localhost:9400/rest/execute/v1/actions/dsl/invoke" -H
"Content-Type:application/json"

//script relocate -- path only
TIBCO® Data Virtualization

SQL Script Procedures |377
curl -d "[\"ALTER SCRIPT /shared/examples/dslscript RELOCATE AS
/users/composite/admin/dslscript\"]" -u "admin:admin" -X POST
 "http://localhost:9400/rest/execute/v1/actions/dsl/invoke" -H
"Content-Type:application/json"

//script relocate -- path and name
curl -d "[\"ALTER SCRIPT /shared/examples/ctasScript RELOCATE AS
/users/composite/admin/dslscript\"]"
 -u "admin:admin" -X POST
"http://localhost:9400/rest/execute/v1/actions/dsl/invoke" -H
"Content-Type:application/json"

Get script of a procedure
curl -u "admin:admin" -X POST
"http://localhost:9400/rest/execute/v1/actions/query/invoke" -H
"Content-Type:application/json"
 -d "{\"query\":\"SELECT * FROM model.ALL_RESOURCE_PROPERTIES
 WHERE property_name = 'script' AND
 metadata_id = (
 SELECT PROCEDURE_ID FROM model.ALL_PROCEDURES WHERE
PROCEDURE_NAME = 'ctasScript' AND parent_path = '/shared/examples')\",
 \"standardSQL\":true}"

[[10132,"Script","java.lang.String","PROCEDURE ctasScript()\nBEGIN\n
CREATE TABLE \/shared\/examples\/ds_inventory\/tutorial\/OrdersTable
AS\nSELECT OrderId, ProductID, OrderDate, CustomerContactFirstName,
CustomerContactLastName\nFROM \/shared\/examples\/ViewOrder\n;\nEND"]]

Script containing multiple DSL statements
CREATE SCRIPT /shared/examples/pubdbScr3 DEFINE AS PROCEDURE pubdbScr3()
 BEGIN
 CREATE VIRTUAL DATABASE 'PUB5';
 CREATE VIRTUAL TABLE /services/databases/PUB5/link2 SET TARGET
/shared/examples/ds_orders/tutorial/view1;
 END

System Tables

The following system tables under /services/databases/system/model
directory, store the information about datasources:

ALL_PROCEDURES

The system table model.ALL_PROCEDURES table is updated with procedure
information and has the following columns.
 TIBCO® Data Virtualization

378 | SQL Script Procedures
This table is similar to system.ALL_PROCEDURES table, however, this table
contains information about both published and non-published procedures.

Column name TDV JDBC Data
Type Nullable Description

PROCEDURE_ID: INTEGER Identifier of the procedure;
Primary key.

PROCEDURE_NAME: VARCHAR Name of the procedure

PROCEDURE_TYPE: SMALLINT Type of the procedure

1 indicates procedure returns
no result

2 indicates procedure returns
result

SCHEMA_ID: INTEGER Yes See SCHEMA_ID in Table:
model.ALL_SCHEMAS

SCHEMA_NAME: VARCHAR Yes See SCHEMA_NAME in
Table:
model.ALL_SCHEMAS

CATALOG_ID: INTEGER Yes See CATALOG_ID in Table:
model.ALL_CATALOGS

CATALOG_NAME: VARCHAR Yes See CATALOG_ID in Table:
model.ALL_CATALOGS

DATASOURCE_ID: INTEGER See DATASOURCE_ID in
Table:
model.ALL_DATASOURCES

DATASOURCE_NAME: VARCHAR See DATASOURCE_NAME
in Table:
model.ALL_DATASOURCES

GUID: VARCHAR 128 bit unique identifier

ANNOTATION: VARCHAR Annotation for the procedure

OWNER_ID: INTEGER Identifier of the person who
created/owns the procedure.
Same as USER_ID in Table:
ALL_USERS
TIBCO® Data Virtualization

SQL Script Procedures |379
Logging

To turn on debug logging, set the following in conf/server/log4j.properties
log4j.logger.com.compositesw.server.qe.physical.ddl=DEBUG

OWNER: VARCHAR User name of the person who
created/owns the
procedureSame as
USERNAME in Table:
ALL_USERS

PARENT_PATH: VARCHAR Path to the parent container.

IS_AUTO_GENERATED VARCHAR Indicates if the parent folder
has an attribute called
'webui_model'. If attribute is
present, the value is 'YES' else
'NO'

PROCEDURE_CREATOR_ID
:

INTEGER Identifier of the user who
created this procedure. Same
as USER_ID in Table:
ALL_USERS

PROCEDURE_CREATION_T
IMESTAMP:

BIGINT Timestamp when the
procedure was created.

PROCEDURE_MODIFIER_I
D:

INTEGER Identifier of the user who last
modified this procedure.
Same as USER_ID in Table:
ALL_USERS

PROCEDURE_MODIFICATI
ON_TIMESTAMP:

BIGINT Timestamp of the last
modification of this
procedure.

IMPACT_MESSAGE VARCHAR Impact message indicating
errors.

Column name TDV JDBC Data
Type Nullable Description
 TIBCO® Data Virtualization

380 | SQL Script Procedures
Create Script

When a script "/shared/examples/ctasScript" is created with attribute "script", a
DEBUG message is logged like below in the cs_server.log file:

DEBUG 2019-04-09 11:54:51.992 -0700 DDLNode - About to execute: CREATE
SCRIPT /shared/examples/ctasScript
 DEFINE AS PROCEDURE ctasScript()
BEGIN
 CREATE TABLE /shared/examples/ds_inventory/tutorial/OrdersTable AS
SELECT OrderId, ProductID, Discount, OrderDate, CompanyName,
CustomerContactFirstName, CustomerContactLastName, CustomerContactPhone
FROM /shared/examples/ViewOrder;

"IF NOT EXISTS" can be specified in the CREATE SCRIPT command optionally.
When script being created does not exist, its created. If resource already exists, no
error is thrown when IF NOT EXISTS keywords are specified. Note that the
procedure name mentioned in the script and the name of the script must be the
same, else the script creation will fail and will throw an error.

Alter Script

The script is marked impacted when errors are found during compilation. During
an alter, the following DEBUG message is logged in the cs_server.log file, if
debugging is enabled

DEBUG 2019-04-09 12:17:57.978 -0700 DDLNode - About to execute: ALTER
SCRIPT /shared/examples/ctasScript
 DEFINE AS PROCEDURE ctasScript()
BEGIN
 CREATE TABLE /shared/examples/ds_inventory/tutorial/OrdersTable AS
SELECT OrderId, ProductID, OrderDate, CustomerContactFirstName,
CustomerContactLastName
FROM /shared/examples/ViewOrder
;
END
 SET ANNOTATION 'this SCRIPT is altered using DSL'

Delete Script

During a delete operation, the following DEBUG message is logged.
DEBUG 2019-04-09 13:14:38.300 -0700 DDLNode - About to execute: DROP SCRIPT
/shared/examples/ctasScript

"IF EXISTS" can be specified optionally with the DROP SCRIPT command. When
script being dropped exists, it is dropped. When script being dropped does not
exist, and "IF EXISTS" keywords are used, no error is thrown.
TIBCO® Data Virtualization

Folders |381
Folders

Using DSL & REST APIs, Folders can be created, altered or deleted. Folder and its
properties can be read from system tables under
/services/databases/system/model.

DSL Syntax

Using the following DSL syntax, the "rest/execute/v1/actions/dsl/invoke" REST
API can be executed to Create, Update and Delete folders.

DROP FOLDER (IF EXISTS)? /path/name

———

CREATE FOLDER (IF NOT EXISTS)? '/parentPath/folderName'

(SET PROPERTIES {json_object})?

(SET ANNOTATION ‘this is a FOLDER created using DSL api’ | NULL)?

———

ALTER FOLDER '/parentPath/folderName' (RELOCATE TO '/newParent/newName')?

(SET PROPERTIES {json_object})?

(SET ANNOTATION ‘this is a FOLDER altered using DSL api’ | NULL)?

———

SELECT * FROM model.ALL_RESOURCE_PROPERTIES WHERE

 PROPERTY_NAME = 'propName' AND

 METADATA_ID =
 (SELECT FOLDER_ID FROM model.ALL_FOLDERS

 WHERE FOLDER_NAME = 'name' AND //name of folder

 PARENT_PATH = '/path'); //parent path of the folder

Considerations

Listed below are some points to consider while working with Folders:

• "SET PROPERTIES" syntax is optional for both Create and Alter syntax.
 TIBCO® Data Virtualization

382 | Folders
• Annotation, if any specified on the folder is saved into the folder metadata as
well.

• Use the "CREATE FOLDER IF NOT EXISTS" syntax to create a new folder to
avoid any error messages to be displayed when the folder already exists.

• By default Read, Write and Grant privileges are provided to the owner and all
privileges to the admin users or users in admin group.

• Alter folder syntax supports both relocate and rename operations of folders.
When a folder is relocated to another parent path, and if the parent path does
not exist, it is created automatically before folder is created. When a folder is
relocated to another path that already exists, an error is thrown. Note that
there is no IF NOT EXISTS syntax on "alter folder" command.

• "RELOCATE TO" syntax is used for relocating the folders as well as renaming
folders.

• The created folder can be viewed from the Studio as well.

• When a folder is created or altered, the
model.ALL_RESOURCE_PROPERTIES table is updated with the properties
of the folder like "annotation".

Examples

Create Folder
curl -d
"[\"CREATE FOLDER /shared/examples/folder2
 SET ANNOTATION 'this folder is created using DSL'
\"]"
-u "admin:admin" -X POST
"http://localhost:9400/rest/execute/v1/actions/dsl/invoke" -H
"Content-Type:application/json"

Delete folder
curl -d "[\"DROP FOLDER /shared/examples/folder2\"]" -u "admin:admin" -X
POST "http://localhost:9400/rest/execute/v1/actions/dsl/invoke" -H
"Content-Type:application/json"

Alter Folder
curl -d "[\"ALTER FOLDER /shared/examples/folder2
 SET ANNOTATION 'this folder is altered using DSL'
 \"]"
-u "admin:admin" -X POST
"http://localhost:9400/rest/execute/v1/actions/dsl/invoke" -H
"Content-Type:application/json"
TIBCO® Data Virtualization

Folders |383
Read Property creationDate from a Folder
SELECT * FROM /services/databases/system/model/ALL_RESOURCE_PROPERTIES
where
 PROPERTY_NAME = 'creationDate' AND

 METADATA_ID =
 (SELECT FOLDER_ID FROM
/services/databases/system/model/ALL_FOLDERS

 WHERE FOLDER_NAME = 'dslFolder' AND

 PARENT_PATH = '/users/composite/admin')
 ;

System Tables

ALL_FOLDERS

The model.ALL_FOLDERS table has the following columns:

Column name TDV JDBC Data
Type Nullable Description

FOLDER_ID: INTEGER Identifier of the folder.

FOLDER_NAME VARCHAR Name of the folder

GUID CHAR 128 bit unique identifier.

ANNOTATION VARCHAR Annotation for the folder

OWNER_ID INTEGER Identifier of the person who
created/owns the folder.
Same as USER_ID in Table:
ALL_USERS

OWNER VARCHAR User name of the person who
created/owns the folder.
Same as USERNAME in
Table: ALL_USERS

PARENT_PATH VARCHAR Path to the parent container.

FOLDER_CREATION_TIME
STAMP

BIGINT Timestamp when the folder
was created.
 TIBCO® Data Virtualization

384 | Virtual Databases
This table is similar to system.ALL_PUBLISHED_FOLDERS table that represents
only the folders created under /services/webservices folder.

The model.ALL_FOLDERS table does not include the folders starting with system
paths like /policy "/system", "/deployment", "/scratch", "/security",
"/packages", "/vcs_sources" or "/services/databases". This table does not include
the folders owned by 'system' user.

The existing ALL_PUBLISHED_FOLDERS will continue to show only any folders
that may be present under /services/webservices folder.

Logging

During create or alter, a DEBUG message is logged like below :

DEBUG 2019-06-11 14:33:11.174 -0700 DDLNode - About to execute: CREATE
FOLDER /shared/examples/folder2

SET ANNOTATION 'this folder is created using DSL'

Virtual Databases

Using DSL & REST APIs, Virtual Databases can be created, altered or deleted.
Virtual databases refer to the published databases under /services/databases.
Virtual database and its properties can be read from system tables under
/services/databases/system/model.

FOLDER_MODIFICATION_
TIMESTAMP

BIGINT Timestamp of the last
modification of this folder.

FOLDER_CREATOR_ID INTEGER Identifier of the user who
created this folder. Same as
USER_ID in Table:
ALL_USERS

FOLDER_MODIFIER_ID INTEGER Identifier of the user who last
modified this folder. Same as
USER_ID in Table:
ALL_USERS

Column name TDV JDBC Data
Type Nullable Description
TIBCO® Data Virtualization

Virtual Databases |385
DSL Syntax

Using the DSL syntax mentioned below,, the "rest/execute/v1/
actions/dsl/invoke" REST API can be executed to create, upodate and delete
virtual databases:

DROP VIRTUAL DATABASE (IF EXISTS)? ‘name’

———

CREATE VIRTUAL DATABASE (IF NOT EXISTS)? ‘name’

(SET ANNOTATION ‘this is a virtual db created using DSL api’ | NULL)?

———

ALTER VIRTUAL DATABASE ‘name’ (RENAME AS ‘newName’)?

(SET ANNOTATION ‘this is a virtual db created using DSL api’ | NULL)?

———

SELECT * FROM model.ALL_DATASOURCES WHERE PARENT_PATH =

'/services/databases' //to view all published virtual relational
datasources

———

//to get the resource properties

SELECT * FROM model.ALL_RESOURCE_PROPERTIES WHERE

 METADATA_ID =
 (SELECT DATASOURCE_ID FROM model.ALL_DATASOURCES

 WHERE DATASOURCE_NAME = 'name' AND

//name of virtual db

 PARENT_PATH = '/services/databases');

//parent path of the folder

———

//to get database attribute definitions for Composite Database.

SELECT * FROM model.SYS_DATASOURCE_ATTRIBUTE_DEFS WHERE adapter_name =

'COMPOSITE_DATABASE'

Considerations

Listed below are some points to consider while working with Virtual Databases:
 TIBCO® Data Virtualization

386 | Virtual Databases
• During creation of virtual database, the adapter name used is
"COMPOSITE_DATABASE".

• The DATASOURCE_TYPE of a virtual database is "VirtualRelational".

• Use the "CREATE VIRTUAL DATABASE IF NOT EXISTS" syntax to avoid
any duplicate error messages.

• For annotation QUOTED_STRING, an explicit NULL keyword or a quoted
string 'NULL' can be specified. This is to allow annotation to be unset or set to
null explicitly.

• The virtual databases are created in the "/services/databases" area.

• Altering a virtual database can alter the annotation or rename the virtual
database. Use the "RENAME AS" syntax to rename a published database.

• IF EXISTS" syntax in DROP to avoid any error messages, in case the resource
is not found.

Examples

Create a Virtual Database

curl -d "[\"CREATE VIRTUAL DATABASE 'PUB1' SET ANNOTATION 'this is a virtual
db'\"]"
 -u "admin:admin"
 -X POST "http://localhost:9400/rest/execute/v1/actions/dsl/invoke"
 -H "Content-Type:application/json"

Rename a Virtual database

curl -d "[\"ALTER VIRTUAL DATABASE 'PUB1' RENAME AS 'renamedpub'\"]"
 -u "admin:admin"
 -X POST "http://localhost:9400/rest/execute/v1/actions/dsl/invoke"
 -H "Content-Type:application/json"

Edit annotation

curl -d "[\"ALTER VIRTUAL DATABASE 'PUB1' SET ANNOTATION 'altered virtual
db'\"]"
 -u "admin:admin"
 -X POST "http://localhost:9400/rest/execute/v1/actions/dsl/invoke"
 -H "Content-Type:application/json"
TIBCO® Data Virtualization

Virtual Tables and Procedures |387
Delete if exists /services/databases/renamedpub

curl -d "[\"DROP VIRTUAL DATABASE IF EXISTS 'renamedpub'\"]"
 -u "admin:admin"
 -X POST "http://localhost:9400/rest/execute/v1/actions/dsl/invoke"
 -H "Content-Type:application/json"

Get Virtual DB properties

SELECT * FROM /services/databases/system/model/ALL_RESOURCE_PROPERTIES
WHERE metadata_id=
 (select datasource_id from
/services/databases/system/model/ALL_DATASOURCES
 where datasource_name = 'publishedDB' and parent_path =
'/services/databases')

System Tables

Virtual databases are listed in

• /services/databases/system/model/ALL_DATASOURCES

• /services/databases/system/ALL_DATASOURCES.

The model schema version has a few extra columns such as IS_PUBLISHED,
ADAPTER_NAME and ADAPTER_TYPE_CATEGORY).

The properties are saved in

• /services/databases/system/model/ALL_RESOURCE_PROPERTIES

Virtual Tables and Procedures

Using DSL & REST APIs, Virtual Tables and Procedures can be created, altered or
deleted. Virtual database and its properties can be read from system tables under
/services/databases/system/model.

DSL Syntax

Using the DSL syntax mentioned below,, the "rest/execute/v1/
actions/dsl/invoke" REST API can be executed to CUD virtual tables or
procedures:

DROP VIRTUAL TABLE|PROCEDURE (IF EXISTS)? /path/name
 TIBCO® Data Virtualization

388 | Virtual Tables and Procedures

———

CREATE VIRTUAL TABLE|PROCEDURE (IF NOT EXISTS)? /path/name

SET TARGET /path/name

(SET ANNOTATION ‘this is a link created using DSL api’ | NULL)?

———

ALTER VIRTUAL TABLE|PROCEDURE /path/name (RELOCATE TO /path/newName)?

(SET TARGET /path/name)?

(SET ANNOTATION ‘this is a link created using DSL api’ | NULL)?

———

SELECT * FROM model.ALL_TABLES WHERE PARENT_PATH =
'/services/databases/publishedDB' //to view all published virtual
tables

SELECT * FROM model.ALL_PROCEDURES WHERE PARENT_PATH =
'/services/databases/publishedDB' //to view all published virtual
procedures

———

//to get the resource properties

SELECT * FROM model.ALL_RESOURCE_PROPERTIES WHERE

 METADATA_ID =
 (SELECT TABLE_ID FROM model.ALL_TABLES

 WHERE TABLE_NAME = 'name' AND
//name of virtual table
 PARENT_PATH = '/services/databases/publishedDB');
//parent path of the published resource

Considerations

Listed below are some points to consider while working with Virtual Tables and
Procedures:

• Virtual Table / Procedure DSL can be executed using:

For Create/Alter/Delete: http://localhost:9400/rest/execute/v1/
actions/ dsl/invoke

For read: http://localhost:9400/rest/execute/v1/actions/query/invoke
TIBCO® Data Virtualization

Virtual Tables and Procedures |389
• During creation of virtual table or procedure, a target is to be specified which
refers to the base table or procedure in non-published area. "target" is
mandatory in a create command. Specifying target is optional in an alter
command and when specified during alter, its used to change the target.

• Validation is performed to check if the specified target is of type TABLE or
PROCEDURE specified in the DSL command.

• Use the "CREATE VIRTUAL TABLE|PROCEDURE IF NOT EXISTS" syntax
to avoid any error messages if the virtual table or procedure already exists.

• For annotation QUOTED_STRING, an explicit NULL keyword or simply
‘NULL’ can be specified. This is to allow annotation to be unset or set to null
explicitly.

• Altering a virtual table or procedure can also alter the annotation or
rename/relocate the virtual table or procedure.

• Drop virtual table or procedure includes an "IF EXISTS" syntax. When this is
specified, error will not be displayed for non-existent resources.

Examples

Create a Virtual Table
curl -d "[\"CREATE VIRTUAL TABLE /services/databases/PUB3/link1 SET TARGET
/shared/examples/ds_orders/tutorial/customers SET ANNOTATION 'this is a
published table'\"]"
 -u "admin:admin"
 -X POST "http://localhost:9400/rest/execute/v1/actions/dsl/invoke"
 -H "Content-Type:application/json"

Create a Virtual Procedure
curl -d "[\"CREATE VIRTUAL PROCEDURE /services/databases/PUB3/link2 SET
TARGET /shared/examples/LookupProduct SET ANNOTATION 'this is a published
procedure'\"]"
 -u "admin:admin"
 -X POST "http://localhost:9400/rest/execute/v1/actions/dsl/invoke"
 -H "Content-Type:application/json"

Rename & Relocate a Virtual table
//only rename
curl -d "[\"ALTER VIRTUAL TABLE /services/databases/PUB3/link1 RELOCATE TO
/services/databases/PUB3/renamedlink1 SET ANNOTATION 'altered virtual
table'\"]"
 -u "admin:admin"
 -X POST "http://localhost:9400/rest/execute/v1/actions/dsl/invoke"
 -H "Content-Type:application/json"

 TIBCO® Data Virtualization

390 | Virtual Tables and Procedures
//Both rename and relocate
curl -d "[\"ALTER VIRTUAL TABLE /services/databases/PUB3/link1 RELOCATE TO
/services/databases/publishedDB/renamedlink1 SET ANNOTATION 'altered
virtual table'\"]"
 -u "admin:admin"
 -X POST "http://localhost:9400/rest/execute/v1/actions/dsl/invoke"
 -H "Content-Type:application/json"

Unset annotation
curl -d "[\"ALTER VIRTUAL TABLE /services/databases/PUB3/link1 SET
ANNOTATION NULL\"]"
 -u "admin:admin"
 -X POST "http://localhost:9400/rest/execute/v1/actions/dsl/invoke"
 -H "Content-Type:application/json"

Alter Virtual Table Target
curl -d "[\"ALTER VIRTUAL TABLE /services/databases/PUB3/link1 SET TARGET
/shared/examples/ds_orders/tutorial/employees SET ANNOTATION 'altered
virtual procedure with table target'\"]"
 -u "admin:admin"
 -X POST "http://localhost:9400/rest/execute/v1/actions/dsl/invoke"
 -H "Content-Type:application/json"

Delete Virtual Table
curl -d "[\"DROP VIRTUAL TABLE /services/databases/PUB3/link1\"]"
 -u "admin:admin"
 -X POST "http://localhost:9400/rest/execute/v1/actions/dsl/invoke"
 -H "Content-Type:application/json"

Delete Virtual Procedure IF EXISTS
curl -d "[\"DROP VIRTUAL PROCEDURE IF EXISTS
/services/databases/PUB3/link2\"]"
 -u "admin:admin"
 -X POST "http://localhost:9400/rest/execute/v1/actions/dsl/invoke"
 -H "Content-Type:application/json"

Get Virtual Table Properties
curl -u "admin:admin" -X POST
"http://localhost:9400/rest/execute/v1/actions/query/invoke" -H
"Content-Type:application/json"
 -d "{\"query\":\"SELECT * FROM model.ALL_RESOURCE_PROPERTIES props
 WHERE metadata_id = (SELECT table_id FROM model.ALL_TABLES
where table_name = 'link1' and
parent_path='/services/databases/publishedDB')\",
 \"standardSQL\":true}"
TIBCO® Data Virtualization

Virtual Schemas |391
System Tables

Virtual tables are listed in:

• /services/databases/system/model/ALL_TABLES

• /services/databases/system/ALL_TABLES.

Virtual procedures are listed in:

• /services/databases/system/model/ALL_PROCEDURES

• /services/databases/system/ALL_PROCEDURES.

“The model schema version has extra columns such as IS_AUTO_GENERATED
and IMPACT_MESSAGE

The properties are saved in
/services/databases/system/model/ALL_RESOURCE_PROPERTIES table.

Logging

To turn on debug logging for these commands, set the following in
conf/server/log4j.properties

log4j.logger.com.compositesw.server.qe.physical.ddl=DEBUG

A DEBUG message is logged in the cs_server.log when debugging is enabled.

Virtual Schemas

Using DSL & REST APIs, Virtual Schemas can be created, altered and deleted.
Virtual schemas refer to the schemas in the published area under
/services/databases. Virtual schema and its properties can be read from system
tables under /services/databases/system/model.

DSL Syntax

Using the DSL syntax mentioned below,, the "rest/execute/v1/
actions/dsl/invoke" REST API can be executed to create, update and delete
virtual schemas.

DROP VIRTUAL SCHEMA (IF EXISTS)? /path/name

———

CREATE VIRTUAL SCHEMA (IF NOT EXISTS)? /path/name
 TIBCO® Data Virtualization

392 | Virtual Schemas

(SET ANNOTATION ‘this is a virtual schema created using DSL api’ | NULL)?

———

ALTER VIRTUAL SCHEMA /path/name (RELOCATE TO /path/newName)?

(SET ANNOTATION ‘this is a virtual schema created using DSL api’ | NULL)?

———

SELECT * FROM model.ALL_SCHEMAS WHERE PARENT_PATH =
'/services/databases/publishedDB' //to view published virtual schemas

———

//to get the resource properties

SELECT * FROM model.ALL_RESOURCE_PROPERTIES WHERE

 METADATA_ID =
 (SELECT SCHEMA_ID FROM model.ALL_SCHEMAS

 WHERE SCHEMA_NAME = 'name' AND
//name of virtual schema
 PARENT_PATH = '/services/databases/publishedDB');
//parent path of the published schema

Considerations

Listed below are some points to consider while working with Virtual Schemas:

• Virtual Schema DSL can be executed using

for create/alter/delete - http://localhost:9400/rest/
execute/v1/actions/dsl/invoke

for read - http://localhost:9400/rest/execute/v1/actions/query/invoke

• For annotation QUOTED_STRING, an explicit NULL keyword or a quoted
string 'NULL' can be specified. This is to allow annotation to be unset or set to
null explicitly.

• Altering a virtual schema can alter the annotation or rename/relocate the
virtual schema.
TIBCO® Data Virtualization

Virtual Schemas |393
Examples

Create a Virtual Schema

curl -d "[\"CREATE VIRTUAL SCHEMA /services/databases/PUB3/sch1 SET
ANNOTATION 'this is a published schema'\"]"
 -u "admin:admin"
 -X POST "http://localhost:9400/rest/execute/v1/actions/dsl/invoke"
 -H "Content-Type:application/json"

Create a Virtual Schema If not exists

curl -d "[\"CREATE VIRTUAL SCHEMA IF NOT EXISTS
/services/databases/PUB3/sch1 SET ANNOTATION 'this is a published
schema'\"]"
 -u "admin:admin"
 -X POST "http://localhost:9400/rest/execute/v1/actions/dsl/invoke"
 -H "Content-Type:application/json"

Rename & Relocate a Virtual schema

//only rename
curl -d "[\"ALTER VIRTUAL SCHEMA /services/databases/PUB3/sch1 RELOCATE TO
/services/databases/PUB3/sch2 SET ANNOTATION 'renamed virtual schema'\"]"
 -u "admin:admin"
 -X POST "http://localhost:9400/rest/execute/v1/actions/dsl/invoke"
 -H "Content-Type:application/json"

//Both rename and relocate
curl -d "[\"ALTER VIRTUAL SCHEMA /services/databases/PUB3/sch2 RELOCATE TO
/services/databases/publishedDB/sch3 SET ANNOTATION 'altered virtual
schema'\"]"
 -u "admin:admin"
 -X POST "http://localhost:9400/rest/execute/v1/actions/dsl/invoke"
 -H "Content-Type:application/json"

System Tables

Virtual schemas are listed in

• /services/databases/system/model/ALL_SCHEMAS

• /services/databases/system/ALL_SCHEMAS.

The properties are saved in
 TIBCO® Data Virtualization

394 | Virtual Catalogs
• /services/databases/system/model/ALL_RESOURCE_PROPERTIES table.

Virtual Catalogs

Using DSL & REST APIs, Virtual Catalogs can be created, altered, deleted. Virtual
catalogs refer to the catalogs in the published area under /services/databases.
Virtual catalog and its properties can be read from system tables under
/services/databases/system/model.

DSL Syntax

Using a sample DSL syntax mentioned below,, the "rest/execute/v1/
actions/dsl/invoke" REST API can be executed to create, update and delete
virtual catalogs:

DROP VIRTUAL CATALOG (IF EXISTS)? /path/name

———

CREATE VIRTUAL CATALOG (IF NOT EXISTS)? /path/name

(SET ANNOTATION ‘this is a virtual catalog created using DSL api’ | NULL)?

———

ALTER VIRTUAL CATALOG /path/name (RELOCATE TO /path/newName)?

(SET ANNOTATION ‘this is a virtual catalog created using DSL api’ | NULL)?

———

SELECT * FROM model.ALL_CATALOGS WHERE PARENT_PATH =
'/services/databases/publishedDB' //to view published virtual catalog

———

//to get the resource properties

SELECT * FROM model.ALL_RESOURCE_PROPERTIES WHERE

 METADATA_ID =
 (SELECT CATALOG_ID FROM model.ALL_CATALOGS

 WHERE CATALOG_NAME = 'name' AND
//name of virtual catalog
 PARENT_PATH = '/services/databases/publishedDB');
//parent path of the published catalog
TIBCO® Data Virtualization

Virtual Catalogs |395
Considerations

Listed below are some points to consider while working with Virtual Catalogs:

• Virtual Catalog DSL can be executed using

For create/alter/delete - http://localhost:9400/rest/execute/v1/
actions/dsl/invoke

For read - http://localhost:9400/rest/execute/v1/actions/query/invoke

• For annotation QUOTED_STRING, an explicit NULL keyword or a quoted
string 'NULL' can be specified. This is to allow annotation to be unset or set to
null explicitly.

• Altering a virtual catalog can alter the annotation or rename/relocate the
virtual catalog.

Examples

Create a Virtual Catalog
curl -d "[\"CREATE VIRTUAL CATALOG /services/databases/PUB3/cat1 SET
ANNOTATION 'this is a published catalog'\"]"
 -u "admin:admin"
 -X POST "http://localhost:9400/rest/execute/v1/actions/dsl/invoke"
 -H "Content-Type:application/json"

Create a Virtual Catalog If not exists
curl -d "[\"CREATE VIRTUAL CATALOG IF NOT EXISTS
/services/databases/PUB3/cat1 SET ANNOTATION 'this is a published
catalog'\"]"
 -u "admin:admin"
 -X POST "http://localhost:9400/rest/execute/v1/actions/dsl/invoke"
 -H "Content-Type:application/json"

Rename & Relocate a Virtual catalog
//only rename
curl -d "[\"ALTER VIRTUAL CATALOG /services/databases/PUB3/cat1 RELOCATE TO
/services/databases/PUB3/cat2 SET ANNOTATION 'renamed virtual catalog'\"]"
 -u "admin:admin"
 -X POST "http://localhost:9400/rest/execute/v1/actions/dsl/invoke"
 -H "Content-Type:application/json"

//Both rename and relocate
curl -d "[\"ALTER VIRTUAL CATALOG /services/databases/PUB3/cat2 RELOCATE TO
/services/databases/publishedDB/cat3 SET ANNOTATION 'altered virtual
catalog'\"]"
 -u "admin:admin"
 -X POST "http://localhost:9400/rest/execute/v1/actions/dsl/invoke"
 TIBCO® Data Virtualization

396 | DSL Support in SQL Scripts
 -H "Content-Type:application/json"

System Tables

Virtual catalogs are listed in:

• /services/databases/system/model/ALL_CATALOGS

• /services/databases/system/ALL_CATALOGS.

The properties are saved in

• /services/databases/system/model/ALL_RESOURCE_PROPERTIES

Logging

To turn on debug logging for these commands, please set the following in
conf/server/log4j.properties
log4j.logger.com.compositesw.server.qe.physical.ddl=DEBUG

During these operations, a DEBUG message is logged in the cs_server.log when
debugging is enabled.

DSL Support in SQL Scripts

Multiple DSL statements of the following types may be specified in any order of
CREATE, ALTER, DELETE statements. If any errors are found, the
IMPACT_MESSAGE will show a non-null error message. Once the errors are
corrected and saved, the IMPACT_MESSAGE will become NULL again.

• Virtual Database

• Virtual Table/Procedure

• Virtual Schema

• Table

Examples

Script containing multiple DSL statements
CREATE SCRIPT /shared/examples/testscript DEFINE AS PROCEDURE pubdbScr3()
 BEGIN
 CREATE VIRTUAL DATABASE 'PUB5';
TIBCO® Data Virtualization

DSL Support in SQL Scripts |397
 CREATE VIRTUAL TABLE /services/databases/PUB5/link2 SET TARGET
/shared/examples/ds_orders/tutorial/view1;
 END

Script containing multiple DSL statements - Impacted
CREATE SCRIPT /shared/examples/testscript DEFINE AS PROCEDURE pubdbScr3()
 BEGIN
 CREATE VIRTUAL DATABASE 'PUB5';
 DROP VIRTUAL DATABASE 'PUB5';
 CREATE VIRTUAL TABLE /services/databases/PUB5/link2 SET TARGET
/shared/examples/ds_orders/tutorial/view1;
 END

The above example shows an impacted procedure because the virtual database
'PUB5' is being deleted before virtual table is created under 'PUB5'. Hence the
IMPACT_MESSAGE of "testscript" procedure will show the error message.
 TIBCO® Data Virtualization

398 | DSL Support in SQL Scripts
TIBCO® Data Virtualization

REST API |399
REST API

REST APIs provide a different means of executing most of the tasks that can be
accomplished in Studio.These tasks can be duplicated with the appropriate web
service operation invocation, or sequence of operation invocations from the
Admin API. This gives the administrators the flexibility to script common tasks
rather than using the Studio or Manager GUI.

This chapter describes all the built-in REST APIs in the TDV Server.

TDV Server REST APIs

TDV provides a list of APIs to manage the resources. This section explains the all
the operations that can be performed on the resources by using REST APIs for the
following TDV features:

• Catalog, page 400

• Column-Based Security, page 404

• Datasource, page 413

• Dataview, page 424

• Deployment Manager, page 428

• Execute, page 436

• Folders, page 442

• Link, page 447

• Resource, page 452

• Schema, page 454

• Script, page 459

• Security, page 463

• Session, page 467

• Version Control System, page 469

• Workload Management, page 485

• Auth, page 492
 TIBCO® Data Virtualization

400 | TDV Server REST APIs
Catalog

Using the Catalog REST API, you can create, delete, update and read virtual
(published) catalogs. The operations that can be performed on the virtual catalogs
are:

• GET/catalog

• PUT/catalog

• POST/catalog

• DELETE/catalogs

• DELETE/catalog

GET/catalog

This API is used to get virtual catalog summary and/or detailed information.

Parameters

Example to get summary of virtual catalog
"/services/databases/publishedDB/cat1"

curl -X GET -u admin:admin
"http://localhost:9400/rest/catalog/v1/virtual?path=%2Fservices%2F
databases%2FpublishedDB%2Fcat1&summary=true" -H
"Content-Type:application/json"

Example to get detailed information about a virtual catalog
"/services/databases/publishedDB/cat1"

curl -X GET -u admin:admin
"http://localhost:9400/rest/catalog/v1/virtual?path=%2Fservices%2F
databases%2FpublishedDB%2Fcat1" -H "Content-Type:application/json"

PUT/catalog

This API is used to update virtual catalogs.

Name Deacription Parameter Type Data Type

path Virtual catalog path query string

summary Fetch virtual catalog
summary

query boolean
TIBCO® Data Virtualization

TDV Server REST APIs |401
Parameters

None.

Request Body

Example Value - Schema

[
{
"path": "string",
"annotation": "string",
"newPath": "string",
"ifNotExists": true
}
]

Example to update annotation and rename a published catalog
"/services/databases/publishedDB/cat1 to /services/databases/
publishedDB/cat2"

curl -X PUT -u admin:admin
"http://localhost:9400/rest/catalog/v1/virtual" -H
"Content-Type:application/json" -d
"[{\"path\":\"/services/databases/publishedDB/cat1\",
\"annotation\":\"Edited published catalog created using REST api\",
\"newPath\":\"/services/databases/publishedDB/cat2\" }]"

Example to update annotation and relocate a published catalog
"/services/databases/publishedDB/cat2 to /services/databases/
publishedDB1/cat2"

curl -X PUT -u admin:admin
"http://localhost:9400/rest/catalog/v1/virtual" -H
"Content-Type:application/json" -d
"[{\"path\":\"/services/databases/publishedDB/cat2\",
\"annotation\":\"Edited published catalog created using REST api\",
\"newPath\":\"/services/databases/publishedDB1/cat2\" }]"

Example to unset annotation of a published catalog
"/services/databases/publishedDB/cat1"

curl -X PUT -u admin:admin
"http://localhost:9400/rest/catalog/v1/virtual" -H
"Content-Type:application/json" -d
"[{\"path\":\"/services/databases/publishedDB/cat1\",
\"annotation\":\"null\"}]"
 TIBCO® Data Virtualization

402 | TDV Server REST APIs
POST/catalog

This API is used to create virtual catalogs.

Parameters

None.

Request Body

Example Value - Schema

[
{
"path": "string",
"annotation": "string",
"newPath": "string",
"ifNotExists": true
}
]

Example to create virtual catalog "/services/databases/publishedDB/cat1"

curl -X POST -u admin:admin
"http://localhost:9400/rest/catalog/v1/virtual" -H
"Content-Type:application/json" -d
"[{\"path\":\"/services/databases/publishedDB/cat1\",
\"annotation\":\"This is a published catalog created using REST
api\" }]"

Example to create virtual catalog "/services/databases/publishedDB/cat1"
with "ifNotExists" syntax

curl -X POST -u admin:admin
"http://localhost:9400/rest/catalog/v1/virtual" -H
"Content-Type:application/json" -d
"[{\"path\":\"/services/databases/publishedDB/cat1\",
\"ifNotExists\":true, \"annotation\":\"This is a published catalog
created using REST api\" }]"

DELETE/catalogs

This API is used to delete virtual catalogs.
TIBCO® Data Virtualization

TDV Server REST APIs |403
Parameters

Request Body

Example Value - Schema

[
"string"
]

Example to delete virtual catalogs "/services/databases/publishedDB/cat1"
and "/services/databases/publishedDB/cat2"

Sample CURL Invocation

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/catalog/v1/virtual" -H
"Content-Type:application/ json" -d
"[\"/services/databases/publishedDB/cat1\", \"/services/databases/
publishedDB/cat2\"]"

Sample CURL Invocation with ifExists

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/catalog/v1/virtual?ifExists=true" -H
"Content-Type:application/json" -d
"[\"/shared/examples/publishedDB/cat2\"]"

DELETE/catalog

This API is used to delete a specific virtual catalog.

Parameters

Request Body

Example Value - Schema

Name Deacription Parameter Type Data Type

ifExists If the catalogs exist query boolean

Name Deacription Parameter Type Data Type

ifExists If the catalogs exist query boolean
 TIBCO® Data Virtualization

404 | TDV Server REST APIs
[
"string"
]

Example to delete virtual catalog

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/catalog/v1/virtual/{catalogPath}?ifExi
sts=true" -H "Content-Type: application/json"

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/catalog/v1/virtual/%2Fservices%2Fdatab
ases%2Fpubdb%2Fcatalog1?ifExists=true" -H
"Content-Type:application/json"

Column-Based Security

Column-Based Security policies can be assigned to/deleted/updated from the
TDV resources. The operations that can be performed on the resources are:

• GET /assignments

• POST /assignments

• PUT /assignments

• DELETE /assignments

• GET /enable

• PUT /enable

• GET /policies

• POST /policies

• PUT /policies

• DELETE /policies

• GET /policyDataTypeMap

• GET /policyDataTypes

• GET /ruleDataTypeMap

GET /assignments

This API is used to get cbs assignments.
TIBCO® Data Virtualization

TDV Server REST APIs |405
Parameters:

Example to Get all cbs assignments:

curl -X GET -u admin:admin
"http://localhost:9400/rest/cbs/v1/assignments"

Example to Get cbs policy “policy/cbs/cbs1” assignments

curl -X GET -u admin:admin
"http://localhost:9400/rest/cbs/v1/assignments?policyPath=/policy/
cbs/cbs1"

Example to Get resource “/shared/examples/ViewOrder” assignments

curl -X GET -u admin:admin
"http://localhost:9400/rest/cbs/v1/assignments?resourcePath=/share
d/examples/ViewOrder&resourceType=TABLE"

Example to Get cbs policy“/policy/cbs/cbs1” assignment to resource
“/shared/examples/ViewOrder” assignments

curl -X GET -u admin:admin
"http://localhost:9400/rest/cbs/v1/assignments?policyPath=/policy/
cbs/cbs1&resourcePath=/shared/examples/ViewOrder&resourceType=TABL
E"

Example to Get cbs policy“/policy/cbs/cbs1” assignment to resource
“/shared/examples/ViewOrder” column “companyName” assignments

curl -X GET -u admin:admin
"http://localhost:9400/rest/cbs/v1/assignments?policyPath=/policy/
cbs/cbs1&resourcePath=/shared/examples/ViewOrder&resourceType=TABL
E&columnName=companyName"

Name Value Parameter Type Data Type

policyPath query string

resourcePath query string

resourceType query string

columnName query string
 TIBCO® Data Virtualization

406 | TDV Server REST APIs
POST /assignments

This API is used to add cbs assignments.

Parameters:

None

Request Body

Example Value: Schema

[
{
"columnName": "string",
"paramMap": {
"additionalProp1": "string",
"additionalProp2": "string",
"additionalProp3": "string"
},
"resourceType": "string",
"resourcePath": "string",
"policyPath": "string"
}
]

Example

curl -X POST -u admin:admin
"http://localhost:9400/rest/cbs/v1/assignments" -H
"Content-Type:application/json" -d "[{ \"policyPath\":
\"/policy/cbs/cbs1\",\"resourcePath\":\"/shared/examples/ViewOrder
\",
\"resourceType\":\"TABLE\",\"columnName\":\"CustomerContactPhone\"
,\"paramMap\":{}}]"

PUT /assignments

This API is used to update cbs assignments.

Parameters:

None
TIBCO® Data Virtualization

TDV Server REST APIs |407
Request Body

Example Value: Schema

[
{
"columnName": "string",
"paramMap": {
"additionalProp1": "string",
"additionalProp2": "string",
"additionalProp3": "string"
},
"resourceType": "string",
"resourcePath": "string",
"policyPath": "string"
}
]

Example

curl -X PUT -u admin:admin
"http://localhost:9400/rest/cbs/v1/assignments" -H
"Content-Type:application/json" -d "[{ \"policyPath\":
\"/policy/cbs/cbs1\",\"resourcePath\":\"/shared/examples/ViewOrder
\",
\"resourceType\":\"TABLE\",\"columnName\":\"CustomerContactPhone\"
,\"paramMap\":{}}]"

DELETE /assignments

This API is used to delete cbs assignments.

Parameters:

Example to delete cbs assignments associated with view

Name Description Parameter Type Data Type

resourcePath query String

resourceType query String

columnName query String
 TIBCO® Data Virtualization

408 | TDV Server REST APIs
"/shared/examples/ViewOrder" column "CustomerContactPhone"

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/cbs/v1/assignments?resourcePath=/share
d/examples/ViewOrder&resourceType=TABLE&columnName=CustomerContact
Phone"

Example to delete cbs assignments associate with view
"/shared/examples/ViewOrder"

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/cbs/v1/assignments?resourcePath=/share
d/examples/ViewOrder&resourceType=TABLE"

Example to delete all cbs assignments

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/cbs/v1/assignments"

GET /enable

This API is used to Get cbs status.

Parameters:

None

Example

curl -X GET -u admin:admin
"http://localhost:9400/rest/cbs/v1/enable"

PUT /enable

This API is used to enable or disable cbs.

Parameters:

Name Description Parameter Type Data Type

body body integer
TIBCO® Data Virtualization

TDV Server REST APIs |409
Example to enable cbs

curl -X PUT -u admin:admin
"http://localhost:9400/rest/cbs/v1/enable" -H
"Content-Type:application/json" -d "1"

Example to disable cbs

curl -X PUT -u admin:admin
"http://localhost:9400/rest/cbs/v1/enable" -H
"Content-Type:application/json" -d "0"

GET /policies

This API is used to get the cbs policies.

Parameters:

Example to get all cbs policies

curl -X GET -u admin:admin
"http://localhost:9400/rest/cbs/v1/policies"

Example to get cbs policy "/policy/cbs/cbs1"

curl -X GET -u admin:admin
"http://localhost:9400/rest/cbs/v1/policies?policyPath=/policy/cbs
/cbs1"

POST /policies

This API is used to create cbs policies.

Parameters:

None

Request Body

Example Value - Schema

Name Description Parameter Type Data Type

policyPath query string
 TIBCO® Data Virtualization

410 | TDV Server REST APIs
[
{
"path": "string",
"dataType": "string",
"maskingRules": [
{
"domainName": "string",
"userGroupName": "string",
"isGroup": true,
"isDefaultRule": true,
"ruleType": "string",
"selectableString": "string"
}
],
"annotation": "string",
"parameters": [
"string"
],
"newPath": "string",
"isEnabled": true
}
]

Example to create cbs policy "/policy/cbs/cbs1"

curl -X POST -u admin:admin
"http://localhost:9400/rest/cbs/v1/policies" -H
"Content-Type:application/json" -d
"[{\"path\":\"/policy/cbs/cbs1\",\"dataType\":\"integer\",
\"maskingRules\":[{\"isDefaultRule\": \"true\", \"ruleType\":
\"PASS_THROUGH\",\"selectableString\":
\"\"}],\"isEnabled\":\"true\" ,\"annotation\":\"the 1st cbs\" }]"

PUT /policies

This API is used to update cbs policies.

Parameters:

None

Request Body

Example Value - Schema
TIBCO® Data Virtualization

TDV Server REST APIs |411
[
{
"path": "string",
"dataType": "string",
"maskingRules": [
{
"domainName": "string",
"userGroupName": "string",
"isGroup": true,
"isDefaultRule": true,
"ruleType": "string",
"selectableString": "string"
}
],
"annotation": "string",
"parameters": [
"string"
],
"newPath": "string",
"isEnabled": true
}
]

Example to update cbs policy "/policy/cbs/cbs1"

curl -X PUT -u admin:admin
"http://localhost:9400/rest/cbs/v1/policies" -H
"Content-Type:application/json" -d
"[{\"path\":\"/policy/cbs/cbs1\",\"dataType\":\"integer\",
\"maskingRules\":[{\"isDefaultRule\": \"true\", \"ruleType\":
\"PASS_THROUGH\",\"selectableString\":
\"\"}],\"isEnabled\":\"true\" ,\"annotation\":\"update the 1st
cbs\" }]"

Example to rename cbs policy "/policy/cbs/cbs1" to "/policy/cbs/cbs2"

curl -X PUT -u admin:admin
"http://localhost:9400/rest/cbs/v1/policies" -H
"Content-Type:application/json" -d
"[{\"path\":\"/policy/cbs/cbs1\",\"newPath\":\"/policy/cbs/cbs2\",
\"dataType\":\"integer\", \"maskingRules\":[{\"isDefaultRule\":
\"true\", \"ruleType\": \"PASS_THROUGH\",\"selectableString\":
\"\"}],\"isEnabled\":\"true\" ,\"annotation\":\"update the 1st
cbs\" }]"
 TIBCO® Data Virtualization

412 | TDV Server REST APIs
DELETE /policies

This API is used to delete cbs policies.

Parameters:

Example to delete cbs policy "/policy/cbs/cbs1"

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/cbs/v1/policies?policyPath=/policy/cbs
/cbs1"

Example to delete all cbs policies

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/cbs/v1/policies"

GET /policyDataTypeMap

This API is used to get compatible policy and column data type map.

Parameters:

None

Example to get compatible policy and column data type map

curl -X GET -u admin:admin
"http://localhost:9400/rest/cbs/v1/policyDataTypeMap"

GET /policyDataTypes

This API is used to get supported cbs rule types.

Parameters:

None

Name Description Parameter Type Data Type

policyPath cbs policy path query string
TIBCO® Data Virtualization

TDV Server REST APIs |413
Example to get supported cbs rule types

curl -X GET -u admin:admin
"http://localhost:9400/rest/cbs/v1/policyDataTypes"

GET /ruleDataTypeMap

This API is used to get compatible rule and policy data type map.

Parameters:

None

Example to get compatible rule and policy data type map

curl -X GET -u admin:admin
"http://localhost:9400/rest/cbs/v1/ruleDataTypeMap"

Datasource

The datasource API provides the ability to create, alter, delete and read a
relational, file-delimited, MS Excel (non ODBC) or MS Excel datasources in the
non-published area and virtual (published) databases. The following operations
can be performed:

GET/datasource

PUT/datasource

POST/datasource

DELETE/datasource

GET/datasource/adapter/definitions

GET/datasource/virtual

PUT/datasource/virtual

POST/datasource/virtual

DELETE/datasource/virtual

DELETE/datasource/virtual/dsName

GET/datasource/virtual/adapter/definitions

GET/datasource

This API is used to get datasource summary and/or detailed information.
 TIBCO® Data Virtualization

414 | TDV Server REST APIs
Parameters:

Example to get datasource summary "/shared/examples/ds1"

curl -X GET -u admin:admin
"http://localhost:9400/rest/datasource/v1?path=%2Fshared%2Fexample
s%2Fds_orders&summary=true" -H "Content-Type:application/json"

Example to get detailed information of datasource "/shared/examples/ds1"

curl -X GET -u admin:admin
"http://localhost:9400/rest/datasource/v1?path=%2Fshared%2Fexample
s%2Fds_orders" -H "Content-Type:application/json"

PUT/datasource

This API is used to update datasources.

Parameters:

None.

Request Body

Example Value - Schema

[
{
"parentPath": "string",
"name": "string",
"adapterName": "string",
"nativeProperties": {
"additionalProp1": {},
"additionalProp2": {},
"additionalProp3": {}
},
"annotation": "string",
"newPath": "string",

Name Description Parameter Type Data Type

path datasource path query string

summary fetch datasource
summary

query boolean
TIBCO® Data Virtualization

TDV Server REST APIs |415
"newName": "string",
"ifNotExists": true
}
]

Example to rename and Relocate a relational datasource

curl -X PUT -u admin:admin
"http://localhost:9400/rest/datasource/v1" -H
"Content-Type:application/json" -d "[{\"parentPath\":\"/shared\",
\"name\":\"ds1\", \"adapterName\":\"PostgreSQL 9.1\",
\"newPath\":\"/shared/examples/dsnew\" }]"

Example to update annotation and database name of a relational datasource
"/shared/examples/ds1"

curl -X PUT -u admin:admin
"http://localhost:9400/rest/datasource/v1" -H
"Content-Type:application/json" -d
"[{\"parentPath\":\"/shared/examples\", \"name\":\"ds1\",
\"adapterName\":\"PostgreSQL 9.1\", \"annotation\":\"Edited
annotation of a postgres datasource created using REST api\",
\"nativeProperties\":{\"urlDatabaseName\":\"inventory\"} }]"

Example to update annotation and delimiter of a file-delimited datasource
"/shared/examples/csv_ds"

Sample CURL Invocation of a file-delimited datasource :

curl -X PUT -u admin:admin
"http://localhost:9400/rest/datasource/v1" -H
"Content-Type:application/json" -d
"[{\"parentPath\":\"/shared/examples\", \"name\":\"csv_ds\",
\"adapterName\":\"File-Delimited\", \"annotation\":\"Edited
annotation of a csv datasource created using REST api\",
\"nativeProperties\":{\"delimiter\":\":\"} }]"

Example to update annotation and data range of a MS excel (non-ODBC)
datasource "/shared/examples/excel_ds"

Sample CURL Invocation of a MS excel (non-ODBC) datasource :

curl -X PUT -u admin:admin
"http://localhost:9400/rest/datasource/v1" -H
"Content-Type:application/json" -d
"[{\"parentPath\":\"/shared/examples\", \"name\":\"excel_ds\",
 TIBCO® Data Virtualization

416 | TDV Server REST APIs
\"adapterName\":\"Microsoft Excel (non-ODBC)\",
\"annotation\":\"Edited annotation of a MS excel datasource created
using REST api\", \"nativeProperties\":{\"dataRange\":\"A2\"} }]"

Example to update annotation and dsn of a MS excel (ODBC) datasource
"/shared/examples/excel_ds"

Sample CURL Invocation of a MS excel (ODBC) datasource :

curl -X PUT -u admin:admin
"http://localhost:9400/rest/datasource/v1" -H
"Content-Type:application/json" -d
"[{\"parentPath\":\"/shared/examples\", \"name\":\"excel_ds\",
\"adapterName\":\"Microsoft Excel\", \"annotation\":\"Edited
annotation of a MS excel datasource created using REST api\",
\"nativeProperties\":{\"dsn\":\"excelodbc1\"} }]"

api\", \"nativeProperties\":{\"dataRange\":\"A2\"} }]"

Example to Unset annotation of a relational datasource
"/shared/examples/ds1"

curl -X PUT -u admin:admin
"http://localhost:9400/rest/datasource/v1" -H
"Content-Type:application/json" -d
"[{\"parentPath\":\"/shared/examples\", \"name\":\"ds1\",
\"adapterName\":\"PostgreSQL 9.1\", \"annotation\":\"null\"}]"

POST/datasource

This API is used to creates datasources for specified database adapter, path and
properties

Parameters:

None.

Request Body

Example Value - Schema

[
{
"parentPath": "string",
"name": "string",
"adapterName": "string",
TIBCO® Data Virtualization

TDV Server REST APIs |417
"nativeProperties": {
"additionalProp1": {},
"additionalProp2": {},
"additionalProp3": {}
},
"annotation": "string",
"newPath": "string",
"newName": "string",
"ifNotExists": true
}
]

Example to create relational datasource "/shared/examples/ds1"

Sample CURL Invocation

curl -X POST -u admin:admin
"http://localhost:9400/rest/datasource/v1" -H
"Content-Type:application/json" -d
"[{\"parentPath\":\"/shared/examples\", \"name\":\"ds1\",
\"adapterName\":\"PostgreSQL 9.1\", \"annotation\":\"This is a
postgres datasource created using REST api\",
\"nativeProperties\":{\"urlIP\":\"localhost\", \"urlPort\":5432,
\"urlDatabaseName\":\"orders\", \"login\":\"tutorial\",
\"password\":\"password\"} }]"

Example to create file-delimited datasource "/shared/examples/csv_ds"

Sample CURL Invocation

curl -X POST -u admin:admin
"http://localhost:9400/rest/datasource/v1" -H
"Content-Type:application/json" -d
"[{\"parentPath\":\"/shared/examples\", \"name\":\"csv_ds\",
\"adapterName\":\"File-Delimited\", \"annotation\":\"This is a csv
datasource created using REST api\",
\"nativeProperties\":{\"root\":\"/Users/Shared\",
\"filters\":\"*.csv\", \"charset\":\"utf-8\"} }]"

Example to Creates MS excel (non-ODBC) datasource
"/shared/examples/excel_ds"

curl -X POST -u admin:admin
"http://localhost:9400/rest/datasource/v1" -H
"Content-Type:application/json" -d
"[{\"parentPath\":\"/shared/examples\", \"name\":\"excel_ds\",
 TIBCO® Data Virtualization

418 | TDV Server REST APIs
\"adapterName\":\"Microsoft Excel (non-ODBC)\",
\"annotation\":\"This is a Microsoft excel datasource created using
REST api\", \"nativeProperties\":{\"root\":\"/Users/Shared\",
\"filters\":\"*.xls\", \"charset\":\"utf-8\"} }]"

Example to Creates MS excel (ODBC) datasource
"/shared/examples/excel_ds"

Sample CURL Invocation of a MS excel (non-ODBC) datasource :

curl -X POST -u admin:admin
"http://localhost:9400/rest/datasource/v1" -H
"Content-Type:application/json" -d
"[{\"parentPath\":\"/shared/examples\", \"name\":\"excel_ds\",
\"adapterName\":\"Microsoft Excel\", \"annotation\":\"This is a
Microsoft excel datasource created using REST api\",
\"nativeProperties\":{\"dsn\":\"excelodbc\",
\"charset\":\"utf-8\"} }]"

DELETE/datasource

This API is used to delete datasources.

Parameters:

None

Request Body

Example Value - Schema

[
"string"
]

Example to Delete datasource "/shared/examples/ds1"

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/datasource/v1" -H
"Content-Type:application/json" -d "[\"/shared/examples/ds1\"]"
TIBCO® Data Virtualization

TDV Server REST APIs |419
GET/datasource/adapter/definitions

This API is used to get datasource attribute definitions. Schema of returned result
is [ADAPTER_NAME, ADAPTER_TYPE, ADAPTER_TYPE_CATEGORY,
DEFINITION_NAME, DISPLAY_NAME, DEFINITION_TYPE, REQUIRED,
DEFAULT_VALUE, ALLOWED_VALUES, EDITOR_HINT,
IS_ADVANCED,DISPLAY_PARENT_NAME, DEPENDENCY_EXPRESSION,
UPDATE_RULE, ANNOTATION, DEFINITION_PARENT_NAME]

Parameters:

Example to Get datasource attribute defs for "PostgreSQL 9.1"

Sample CURL Invocation

curl -X GET -u admin:admin
"http://localhost:9400/rest/datasource/v1/adapter/definitions?adap
terName=PostgreSQL%209.1" -H "Content-Type:application/json"

Example to Get datasource attribute defs for "File-Delimited"

Sample CURL Invocation

curl -X GET -u admin:admin
"http://localhost:9400/rest/datasource/v1/adapter/definitions?adap
terName=File-Delimited" -H "Content-Type:application/json"

Example to Get datasource attribute defs for "Microsoft Excel (non-ODBC)"

curl -X GET -u admin:admin
"http://localhost:9400/rest/datasource/v1/adapter/definitions?adap
terName=Microsoft%20Excel%20(non-ODBC)" -H
"Content-Type:application/json"

Example to Get datasource attribute defs for "Microsoft Excel"

curl -X GET -u admin:admin
"http://localhost:9400/rest/datasource/v1/adapter/definitions?adap
terName=Microsoft%20Excel" -H "Content-Type:application/json"

Name Description Parameter Type Data Type

adapterName Name of the adapter query string
 TIBCO® Data Virtualization

420 | TDV Server REST APIs
GET/datasource/virtual

This API is used to get virtual database summary and/or detailed information.

Parameters:

Example to Get summary for virtual database "/services/databases/
publishedDB"

curl -X GET -u admin:admin
"http://localhost:9400/rest/datasource/v1/virtual?name=publishedDB
&summary=true" -H "Content-Type:application/json"

Example to Get detailed information for virtual database
"/services/databases/publishedDB"

curl -X GET -u admin:admin
"http://localhost:9400/rest/datasource/v1/adapter/definitions?adap
terName=File-Delimited" -H "Content-Type:application/json"

Example to Get datasource attribute defs for "Microsoft Excel (non-ODBC)"

curl -X GET -u admin:admin
"http://localhost:9400/rest/datasource/v1/adapter/definitions?adap
terName=Microsoft%20Excel%20(non-ODBC)" -H
"Content-Type:application/json"

Example to Get datasource attribute defs for "Microsoft Excel"

curl -X GET -u admin:admin
"http://localhost:9400/rest/datasource/v1/virtual?name=publishedDB
" -H "Content-Type:application/json"

PUT/datasource/virtual

This API is used to update virtual datasources.

Name Description Parameter Type Data Type

name name of the virtual
database

query string

summary fetch virtual database
summary

query boolean
TIBCO® Data Virtualization

TDV Server REST APIs |421
Parameters:

None.

Request Body

Example Value - Schema

[
{
"parentPath": "string",
"name": "string",
"adapterName": "string",
"nativeProperties": {
"additionalProp1": {},
"additionalProp2": {},
"additionalProp3": {}
},
"annotation": "string",
"newPath": "string",
"newName": "string",
"ifNotExists": true
}
]

Example to Update annotation and rename a published datasource
"/services/databases/publishedDB to /services/databases/publishedNew"

curl -X PUT -u admin:admin
"http://localhost:9400/rest/datasource/v1/virtual" -H
"Content-Type:application/json" -d "[{\"name\":\"publishedDB\",
\"annotation\":\"Edited published datasource created using REST
api\", \"newName\":\"publishedNew\" }]"

Example to Unset annotation of a published datasource
"/services/databases/publishedDB"

curl -X PUT -u admin:admin
"http://localhost:9400/rest/datasource/v1/virtual" -H
"Content-Type:application/json" -d "[{\"name\":\"publishedDB\",
\"annotation\":\"null\"}]"

POST/datasource/virtual

This API is used to create virtual datasources.
 TIBCO® Data Virtualization

422 | TDV Server REST APIs
Parameters:

None.

Request Body

Example Value - Schema

[
{
"parentPath": "string",
"name": "string",
"adapterName": "string",
"nativeProperties": {
"additionalProp1": {},
"additionalProp2": {},
"additionalProp3": {}
},
"annotation": "string",
"newPath": "string",
"newName": "string",
"ifNotExists": true
}
]

Example to create virtual datasource "/services/databases/publishedDB"

curl -X POST -u admin:admin
"http://localhost:9400/rest/datasource/v1/virtual" -H
"Content-Type:application/json" -d "[{\"name\":\"ds1\",
\"annotation\":\"This is a published datasource created using REST
api\" }]"

Sample CURL Invocation with ifNotExists:

curl -X POST -u admin:admin
"http://localhost:9400/rest/datasource/v1/virtual" -H
"Content-Type:application/json" -d "[{\"name\":\"ds1\",
\"ifNotExists\":true,\"annotation\":\"This is a published
datasource created using REST api\" }]"

DELETE/datasource/virtual

This API is used to delete virtual datasources.
TIBCO® Data Virtualization

TDV Server REST APIs |423
Parameters:

Request Body

Example Value - Schema

[
"string"
]

Example to Delete published datasource
"/services/databases/publishedDB"

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/datasource/v1/virtual" -H
"Content-Type:application/json" -d "[\"publishedDB\"]"

Sample CURL Invocation with "ifExists":

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/datasource/v1/virtual?ifExists=true"
-H "Content-Type:application/json" -d "[\"publishedDB\"]"

DELETE/datasource/virtual/dsName

This API is used to delete virtual database.

Parameters:

Example to delete virtual database

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/datasource/v1/virtual/{dsName}?ifExist
s=true" -H "Content-Type: application/json"

Name Description Parameter Type Data Type

ifExists Flaf to indicate if
datasource exists

query boolean

Name Description Parameter Type Data Type

dsName Name of the database query string

ifExists Flag to indicate if
database exists

query boolean
 TIBCO® Data Virtualization

424 | TDV Server REST APIs
GET/datasource/virtual/adapter/definitions

This API is used to get datasource attribute definitions. Schema of returned result
is [ADAPTER_NAME, ADAPTER_TYPE, ADAPTER_TYPE_CATEGORY,
DEFINITION_NAME, DISPLAY_NAME, DEFINITION_TYPE, REQUIRED,
DEFAULT_VALUE, ALLOWED_VALUES, EDITOR_HINT,
IS_ADVANCED,DISPLAY_PARENT_NAME, DEPENDENCY_EXPRESSION,
UPDATE_RULE, ANNOTATION, DEFINITION_PARENT_NAME]

Parameters:

None.

Example to get datasource attribute defs

curl -X GET -u admin:admin
"http://localhost:9400/rest/datasource/v1/virtual/adapter/definiti
ons" -H "Content-Type:application/json"

Dataview

The dataview API provides the ability to create, alter, delete and read dataviews.
The following operations can be performed:

GET/dataview

PUT/dataview

POST/dataview

DELETE/dataview

DELETE/dataview/{dataviewPath}

GET/dataview

This API is used to get data view summary and/or detailed information.

Parameters:

Name Description Parameter Type Data Type

path data view path query string

summary fetch data view
summary

query boolean
TIBCO® Data Virtualization

TDV Server REST APIs |425
Example to Get data view summary "/shared/examples/sampleView"

curl -X GET -u admin:admin
"http://localhost:9400/rest/dataview/v1?path=%2Fshared%2Fexamples%
2FsampleView&summary=true" -H "Content-Type:application/json"

Example to Get detailed information of data view
"/shared/examples/sampleView"

curl -X GET -u admin:admin
"http://localhost:9400/rest/dataview/v1?path=%2Fshared%2Fexamples%
2FsampleView" -H "Content-Type:application/json"

PUT/dataview

This API is used to update data views.

Parameters:

None

Request Body

Example Value - Schema

[
{
"parentPath": "string",
"name": "string",
"sql": "string",
"annotation": "string",
"newPath": "string",
"ifNotExists": true,
"properties": {
"additionalProp1": {},
"additionalProp2": {},
"additionalProp3": {}
}
}
]

Example to update sql and annotation of data view "/shared/examples/
sampleView"

curl -X PUT -u admin:admin "http://localhost:9400/rest/dataview/v1"
-H "Content-Type:application/json" -d
"[{\"parentPath\":\"/shared/examples\", \"name\":\"sampleView\",
 TIBCO® Data Virtualization

426 | TDV Server REST APIs
\"sql\":\"SELECT OrderID,CompanyName FROM
/shared/examples/ViewOrder\", \"annotation\":\"Edited annotation of
a data view created using REST api\" }]"

Example to Unset annotation of data view "/shared/examples/sampleView"

curl -X PUT -u admin:admin "http://localhost:9400/rest/dataview/v1"
-H "Content-Type:application/json" -d
"[{\"parentPath\":\"/shared/examples\", \"name\":\"sampleView\",
\"annotation\":\"null\" }]"

POST/dataview

This API is create data views with specified definition sql.

Parameters:

None

Request Body

Example Value - Schema

[
{
"parentPath": "string",
"name": "string",
"sql": "string",
"annotation": "string",
"newPath": "string",
"ifNotExists": true,
"properties": {
"additionalProp1": {},
"additionalProp2": {},
"additionalProp3": {}
}
}
]

Example to Create data view "/shared/examples/sampleView"

curl -X POST -u admin:admin
"http://localhost:9400/rest/dataview/v1" -H
"Content-Type:application/json" -d
"[{\"parentPath\":\"/shared/examples\", \"name\":\"sampleView\",
TIBCO® Data Virtualization

TDV Server REST APIs |427
\"sql\":\"SELECT OrderID FROM /shared/examples/ViewOrder\",
\"annotation\":\"This view is created using REST api\"}]"

Example to Create data view "/shared/examples/dataview1" with
"ifNotExists" syntax

curl -X POST -u admin:admin
"http://localhost:9400/rest/dataview/v1" -H
"Content-Type:application/json" -d
"[{\"parentPath\":\"/shared/examples\", \"name\" : \"dataview1\",
\"ifNotExists\":true, \"annotation\":\"This is a data view created
using REST api\" }]"

DELETE/dataview

This API is used to delete data views.

Parameters:

Request Body

Example Value - Schema

[
"string"
]

Example to Delete data view "/shared/examples/sampleView"

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/dataview/v1" -H
"Content-Type:application/json" -d
"[\"/shared/examples/sampleView\"]"

Sample CURL Invocation with "ifExists"

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/dataview/v1?ifExists=true" -H
"Content-Type:application/json" -d
"[\"/shared/examples/sampleView\"]"

Name Description Parameter Type Data Type

ifExists flag to indicate
whether the data
view exists.

query boolean
 TIBCO® Data Virtualization

428 | TDV Server REST APIs
DELETE/dataview/{dataviewPath}

This API is used to delete data view. Optionally specify "if exists".

Parameters:

Example to delete data view

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/dataview/v1/{dataViewPath}?ifExists=tr
ue" -H "Content-Type: application/json"

Sample CURL Invocation with "ifExists"

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/dataview/v1/%2Fshared%2Fexamples%2Fdat
aview1?ifExists=true" -H "Content-Type:application/json"

Deployment Manager

This section describes the following Deployment Manager Procedures:

• POST /executeQuery

• POST /executeDDL

• POST /executePlan

• GET /export_dm_metadata

• GET /export_plan_package

• POST /import_dm_metadata

• DELETE /purgeLog

• GET /validateSite

POST /executeQuery

This API is used to execute query.

Name Description Parameter Type Data Type

dataViewPath Path of the data view query string

ifExists flag to indicate if the
dataview exists

query boolean
TIBCO® Data Virtualization

TDV Server REST APIs |429
Parameters:

None

Request Body

Example Value - Schema

[
“query”: "string",
“standardSQL”: “string”
]

Example

curl -X POST -u admin:admin
"http://localhost:9400/rest/deploy/executeQuery" -H "accept:
application/json" -H "Content-Type:
application/x-www-form-urlencoded" -d "query=select * from
SYS_SITES&standardSql=true"

POST /executeDDL

This API is used to execute DDL commands.

Parameters:

None

Request Body

Example Value - Schema

[
"string"
]

Example to Create Site

curl -X POST -u admin:admin
"http://localhost:9400/rest/deploy/executeDDL" -H
"Content-Type:text/plain" -H "Accept:text/plain" -d 'CREATE
RESOURCE /mySite OF TYPE "site" SET ANNOTATION "my site annotation"
SET PROPERTIES { "host" : "localhost", "port": 9400,
"user":"admin", "password":"password", "domain":"composite"}'
 TIBCO® Data Virtualization

430 | TDV Server REST APIs
Example to Update Site

curl -X POST -u admin:admin
"http://localhost:9400/rest/deploy/executeDDL" -H
"Content-Type:text/plain" -H "Accept:text/plain" -d 'ALTER RESOURCE
/mySite OF TYPE "site" SET ANNOTATION "my site annotation update "'

Example to Delete Site

curl -X POST -u admin:admin
"http://localhost:9400/rest/deploy/executeDDL" -H
"Content-Type:text/plain" -H "Accept:text/plain" -d 'DROP RESOURCE
/mySite OF TYPE "site"'

Example to Create Resource Set

curl -X POST -u admin:admin
"http://localhost:9400/rest/deploy/executeDDL" -H
"Content-Type:text/plain" -H "Accept:text/plain" -d 'CREATE
RESOURCE /mySite/myResourceSet OF TYPE "resource_set" SET
ANNOTATION "my resource set annotation" SET PROPERTIES {
"definition" :
"{\""includeDependencies\"":\""true\"",\""resourceTrees\"":[{\""pa
th\"":\""/shared\"",\""type\"":\""CONTAINER\""}]}"}'

Example to Update Resource Set

curl -X POST -u admin:admin
"http://localhost:9400/rest/deploy/executeDDL" -H
"Content-Type:text/plain" -H "Accept:text/plain" -d 'ALTER RESOURCE
/mySite/myResourceSet OF TYPE "resource_set" SET ANNOTATION "my
resource set annotation update" '

Example to Delete Resource Set

curl -X POST -u admin:admin
"http://localhost:9400/rest/deploy/executeDDL" -H
"Content-Type:text/plain" -H "Accept:text/plain" -d 'DROP RESOURCE
/mySite/myResourceSet OF TYPE "resource_set"'

Example to Create Resource Set Mapping

curl -X POST -u admin:admin
"http://localhost:9400/rest/deploy/executeDDL" -H
"Content-Type:text/plain" -H "Accept:text/plain" -d 'CREATE
TIBCO® Data Virtualization

TDV Server REST APIs |431
RESOURCE
/targetSite/sourceSite/shared/examples/ds_orders#DATA_SOURCE OF
TYPE "attribute_mapping" SET PROPERTIES { "definition" : {
"urlPort" : "1000"}}'

Example to Update Resource Set Mapping

curl -X POST -u admin:admin
"http://localhost:9400/rest/deploy/executeDDL" -H
"Content-Type:text/plain" -H "Accept:text/plain" -d 'ALTER RESOURCE
/targetSite/sourceSite/shared/examples/ds_orders#DATA_SOURCE OF
TYPE "attribute_mapping" SET PROPERTIES { "definition" : {
"urlPort" : "2000"}}'

Example to Delete Resource Set Mapping

curl -X POST -u admin:admin
"http://localhost:9400/rest/deploy/executeDDL" -H
"Content-Type:text/plain" -H "Accept:text/plain" -d 'DROP RESOURCE
/targetSite/sourceSite/shared/examples/ds_orders#DATA_SOURCE OF
TYPE "attribute_mapping"'

Example to Create Principal Set

curl -X POST -u admin:admin
"http://localhost:9400/rest/deploy/executeDDL" -H
"Content-Type:text/plain" -H "Accept:text/plain" -d 'CREATE
RESOURCE /mySourceSite/myPrincipalSet OF TYPE "principal_set" SET
PROPERTIES { "definition" : ["/composite/user/dev"] }'

Example to Update Principal Set

curl -X POST -u admin:admin
"http://localhost:9400/rest/deploy/executeDDL" -H
"Content-Type:text/plain" -H "Accept:text/plain" -d 'ALTER RESOURCE
/mySourceSite/myPrincipalSet OF TYPE "principal_set" SET ANNOTATION
"my principal set annotation update"'

Example to Delete Principal Set

curl -X POST -u admin:admin
"http://localhost:9400/rest/deploy/executeDDL" -H
"Content-Type:text/plain" -H "Accept:text/plain" -d 'DROP RESOURCE
/mySourceSite/myPrincipalSet OF TYPE "principal_set"'
 TIBCO® Data Virtualization

432 | TDV Server REST APIs
Example to Create Principal Set Mapping

curl -X POST -u admin:admin
"http://localhost:9400/rest/deploy/executeDDL" -H
"Content-Type:text/plain" -H "Accept:text/plain" -d 'CREATE
RESOURCE /myTargetSite/mySourceSite OF TYPE "principal_set_mapping"
SET PROPERTIES { "definition" : { "/composite/user/dev" :
"/composite/user/test"}}'

Example to Update Principal Set Mapping

curl -X POST -u admin:admin
"http://localhost:9400/rest/deploy/executeDDL" -H
"Content-Type:text/plain" -H "Accept:text/plain" -d 'ALTER RESOURCE
/myTargetSite/mySourceSite OF TYPE "principal_set_mapping" SET
PROPERTIES { "definition" : { "/composite/user/dev" :
"/composite/user/dev1"}}'

Example to Delete Principal Set Mapping

curl -X POST -u admin:admin
"http://localhost:9400/rest/deploy/executeDDL" -H
"Content-Type:text/plain" -H "Accept:text/plain" -d 'DROP RESOURCE
/myTargetSite/mySourceSite OF TYPE "principal_set_mapping"'

Example to Create Deployment Plan

curl -X POST -u admin:admin
"http://localhost:9400/rest/deploy/executeDDL" -H
"Content-Type:text/plain" -H "Accept:text/plain" -d 'CREATE
RESOURCE
/myTargetSite/mySourceSite/MyDeploymentPlan_PrincipalSet_ADD OF
TYPE "deployment_plan" SET ANNOTATION "my deployment plan
annotation" SET PROPERTIES { "definition" :
"{\""operations\"":{\""principalSet\"":\""myPrincipalSet\"",\""tar
getOperation\"":\""ADD\""}}"}'

Example to Update Deployment Plan

curl -X POST -u admin:admin
"http://localhost:9400/rest/deploy/executeDDL" -H
"Content-Type:text/plain" -H "Accept:text/plain" -d 'ALTER RESOURCE
/myTargetSite/mySourceSite/MyDeploymentPlan_PrincipalSet_ADD OF
TYPE "deployment_plan"'
TIBCO® Data Virtualization

TDV Server REST APIs |433
Example to Delete Deployment Plan

curl -X POST -u admin:admin
"http://localhost:9400/rest/deploy/executeDDL" -H
"Content-Type:text/plain" -H "Accept:text/plain" -d 'DROP RESOURCE
/myTargetSite/mySourceSite/MyDeploymentPlan_PrincipalSet_ADD OF
TYPE "deployment_plan"'

POST /executePlan

This API is used to execute Deployment Plan.

Parameters:

None

Request Body

Example Value - Schema

[
"string"
]

Example

curl -X POST -u admin:admin
"http://localhost:9400/rest/deploy/executePlan" -d
'/myTargetSite/mySourceSite/DeploymentPlanName'

GET /export_dm_metadata

This API is used to export Deployment Management Artifacts.

Parameters:

Example

curl -X GET -u admin:admin
"http://localhost:9400/rest/deploy/export_dm_metadata" -H
"Content-Type:application/binary"

Name Description Parameter Type Data Type

encryptionPassword Encryption password query string
 TIBCO® Data Virtualization

434 | TDV Server REST APIs
GET /export_plan_package

This API is used to export Deployment Plan.

Parameters:

Example

curl -X GET -u admin:admin
"http://localhost:9400/rest/deploy/export_plan_package?plan=planNa
me" -H "Content-Type:application/binary"

POST /import_dm_metadata

This API is used to import Deployment Management Artifacts.

Parameters

Name Description Parameter Type Data Type

plan The plan name that
will be exported

query string

encryptionPassword Encryption password query string

Name Description Parameter Type Data Type

file The name of the file
to be imported.

query object

overwrite Option to indicate
whether to overwrite.

query boolean

encryptionPassword Encryption Password query string

ignoreEncryption Option to indicate
whether to ignore
encryption errors.

query boolean
TIBCO® Data Virtualization

TDV Server REST APIs |435
Note: If the option ignoreEncryption is used, then all backup data will be imported
regardless of whether a valid encryption key was provided. This means that the
import will not fail. This option can be used to allow partially importing any
backed up data. However, the import process will only import data that is not
encrypted or can be decrypted using the provided encryption key. All encrypted
portions of the backup data that cannot be decrypted will be imported as empty
values and the import will otherwise succeed.

This affects all encrypted values in the backup data, which includes, but is not
limited to data source and LDAP domain connection passwords.

Example

curl -X POST -u admin:admin
"http://localhost:9400/rest/deploy/import_dm_metadata" -H
"Content-Type:multipart/form-data" -v -F 'file=@localfilename' -F
“ignoreEncryption=true” -X 'overwrite=true/false'

DELETE /purgeLog

This API is used to purge Deployment Logs.

Parameters

Example

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/deploy/purgeLog" -H "begin:0" -H
"end:2408386295553"

GET /validateSite

This API is used to validate Site Information.

Name Description Parameter Type Data Type

ids The plan ids query string

begin The log begin time query string

end The log end time query string
 TIBCO® Data Virtualization

436 | TDV Server REST APIs
Parameters:

Example

curl -X GET -u admin:admin
"http://localhost:9400/rest/deploy/validateSite?siteName=sourceSit
e"

Execute

The execute API provides the ability to execute queries, procedures and multiple
DSL statements.

POST/execute/query

POST/execute/procedure

POST/execute/cancel

GET/execute/nextBatch

POST/execute/DSL

POST/execute/sqlscript

POST/execute/query

This API is used to execute a SQL query against the TDV server.

Parameters:

None

Request Body

Example Value - Schema

{"standardSQL": true,
“query”: “string”,
“skipRows”: 0,
“maxRows”: 0
“dataServiceName”: “string”
“blocking”: true
}

Name Description Parameter Type Data Type

siteName Name of the site query string
TIBCO® Data Virtualization

TDV Server REST APIs |437
standardSQL - The default value is true. Set this to false for performing a data
preview. The query must be a composite query (non-standard).

isBlocking - The default value is true. Set this to false to execute query in an
asynchronous fashion.

skipRows - If this value is set, then that many number of rows will be skipped in
the execution output before returning any results. If 'skipRows' is greater than the
total possible number of rows, then no rows will be returned. The default value is
0.

maxRows - If this value is set, then the result will contain at most 'maxRows'
number of rows. If 'maxRows' is fewer than the total number of rows of data
available, then additional calls to "getNextBatch" will need to be made to get the
rest of the available data. If 'maxRows' is not set, then the result row count is
request memory-bound.

Note: skipRows and maxRows are used for a blocking query execution.

Following are the status codes that are returned:

• 206 (Partial Content) - This exception occurs when partial results are obtained
due to memory constraints. The result is set in the entity.

• 409 (Conflict) - This exception occurs when a request is canceled before being
consumed completely.

• 406 (Not Acceptable) - This exception occurs when the input request id
represents a blocking request.

• 500 (Internal Server Error) or 400 (Bad Request) - This occurs when a request
fails.

• 200 (OK) - When the maxRows is set and is greater than the number of
available rows in the result, then all the available rows are returned with this
status code.

Example to execute a query to get a property of a sql script procedure.

curl -u "admin:admin" -X POST
"http://localhost:9400/rest/execute/v1/actions/query/invoke" -H
"Content-Type:application/json" -d "{\"query\":\"SELECT * FROM
model.ALL_RESOURCE_PROPERTIES WHERE property_name = 'script' AND
metadata_id = (SELECT PROCEDURE_ID FROM model.ALL_PROCEDURES WHERE
PROCEDURE_NAME = 'ctasScript' AND parent_path =
'/shared/examples')\", \"standardSQL\":true}"
 TIBCO® Data Virtualization

438 | TDV Server REST APIs
Example to search for “product”

curl -X POST
"http://localhost:9400/rest/execute/v1/actions/query/invoke" -H
"Content-Type:application/json" -d '{\"standardSQL\":false,
\"query\":\"select * from
/lib/resource/\"Search\"('product',null,null,null,null,null,null,n
ull)\", \"blocking\":false}'

Example to search for “product”, filter “column” and “parameter” field
types and filter resource types “table” and “procedure”'

curl -X POST
"http://localhost:9400/rest/execute/v1/actions/query/invoke" -H
"Content-Type:application/json" -d '{\"standardSQL\":false,
\"query\":\"select * from
/lib/resource/\"Search\"('product','column,parameter','table,proce
dure',null,null,null,null,null)\", \"blocking\":false}'

Example to search for “product”, filter “annotation” field type and mark
start of search as { and stop of search as }

curl -X POST
"http://localhost:9400/rest/execute/v1/actions/query/invoke" -H
"Content-Type:application/json" -d '{\"standardSQL\":false,
\"query\":\"select * from
/lib/resource/\"Search\"('product','annotation',null,'StartSel:<,S
topSel:>',null,null,null,null)\", \"blocking\":false}'

Example to search for “product” and report data flows

curl -X POST
"http://localhost:9400/rest/execute/v1/actions/query/invoke" -H
"Content-Type:application/json" -d '{\"standardSQL\":false,
\"query\":\"select * from
/lib/resource/\"Search\"('product',null,null,null,1,null,null,null
)\", \"blocking\":false}'

Example to search for “product”, assign fieldRanks for “column” and
“parameter” fields, set rowOffset to 10 to skip 10 rows in the result,set
rowLimit to 30 rows in the result.

curl -X POST
"http://localhost:9400/rest/execute/v1/actions/query/invoke" -H
"Content-Type:application/json" -d '{\"standardSQL\":false,
TIBCO® Data Virtualization

TDV Server REST APIs |439
\"query\":\"select * from
/lib/resource/\"Search\"('product',null,null,null,null,'column:3,p
arameter:3',10,30)\", \"blocking\":false}'

POST/execute/procedure

This API is used to execute procedure specified by path / type.

Parameters:

None

Request Body

Example Value - Schema

[
"includeMetadata": true,
“parameterBeanList”: [
{
“definition”: “string”,
“value”: “string”
}
],
“path”: “string”,
“type”: “string”,
“blocking”: true
]

Example to execute procedure "/shared/examples/LookupProduct"

curl -X POST -u admin:admin
"http://localhost:9400/rest/execute/v1/actions/procedure/invoke"
-H "Content-Type:application/json" -d
"{\"blocking\":\"true\",\"includeMetadata\":\"true\",
\"parameterBeanList\":[{\"definition\":\"INTEGER\",
\"value\":\"1\"}],\"path\":\"/shared/examples/LookupProduct\",
\"type\":\"PROCEDURE\"}"

POST/execute/cancel

This API is used to cancel asynchronous/synchronous sql request with the
specified execution ids. Procedure requests are unsupported for cancellation.h
 TIBCO® Data Virtualization

440 | TDV Server REST APIs
Parameters:

None

Request Body

Example Value - Schema

[
"string"
]

Example to cancel a request

curl -X POST
"http://localhost:9400/rest/execute/v1/actions/cancel/invoke" -H
"Content-Type: application/json" -d "[\"400014-0\"]"

GET/execute/nextBatch

This API is used to get next batch of data. Only Asynchronous sql request
execution ids may be specified. When batch size is unspecified, it is defaulted to
the server configuration 'defaultFetchRows'. The various status codes returned
are:

• 206 (Partial Content) - This exception occurs when partial results are obtained
due to memory constraints. The result is set in the entity.

• 409 (Conflict) - This exception occurs when a request is canceled before being
consumed completely.

• 406 (Not Acceptable) - This exception occurs when the input request id
represents a blocking request.

• 500 (Internal Server Error) or 400 (Bad Request) - This occurs when a request
fails.

• 200 (OK) - This status code indicates that there has been no errors. Following
are some scenarios:

– When the batchSize is greater than the number of available rows in the
result, then all the available rows are returned with this status code.

– When the result is completely consumed, an empty result set is returned
with this status code.

– When no request is found for the specified request id, an empty result set
is returned with this status code.
TIBCO® Data Virtualization

TDV Server REST APIs |441
Parameters:

Example to get next batch of data

curl -X GET -u admin:admin
"http://localhost:9400/rest/execute/v1/actions/nextBatch/invoke?ex
ecutionId=400014-0&batchSize=5" -H "Content-Type:application/json"

POST/execute/DSL

This API is used to execute the specified list of DSL statements.

Parameters:

None

Request Body

Example Value - Schema

[
"string"
]

Example to Drop a Sql script procedure and create one using two DSL
statements.

curl -d "[\"CREATE SCRIPT /shared/examples/ctasScript DEFINE AS
PROCEDURE ctasScript() BEGIN CREATE TABLE
/shared/examples/ds_inventory/tutorial/sampleTable as select
OrderId, ProductID, Discount, OrderDate, CompanyName,
CustomerContactFirstName, CustomerContactLastName,
CustomerContactPhone FROM /shared/examples/ViewOrder; END\",\"DROP
SCRIPT /shared/examples/ctasScript\"]" -u "admin:admin" -X POST
"http://localhost:9400/rest/execute/v1/actions/dsl/invoke" -H
"Content-Type:application/json"

Name Description Parameter Type

executionId Execution ID string

batchSize Batch size to fetch. When 'batchSize' is
not set, the value set in server
configuration 'defaultFetchRows' is
used.

integer
 TIBCO® Data Virtualization

442 | TDV Server REST APIs
POST/execute/sqlscript

This API is used to execute procedure specified by scriptText.

Parameters:

None

Request Body

Example Value - Schema

[
"includeMetadata": true,
“parameterBeanList”: [
{
“definition”: “string”,
“value”: “string”
}
],
“scriptText”: “string”,
“blocking”: true
]

Example to execute procedure using script text

curl -X POST -u admin:admin
"http://localhost:9400/rest/execute/v1/actions/sqlscript/invoke"
-H "Content-Type:application/json" -d
"{\"blocking\":\"true\",\"includeMetadata\":\"true\",
\"parameterBeanList\":[{\"definition\":\"INTEGER\",
\"value\":\"1\"}],\"scriptText\":\"PROCEDURE LookupProduct(IN
desiredProduct INTEGER,OUT result CURSOR (ProductName
VARCHAR(50),ProductID INTEGER,ProductDescription VARCHAR(255)))
BEGIN OPEN result FOR SELECT products.ProductName,
products.ProductID, products.ProductDescription FROM
/shared/examples/ds_inventory/tutorial/products products WHERE
products.ProductID = desiredProduct; END\"}"

Folders

The folder API provides the ability to create, alter or delete multiple folders and
read a folder.

GET/folder

PUT/folder
TIBCO® Data Virtualization

TDV Server REST APIs |443
POST/folder

DELETE/folder

DELETE/folder/{folderPath}

GET/folder

This API is used to get folder.

Parameters:

Example to Get summary of folder "/shared/examples/folder1"

curl -X GET -u admin:admin
"http://localhost:9400/rest/folder/v1?path=%2Fshared%2Fexamples%2F
folder1&summary=true" -H "Content-Type:application/json"

Example to Get summary and detailed information of folder
"/shared/examples/folder1"

curl -X GET -u admin:admin
"http://localhost:9400/rest/folder/v1?path=%2Fshared%2Fexamples%2F
folder1" -H "Content-Type:application/json"

PUT/folder

This API is used to update folders.

Parameters:

None.

Request Body

Example Value - Schema

[
{
"parentPath": "string",

Name Description Parameter Type Data Type

path folder path query string

summary fetch folder summary query boolean
 TIBCO® Data Virtualization

444 | TDV Server REST APIs
"name": "string",
"properties": {
"additionalProp1": {},
"additionalProp2": {},
"additionalProp3": {}
},
"annotation": "string",
"newPath": "string",
"ifNotExists": true
}
]

Example to Update folder with a modified annotation
"/shared/examples/folder1"

curl -X PUT -u admin:admin "http://localhost:9400/rest/folder/v1"
-H "Content-Type:application/json" -d
"[{\"parentPath\":\"/shared/examples\", \"name\":\"folder1\",
\"annotation\":\"Edited annotation of a folder created using REST
api\" }]"

Example to Rename folder "/shared/examples/folder1" to
"/shared/examples/folder2"

curl -X PUT -u admin:admin "http://localhost:9400/rest/folder/v1"
-H "Content-Type:application/json" -d
"[{\"parentPath\":\"/shared/examples\", \"name\":\"folder1\",
\"newPath\":\"/shared/examples/folder2\" }]"

Example to Relocate & Rename folder "/shared/examples/folder1" to
"/users/composite/admin/folder2"

curl -X PUT -u admin:admin "http://localhost:9400/rest/folder/v1"
-H "Content-Type:application/json" -d
"[{\"parentPath\":\"/shared/examples\", \"name\":\"folder1\",
\"newPath\":\"/users/composite/admin/folder2\" }]"

Example to Unset annotation on folder "/shared/examples/folder1"

curl -X PUT -u admin:admin "http://localhost:9400/rest/folder/v1"
-H "Content-Type:application/json" -d
"[{\"parentPath\":\"/shared/examples\", \"name\":\"folder1\",
\"annotation\":\"null\" }]"
TIBCO® Data Virtualization

TDV Server REST APIs |445
POST/folder

This API is used to Create folders using specified paths.

Parameters:

None.

Request Body

Example Value - Schema

[
{
"parentPath": "string",
"name": "string",
"properties": {
"additionalProp1": {},
"additionalProp2": {},
"additionalProp3": {}
},
"annotation": "string",
"newPath": "string",
"ifNotExists": true
}
]

Example to Create folder "/shared/examples/folder1"

curl -X POST -u admin:admin "http://localhost:9400/rest/folder/v1"
-H "Content-Type:application/json" -d
"[{\"parentPath\":\"/shared/examples\", \"name\":\"folder1\",
\"annotation\":\"This folder is created using REST api\"}]"

Example to Create folder "/shared/examples/folder1" with "ifNotExists"
syntax

curl -X POST -u admin:admin "http://localhost:9400/rest/folder/v1"
-H "Content-Type:application/json" -d
"[{\"parentPath\":\"/shared/examples\", \"name\" : \"folder1\",
\"ifNotExists\":true, \"annotation\":\"This is a folder created
using REST api\" }]"

DELETE/folder

This API is used to delete folders.
 TIBCO® Data Virtualization

446 | TDV Server REST APIs
Parameters:

Request Body

Example Value - Schema

[
"string"
]

Example to Delete folder "/shared/examples/folder1"

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/folder/v1" -H
"Content-Type:application/json" -d
"[\"/shared/examples/folder1\"]"

Sample CURL Invocation with "ifExists":

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/folder/v1" -H
"Content-Type:application/json" -d
"[\"/shared/examples/folder1\"]"

DELETE/folder/{folderPath}

This API is used to delete folder in the path. Delete folder. Optionally specify "if
exists".

Parameters:

Name Description Parameter Type Data Type

ifExists flag to indicate
whether a folder
exists

query boolean

Name Description Parameter Type Data Type

folderPath Path of the folder query string
TIBCO® Data Virtualization

TDV Server REST APIs |447
Example to Delete folder.

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/folder/v1/{folderPath}?ifExists=true"
-H "Content-Type: application/json"

Sample CURL Invocation with "ifExists":

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/folder/v1/%2Fshared%2Fexamples%2Ffolder1?ifEx
ists=true" -H "Content-Type:application/json"

Link

The Link REST API provides the ability to create, alter or delete multiple virtual
tables/procedures and read a virtual table/procedure.

GET/link

PUT/link

POST/link

DELETE/link

DELETE/link/{linkPath}

GET/link

This API is used to get summary and/or detailed information of virtual table or
procedure.

Parameters:

ifExists flag to indicate
whether a folder
exists

query boolean

Name Description Parameter Type Data Type

Name Description Parameter Type Data Type

path virtual table or
procedure path

query string

summary fetch virtual table or
procedure summary

query boolean
 TIBCO® Data Virtualization

448 | TDV Server REST APIs
Example to Get summary of published table "/services/databases/
publishedDB/pubTable"

curl -X GET -u admin:admin
"http://localhost:9400/rest/link/v1?path=%2Fservices%2Fdatabases%2
FpublishedDB%2FpubTable&summary=true" -H
"Content-Type:application/json"

Example to Get detailed information about published table
"/services/databases/publishedDB/pubTable"

curl -X GET -u admin:admin
"http://localhost:9400/rest/link/v1?path=%2Fservices%2Fdatabases%2
FpublishedDB%2FpubTable" -H "Content-Type:application/json"

Example to Get detailed information about published procedure
"/services/databases/publishedDB/pubProcedure"

curl -X GET -u admin:admin
"http://localhost:9400/rest/link/v1?path=%2Fservices%2Fdatabases%2
FpublishedDB%2FpubProcedure" -H "Content-Type:application/json"

PUT/link

This API is used to update virtual tables or procedures.

Parameters:

None.

Request Body

Example Value - Schema

[
“path”: "string",
“isTable”: true,
“targetPath”: “string”,
“annotation”: “string”,
“newPath”: “string”,
“ifNotExists”: true
]

Example to Update annotation and rename a published table
"/services/databases/publishedDB/link1 to /services/databases/
TIBCO® Data Virtualization

TDV Server REST APIs |449
publishedDB/pubTable"

curl -X PUT -u admin:admin "http://localhost:9400/rest/link/v1" -H
"Content-Type:application/json" -d
"[{\"path\":\"/services/databases/publishedDB/link1\", \"isTable\"
: true, \"annotation\":\"Edited published table created using REST
api\", \"newPath\":\"/services/databases/publishedDB/pubTable\"
}]"

Example to Update annotation and relocate a published procedure
"/services/databases/publishedDB/link2 to /services/databases/
publishedDB1/pubProcedure"

curl -X PUT -u admin:admin "http://localhost:9400/rest/link/v1" -H
"Content-Type:application/json" -d
"[{\"path\":\"/services/databases/publishedDB/link2\", \"isTable\"
: false, \"annotation\":\"Edited published procedure created using
REST api\",
\"newPath\":\"/services/databases/publishedDB1/pubProcedure\" }]"

Example to Update target of a published table "/services/databases/
publishedDB/pubTable"

curl -X PUT -u admin:admin "http://localhost:9400/rest/link/v1" -H
"Content-Type:application/json" -d
"[{\"path\":\"/services/databases/publishedDB/pubTable\",
\"isTable\" : true, \"annotation\":\"Edited target of published
table created using REST api\",
\"targetPath\":\"/shared/examples/ds_orders/tutorial/orderdetails\
" }]"

Example to Unset annotation of a published table "/services/databases/
publishedDB/pubTable"

curl -X PUT -u admin:admin "http://localhost:9400/rest/link/v1" -H
"Content-Type:application/json" -d
"[{\"path\":\"/services/databases/publishedDB/pubTable\",
\"isTable\" : true, \"annotation\":\"null\"}]"

POST/link

This API is used to creates virtual tables or procedures.
 TIBCO® Data Virtualization

450 | TDV Server REST APIs
Parameters:

None.

Request Body

Example Value - Schema

[
“path”: "string",
“isTable”: true,
“targetPath”: “string”,
“annotation”: “string”,
“newPath”: “string”,
“ifNotExists”: true
]

Example to Create virtual table "/services/databases/publishedDB/link1"

curl -X POST -u admin:admin "http://localhost:9400/rest/link/v1" -H
"Content-Type:application/json" -d
"[{\"path\":\"/services/databases/publishedDB/link1\",
\"isTable\":true, \"targetPath\" :
\"/shared/examples/ds_orders/tutorial/orders\",
\"annotation\":\"This is a published table created using REST api\"
}]"

Example to Creates virtual procedure "/services/databases/
publishedDB/link2"

curl -X PUT -u admin:admin "http://localhost:9400/rest/link/v1" -H
"Content-Type:application/json" -d
"[{\"path\":\"/services/databases/publishedDB/link2\", \"isTable\" : false,
\"annotation\":\"Edited published procedure created using REST api\",
\"newPath\":\"/services/databases/publishedDB1/pubProcedure\" }]"

Example to Update target of a published table "/services/databases/
publishedDB/pubTable"

curl -X POST -u admin:admin "http://localhost:9400/rest/link/v1" -H
"Content-Type:application/json" -d
"[{\"path\":\"/services/databases/publishedDB/link2\",
\"isTable\":false, \"targetPath\" :
\"/shared/examples/LookupProduct\", \"annotation\":\"This is a
published procedure created using REST api\" }]"
TIBCO® Data Virtualization

TDV Server REST APIs |451
Example to Creates virtual table "/services/databases/publishedDB/link1"
with "ifNotExists" syntax

curl -X POST -u admin:admin "http://localhost:9400/rest/link/v1" -H
"Content-Type:application/json" -d
"[{\"path\":\"/services/databases/publishedDB/link1\",
\"ifNotExists\":true, \"isTable\":true, \"targetPath\" :
\"/shared/examples/ds_orders/tutorial/orders\",
\"annotation\":\"This is a published table created using REST api\"
}]"

DELETE/link

This API is used to delete virtual tables or procedures.

Parameters:

None.

Request Body

Example Value - Schema

[
“path”: "string",
“isTable”: true
]

Example to Deletes virtual table and procedure "/services/databases/
publishedDB/pubTable" and "/services/databases/
publishedDB/pubProcedure"

curl -X DELETE -u admin:admin "http://localhost:9400/rest/link/v1"
-H "Content-Type:application/json" -d
"[{\"path\":\"/services/databases/publishedDB/pubTable\",
\"isTable\":true},
{\"path\":\"/services/databases/publishedDB/pubProcedure\",
\"isTable\":false}]"

Sample CURL Invocation with "ifExists":

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/link/v1?ifExists=true" -H
"Content-Type:application/json" -d
"[{\"path\":\"/services/databases/publishedDB/pubTable\",
\"isTable\":true},
 TIBCO® Data Virtualization

452 | TDV Server REST APIs
{\"path\":\"/services/databases/publishedDB/pubProcedure\",
\"isTable\":false}]"

DELETE/link/{linkPath}

This API is used to delete virtual tables or procedures.

Parameters:

Example to Deletes virtual table

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/link/v1/{linkPath}?isTable=true&ifExis
ts=true" -H "Content-Type: application/json"

Sample CURL Invocation with "ifExists":

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/link/v1/%2Fservices%2Fdatabases%2Fpubl
ishedDB%2FpubProcedure?isTable=false&ifExists=true" -H
"Content-Type:application/json"

Resource

The REST API operations that can be performed on the resources are:

• GET /children

• GET /custom_functions

• GET /columns

Name Description Parameter Type Data Type

linkPath virtual table or
procedure path

query string

isTable flag to indicate if
resource is a table

query boolean

ifExists flag to indicate if
resource exists

query boolean
TIBCO® Data Virtualization

TDV Server REST APIs |453
GET /children

This API is used to get the children of resources.

Parameters:

Example to get children of resource "/shared/examples"

curl -X GET -u admin:admin
"http://localhost:9400/rest/resource/v1/children?path=/shared/exam
ples&type=CONTAINER"

Example to get children of resource "/shared/examples" by page

curl -X GET -u admin:admin
"http://localhost:9400/rest/resource/v1/children?path=/shared/exam
ples&type=CONTAINER&metadataVersion=&start=0&cound=10"

GET /custom_functions

This API is used to get all custom functions.

Parameters:

None

Example to get all custom functions

curl -X GET -u admin:admin
"http://localhost:9400/rest/resource/v1/custom_functions"

Name Description Parameter Type Data Type

path resource path query string

type resource type query string

metadataVersion resource version query long

start the start index in
children list

query integer

count the count of children query integer

component component name,
(only supports “cbs”
now.)

query string
 TIBCO® Data Virtualization

454 | TDV Server REST APIs
GET /columns

This API is used to get table/view columns.

Parameters:

Example to get view "/shared/examples/ViewOrder" columns

curl -X GET -u admin:admin
"http://localhost:9400/rest/resource/v1/table/columns?path=/shared
/examples/ViewOrder"

Example to get view "/shared/examples/ViewOrder" columns by page

curl -X GET -u admin:admin
"http://localhost:9400/rest/resource/v1/table/columns?path=/shared
/examples/ViewOrder&metadataVersion=&start=0&cound=10"

Schema

The schema REST API provides the ability to create, alter or delete multiple
(published) virtual schemas. The operations that can be performed on the
resources are:

• GET /schema/virtual

• PUT /schema/virtual

• POST /schema/virtual

• DELETE /schema/virtual

• DELETE /schema/virtual/{schemaPath}

Name Description Parameter Type Data Type

path table path query string

metadataVersion table version query long

start the start index in
children list

query integer

count the count of children query integer
TIBCO® Data Virtualization

TDV Server REST APIs |455
GET /schema/virtual

This API is used to get summary and/or detailed information about a virtual
schema.

Parameters:

Example to Get summary of virtual schema "/services/databases/
publishedDB/sch1"

curl -X GET -u admin:admin
"http://localhost:9400/rest/schema/v1/virtual?path=%2Fservices%2Fd
atabases%2FpublishedDB%2Fsch1&summary=true" -H
"Content-Type:application/json"

Example to Get detailed information about virtual schema
"/services/databases/publishedDB/sch1"

curl -X GET -u admin:admin
"http://localhost:9400/rest/schema/v1/virtual?path=%2Fservices%2Fd
atabases%2FpublishedDB%2Fsch1" -H "Content-Type:application/json"

PUT /schema/virtual

This API is used to Update virtual schemas.

Parameters:

None.

Request Body

Example Value - Schema

Name Description Parameter Type Data Type

path virtual schema path query string

summary fetch virtual schema
summary

query boolean
 TIBCO® Data Virtualization

456 | TDV Server REST APIs
[
“path”: "string",
“annotation”: “string”,
“newPath”: “string”,
“ifNotExists”: true
]

Example to Update annotation and rename a published schema
"/services/databases/publishedDB/sch1 to /services/databases/
publishedDB/sch2"

curl -X PUT -u admin:admin
"http://localhost:9400/rest/schema/v1/virtual" -H
"Content-Type:application/json" -d
"[{\"path\":\"/services/databases/publishedDB/sch1\",
\"annotation\":\"Edited published schema created using REST api\",
\"newPath\":\"/services/databases/publishedDB/sch2\" }]"

Example to Update annotation and relocate a published schema
"/services/databases/publishedDB/sch2 to /services/databases/
publishedDB1/sch2"

curl -X PUT -u admin:admin
"http://localhost:9400/rest/schema/v1/virtual" -H
"Content-Type:application/json" -d
"[{\"path\":\"/services/databases/publishedDB/sch2\",
\"annotation\":\"Edited published schema created using REST api\",
\"newPath\":\"/services/databases/publishedDB1/sch2\" }]"

Example to Unset annotation of published schema "/services/databases/
publishedDB/sch1"

curl -X PUT -u admin:admin
"http://localhost:9400/rest/schema/v1/virtual" -H
"Content-Type:application/json" -d
"[{\"path\":\"/services/databases/publishedDB/sch1\",
\"annotation\":\"null\" }]"

POST /schema/virtual

This API is used to create virtual schemas.

Parameters:

None.
TIBCO® Data Virtualization

TDV Server REST APIs |457
Request Body

Example Value - Schema

[
“path”: "string",
“annotation”: “string”,
“newPath”: “string”,
“ifNotExists”: true
]

Example to Create virtual schema "/services/databases/ publishedDB/sch1"

curl -X POST -u admin:admin
"http://localhost:9400/rest/schema/v1/virtual" -H
"Content-Type:application/json" -d
"[{\"path\":\"/services/databases/publishedDB/sch1\",
\"annotation\":\"This is a published schema created using REST
api\" }]"

Example to create virtual schema "/services/databases/ publishedDB/sch1"
with "ifNotExists" syntax

curl -X POST -u admin:admin
"http://localhost:9400/rest/schema/v1/virtual" -H
"Content-Type:application/json" -d
"[{\"path\":\"/services/databases/publishedDB/sch1\",
\"ifNotExists\":true, \"annotation\":\"This is a published schema
created using REST api\" }]"

DELETE /schema/virtual

This API is used to delete virtual schemas.

Parameters:

Name Description Parameter Type Data Type

ifExists flag to indicate if
resource exists

query boolean
 TIBCO® Data Virtualization

458 | TDV Server REST APIs
Request Body

Example Value - Schema

[
"string"
]

Example to Delete virtual schema "/services/databases/publishedDB/sch1"
and "/services/databases/ publishedDB/sch2"

curl -X DELETE -u admin:admin "http://localhost:9400/rest/
schema/v1/virtual" -H "Content-Type:application/ json" -d
"[\"/services/databases/ publishedDB/sch1\",
\"/services/databases/ publishedDB/sch2\"]"

Sample CURL Invocation with "ifExists":

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/schema/v1/virtual?ifExists=true" -H
"Content-Type:application/json" -d
"[\"/shared/examples/publishedDB/sch2\"]"

DELETE /schema/virtual/{schemaPath}

This API is used to delete virtual schema given in the path.

Parameters:

Example to Delete virtual schema

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/schema/v1/virtual/{schemaPath}?ifExist
s=true" -H "Content-Type: application/json"

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/schema/v1/virtual/%2Fservices%2Fdataba

Name Description Parameter Type Data Type

schemaPath Path of the schema query string

ifExists flag to indicate if
resource exists

query boolean
TIBCO® Data Virtualization

TDV Server REST APIs |459
ses%2Fpubdb%2Fschema1?ifExists=true" -H
"Content-Type:application/json"

Script

The script REST API provides the ability to create, alter, delete, read sql script
procedures. The operations that can be performed on the resources are:

• GET /script

• PUT /script

• POST /script

• DELETE /script

• DELETE /script/{scriptPath}

GET /script

This API is used to get summary of sql script procedure.

Parameters:

Example to get summary of sql script procedure
"/shared/examples/LookupProduct"

curl -X GET -u admin:admin
"http://localhost:9400/rest/script/v1?path=%2Fshared%2Fexamples%2F
LookupProduct&summary=true" -H "Content-Type:application/json"

Example to Get detailed information about sql script procedure
"/shared/examples/LookupProduct"

curl -X GET -u admin:admin
"http://localhost:9400/rest/script/v1?path=%2Fshared%2Fexamples%2F
LookupProduct" -H "Content-Type:application/json"

Name Description Parameter Type Data Type

path sql script procedure
path

query string

summary fetch sql script
procedure summary

query boolean
 TIBCO® Data Virtualization

460 | TDV Server REST APIs
PUT /script

This API is used to Update sql script procedures.

Parameters:

None.

Request Body

Example Value - Schema

[
{
“parentPath”: "string",
“name”: “string”,
“script”: “string”,
“properties”:
{
“additionalProp1”:{},
“additionalProp2”:{},
“additionalProp3”:{}
},
“annotation”: “string”,
“newPath”: “string”,
“ifNotExists”: true
}
]

Example to update script with a modified CTAS and annotation of script
"/shared/examples/script1"

curl -X PUT -u admin:admin "http://localhost:9400/rest/script/v1"
-H "Content-Type:application/json" -d
"[{\"parentPath\":\"/shared/examples\", \"name\":\"script1\",
\"script\":\"PROCEDURE script1() BEGIN CREATE TABLE
/shared/examples/ds_inventory/tutorial/sampleTable as select
OrderId, ProductID, OrderDate, CustomerContactFirstName,
CustomerContactLastName FROM /shared/examples/ViewOrder; END\",
\"annotation\":\"Edited annotation of a script created using REST
api\" }]"

Example to Update script to unset annotation of script
"/shared/examples/script1"

curl -X PUT -u admin:admin "http://localhost:9400/rest/script/v1"
-H "Content-Type:application/json" -d
TIBCO® Data Virtualization

TDV Server REST APIs |461
"[{\"parentPath\":\"/shared/examples\", \"name\":\"script1\",
\"annotation\":\"null\" }]"

POST /script

This API is used to create sql script procedures with specified definition script.

Parameters:

None.

Request Body

Example Value - Schema

[
{
“parentPath”: "string",
“name”: “string”,
“script”: “string”,
“properties”:
{
“additionalProp1”:{},
“additionalProp2”:{},
“additionalProp3”:{}
},
“annotation”: “string”,
“newPath”: “string”,
“ifNotExists”: true
}
]

Example to create script "/shared/examples/script1"

curl -X POST -u admin:admin "http://localhost:9400/rest/script/v1"
-H "Content-Type:application/json" -d
"[{\"parentPath\":\"/shared/examples\", \"name\":\"script1\",
\"script\":\"PROCEDURE script1() BEGIN CREATE TABLE
/shared/examples/ds_inventory/tutorial/sampleTable as select
OrderId, ProductID, Discount, OrderDate, CompanyName,
CustomerContactFirstName, CustomerContactLastName,
CustomerContactPhone FROM /shared/examples/ViewOrder; END\",
\"annotation\":\"This script is created using REST api\" }]"

Example to create script "/shared/examples/script1" with "ifNotExists"
 TIBCO® Data Virtualization

462 | TDV Server REST APIs
syntax

curl -X POST -u admin:admin "http://localhost:9400/rest/script/v1"
-H "Content-Type:application/json" -d
"[{\"parentPath\":\"/shared/examples\", \"name\":\"script1\",
\"ifNotExists\":true, \"script\":\"PROCEDURE script1() BEGIN CREATE
TABLE /shared/examples/ds_inventory/tutorial/sampleTable as select
OrderId, ProductID, Discount, OrderDate, CompanyName,
CustomerContactFirstName, CustomerContactLastName,
CustomerContactPhone FROM /shared/examples/ViewOrder; END\",
\"annotation\":\"This script is created using REST api\" }]"

DELETE /script

This API is used to delete sql script procedures.

Parameters:

Request Body

Example Value - Schema

[
"string"
]

Example to delete script "/shared/examples/script1"

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/script/v1" -H
"Content-Type:application/json" -d
"[\"/shared/examples/script1\"]"

Sample CURL Invocation with "ifExists":

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/script/v1?ifExists=true" -H
"Content-Type:application/json" -d
"[\"/shared/examples/script1\"]"

Name Description Parameter Type Data Type

ifExists Flag to indicate if
resource exists

query boolean
TIBCO® Data Virtualization

TDV Server REST APIs |463
DELETE /script/{scriptPath}

This API is used to Delete sql script procedure given in the script path. Optionally
specify "if exists".

Parameters:

Example to delete sql script procedure

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/script/v1/{scriptPath}?ifExists=true"
-H "Content-Type: application/json"

Sample CURL Invocation with "ifExists":

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/script/v1/%2Fshared%2Fexamples%2Fscrip
t1?ifExists=true" -H "Content-Type:application/json"

Security

The following Security operations can be performed:

• GET /backup_encryption_settings

• GET /systemEncryption

• GET /domains

• GET /domains/groups, page 465

• POST/domains/groups/sync, page 465

• GET /backup_encryption_settings, page 464

• GET /domains/domain_users, page 466

• GET /generateUUID

• GET /systemEncryption

Name Description Parameter Type Data Type

scriptPath path of the script query string

ifExists Flaf to indicate if
resource exists

query boolean
 TIBCO® Data Virtualization

464 | TDV Server REST APIs
• PUT /systemEncryption

GET /backup_encryption_settings

This API is used to backup the encryption settings to a password protected file for
server recovery in case of emergency.

Parameters:

Example to backup the encryption settings

curl -X GET -u admin:admin
"http://localhost:9400/rest/security/v1/backup_encryption_settings
?encryptionPassword=testPassword" -o
backup_encryption_settings.txt

POST /import_encryption_settings

This API is used to restore the encryption settings from the backup file. You must
know the password that was used to protect the backup file.

Parameters:

Example to restore the encryption settings

curl -u "admin:admin" -i -F "encryptionPassword=testPassword" -F
"file=@backup_encryption_settings.txt" -X POST
"http://localhost:9400/rest/security/v1/import_encryption_settings
"

GET /domains

This API is used to get all domains.

Name Description Parameter Type Data Type

encryptionPassword Encryption Password query string

Name Description Parameter Type Data Type

file Name of the file to be
imported

query object

encryptionPassword Encryption Password query string
TIBCO® Data Virtualization

TDV Server REST APIs |465
Parameters:

None

Example to get all domains

curl -X GET -u admin:admin
"http://localhost:9400/rest/security/v1/domains"

GET /domains/groups

This API is used to get all domain groups.

Parameters:

Example to get all “composite” domain groups

curl -X GET -u admin:admin
"http://localhost:9400/rest/security/v1/domains/composite/groups"

POST/domains/groups/sync

This API is used to synchronize the given users in all external ldap domain
groups for an external ldap domain.

Parameters

Request Body

Example Value - Schema

[

 "string"

]

Name Description Parameter Type Data Type

domain The name of the
domain

path string

Name Description Parameter Type Data Type

domain The name of domain path string
 TIBCO® Data Virtualization

466 | TDV Server REST APIs
Example to synchronize the groups of "ldap" domain users "user1" and
"user2"

curl -X POST
"https://localhost:9402/rest/security/v1/domains/ldap/groups/sync"
-H "accept: */*" -H "Content-Type: application/json" -d
"[\"user1\",\"user2\"]"

GET /domains/domain_users

This API is used to get all domain users.

Parameters:

Example to get all “composite” domain users

curl -X GET -u admin:admin
"http://localhost:9400/rest/security/v1/domains/composite/users"

GET /generateUUID

This API is used to get the randomly generated system UUID.

Parameters:

None

Example to get the system randomly generated UUID.

curl -X GET -u admin:admin
"http://localhost:9400/rest/security/v1/generateUUID"

GET /systemEncryption

This API is used to get the system encryption settings.

Parameters:

None

Name Description Parameter Type Data Type

domain The name of the
domain

path string
TIBCO® Data Virtualization

TDV Server REST APIs |467
Example to get the system encryption settings.

curl -X GET -u admin:admin
"http://localhost:9400/rest/security/v1/systemEncryption"

PUT /systemEncryption

This API is used to update the system encryption settings. Can take a long time in
large database to re-encrypt data.

Parameters:

Request Body

Example Value - Schema

{
“algorithm”: "string",
“password”: “string”,
“uuid”: “string”,
“keySize”: “string”
]

Example to update the system encryption settings

curl -X PUT -u admin:admin
"http://localhost:9400/rest/security/v1/systemEncryption" -H
"Content-Type:application/json" -d
"{\"password\":\"MyTestEncryptionPassword\",\"uuid\":\"0b352e1e-ab
56-4271-a813-31183df63788\"}"

Session

The session operations that can be performed are:

• GET /session

• PUT /session

Name Description Parameter Type Data Type

body Encryption settings
(algorithm,
password, uuid, key
size

body Model schema
 TIBCO® Data Virtualization

468 | TDV Server REST APIs
• DELETE /session

GET /session

This API is used to get information about the currently open session. This may
include updates to a user's rights.

Parameters

None

Example to get session information

curl -X GET -u admin:admin "https://localhost:9400/rest/session"

Example to get session information as ldap user

curl -X GET -u user@ldapDomain:password "https://localhost:9400/
rest/session"

PUT /session

This API is used to initiate a long running session with the TDV server. Returns
information about the current session including a session token and the current
user object. The session token should be used for all following Rest API calls and
be placed within the session HTTP cookie.

Parameters

None

Request Body

Example Value - Schema

{
“user”: {
“name”: “string”,
“domainName”: “string”,
“id”: 0,
“annotation”: “string”,
“memberReferences”: [
{
“memberName”: “string”
“domainName”: “string”
TIBCO® Data Virtualization

TDV Server REST APIs |469
}
],
“rights”: 0,
“effectiveRights”: 0,
“inheritedRights”: 0,
“attributes”: {
“empty”: true
},
“locked”: true
},
“sessionToken”: “string”,
“autoCloseMode”: true
}

Example to begin a new session

curl -X PUT -u admin:admin "https://localhost:9400/rest/session"

Example to begin a new session as ldap user

curl -X PUT -u user@ldapDomain:password "https://localhost:9400/
rest/session"

DELETE /session

This API is used to end the current session and invalidate the session token that
was previously returned when creating the session.

Parameters

None

Example to end new session

curl -X DELETE -u admin:admin "https://localhost:9400/rest/session"

Example to end new session as ldap user

curl -X DELETE -u user@ldapDomain:password "https://localhost:9400/
rest/session"

Version Control System

The VCS operations that can be performed on the TDV resources are:
 TIBCO® Data Virtualization

470 | TDV Server REST APIs
• GET /branches

• GET /branches/{name}

• POST /checkin/{name}

• GET /connection

• GET /connection/{name}

• GET /content/{name}

• POST /discard/{name}

• GET /enable

• POST /fetch/{name}

• GET /history/{name}

• GET /latestcontent/{name}

• GET /localcontent/{name}

• GET /root

• GET /root/{name}

• POST /root/{name}

• DELETE /root/{name}

• POST /setCredential/{name}

• GET /status/{name}

• GET /vcsAdapter/{adapter_name}

• GET /vcsAdapters

• POST /vcsInstance

• GET /vcsInstance/{name}

• PUT /vcsInstance/{name}

• DELETE /vcsInstance/{name}

• GET /vcsInstances

GET /branches

This API is used to get branches by VCS adapter name and remote VCS url. it is
only for GIT
TIBCO® Data Virtualization

TDV Server REST APIs |471
Parameters:

Example to get branches by VCS adapter name and remote VCS url.

curl -X GET -u admin:admin
"http://localhost:9400/rest/vcs/v1/branches?adaptername={adapterNa
me}&base64Cer={pem format certificate}" -H "Content-Type:
application/json" -H "user: {user}" -H "password: {password}" -H
"url: {url}"

GET /branches/{name}

This API is used to get branches by VCS instance name. it is only for GIT.

Parameters:

Example to get branches by VCS instance name

curl -X GET -u admin:admin
"http://localhost:9400/rest/vcs/v1/branches/{vcsInstanceName}" -H
"Content-Type: application/json"

Name Description Parameter Type Data Type

adapterName The name of the
adapter

query string

url header string

user header string

password header string

base64Cer It is an optional
parameter used on
git https with ssl
certificate support.

for other usage, this
can be Null.

query string

Name Description Parameter Type Data Type

name path string
 TIBCO® Data Virtualization

472 | TDV Server REST APIs
POST /checkin/{name}

This API is used to checkin the resource into vcs.

Parameters:

Request Body

Example Value - Schema

{
“createdResources”:[
{
“resourcePath”: “string”,
“type”: “string”
}
],
“deletedResources”:[
{
“resourcePath”: “string”,
“type”: “string”
}
],
“updatedResources”:[
{
“resourcePath”: “string”,
“type”: “string”
}
],
“comment”: "string",
“email”: “string”,
“committerFullName”: “string”
}

Example to checkin

curl -X POST -u admin:admin --cookie "session9400={sessionToken}"
"http://localhost:9400/rest/vcs/v1/checkin/{vcsInstanceName}}" -H
"Content-Type: application/json" -d '{"comment": "my comment",
"createdResources":[{"resourcePath":"/users/composite/admin/abc/fo
o", "type":"PROCEDURE"}],

Name Description Parameter Type Data Type

name path string

body body Model schema
TIBCO® Data Virtualization

TDV Server REST APIs |473
"updatedResources":[{"resourcePath":"/users/composite/admin/abc/ba
r", "type":"PROCEDURE"}],
"deletedResources":[{"resourcePath":"/users/composite/admin/abc/ka
y", "type":"PROCEDURE"}]}'

GET /connection

This API is used to test connection by vcsAdapter name, url, username,
password.

Parameters:

Example to test connection by vcsAdapter name, url, username, password

curl -X GET -u admin:admin
"http://localhost:9400/rest/vcs/v1/connection?adapterName=svnAdapt
er&base64Cer={pem format certificate}" -H "Content-Type:
application/json" -H "url:svn://172.23.5.76:3690" -H
"user:svnuser1" -H "password:foa23f9u"

GET /connection/{name}

This API is used to verify vcs url connection.

Name Description Parameter Type Data Type

adapterName Name of the adapter query string

url header string

user header string

password header string

base64Cer It is an optional
parameter used on
git https with ssl
certificate support.

for other usage, this
can be Null.

query string
 TIBCO® Data Virtualization

474 | TDV Server REST APIs
Parameters:

Example to verify vcs url connection

curl -X GET -u admin:admin
"http://localhost:9400/rest/vcs/v1/connection/{vcsInstanceName}"
-H "Content-Type: application/json"

GET /content/{name}

This API is used to get cmf content for special resource and revision in special
vcsInstance.

Parameters:

Example to get cmf content for special resource and revision in special
vcsInstance.

curl -X GET -u admin:admin --cookie "session9400={sessionToken}"
"http://localhost:9400/rest/vcs/v1/content/{vcsInstanceName}?resou
rcePath=/users/composite/admin/abc/LookupProduct&resourceType=PROC
EDURE&revision=r109" -H "Content-Type: application/json"

POST /discard/{name}

This API is used to discard local changes for special resource and get latest
revision.

Name Description Parameter Type Data Type

name path string

Name Description Parameter Type Data Type

name path string

resourceType query string

resourcePath query string

revision query string
TIBCO® Data Virtualization

TDV Server REST APIs |475
Parameters:

Request Body

Example Value - Schema

{
“resources”:[
{
“resourcePath”: “string”,
“type”: “string”
}
]
}

Example to dicard local changes

curl -X POST -u admin:admin --cookie "session9400={sessionToken}"
"http://localhost:9400/rest/vcs/v1/discard/{vcsInstanceName}?inclu
dePrivileges=true" -H "Content-Type: application/json" -d
'{"resources":[{"resourcePath":"/users/composite/admin/def/LookupP
roduct", "type":"PROCEDURE"}]}'

GET /enable

This API is used to check whether vcs feature is enabled.

Parameters:

None

Example to check whether vcs feature is enabled

curl -X GET -u admin:admin
"http://localhost:9400/rest/vcs/v1/enable" -H "Content-Type:
application/json"

Name Description Parameter Type Data Type

name path string

includePrivileges query boolean

body body Model schema
 TIBCO® Data Virtualization

476 | TDV Server REST APIs
POST /fetch/{name}

This API is used to fetch the resource subtree from a particular revision. For single
resource(either a folder or a file), resource path and type should be provided. For
vcs connection wide fetch, resource path and type should be set to null, (empty
values for the resource path and type results in reader error currently).

Parameters:

Request Body

Example Value - Schema

{
“resourcePath”: “string”,
“type”: “string”
}

Example to fetch the resource subtree from a particular revision.

curl -X POST -u admin:admin --cookie "session9400={sessionToken}"
"http://localhost:9400/rest/vcs/v1/fetch/{vcsInstanceName}?revisio
n=r112&includePrivileges=true" -H "Content-Type: application/json"
-d”{"resourcePath":"/users/composite/admin/examples/view4",
"type":"TABLE"}’

GET /history/{name}

This API is used to get whole history or history for special resource in special
vcsInstance.

Name Description Parameter Type Data Type

name path string

revision query string

includePrivileges query boolean

body body Model schema
TIBCO® Data Virtualization

TDV Server REST APIs |477
Parameters:

Example to get whole history or history for special resource in special
vcsInstance.

curl -X GET -u admin:admin --cookie "session9400={sessionToken}"
"http://localhost:9400/rest/vcs/v1/history/{vcsInstnace}[?resource
Path=/users/composite/admin/abc/LookupProduct&resourceType=PROCEDU
RE]" -H "Content-Type: application/json"

GET /latestcontent/{name}

This API is used to get latest cmf content for special resource in special
vcsInstance.

Parameters:

Example to get latest cmf content for special resource in special
vcsInstance.

curl -X GET -u admin:admin
"http://localhost:9400/rest/vcs/v1/latestcontent/{vcsInstanceName}
?resourcePath=/users/composite/admin/abc/LookupProduct&resourceTyp
e=PROCEDURE" -H "Content-Type: application/json"

GET /localcontent/{name}

This API is used to get local cmf content for special resource in special
vcsInstance.

Name Description Parameter Type Data Type

name path string

resourceType query string

resourcePath query string

Name Description Parameter Type Data Type

name path string

resourceType query string

resourcePath query string
 TIBCO® Data Virtualization

478 | TDV Server REST APIs
Parameters:

Example to get local cmf content for special resource in special
vcsInstance.

curl -X GET -u admin:admin
"http://localhost:9400/rest/vcs/v1/localcontent/{vcsInstanceName}?
resourcePath=/users/composite/admin/abc/LookupProduct&resourceType
=PROCEDURE" -H "Content-Type: application/json"

GET /root

This API is used to check whether special path is a root in vcs instance.

Parameters:

Example to check whether special path is a root in vcs instance.

curl -X GET -u admin:admin
"http://localhost:9400/rest/vcs/v1/root?cis_path=/users/composite/
admin/abc/kkkdd&rootType={type}" -H "Content-Type:
application/json"

GET /root/{name}

This API is used to get all of roots for special vcs instance.

Name Description Parameter Type Data Type

name path string

resourceType query string

resourcePath query string

Name Description Parameter Type Data Type

cis_path query string

rootType query string
TIBCO® Data Virtualization

TDV Server REST APIs |479
Parameters:

Example to get all of roots for special vcs instance

curl -X GET -u admin:admin
"http://localhost:9400/rest/vcs/v1/root/{vcsInstanceName}}" -H
"Content-Type: application/json"

POST /root/{name}

This API is used to add root for special vcs instance.

Parameters:

Example to add root for special vcs instance

curl -X POST -u admin:admin --cookie "session9400={sessionToken}"
"http://localhost:9400/rest/vcs/v1/root/{vcsInstanceName}?mode={pu
sh/pull}&includePrivileges=true&rootType={type}" -H "Content-Type:
application/json" -d "/users/composite/admin/gitabc"

DELETE /root/{name}

This API is used to delete root from special vcs instance.

Name Description Parameter Type Data Type

name path string

Name Description Parameter Type Data Type

name path string

mode query string

rootType query string

includePriveleges query boolean

body body string
 TIBCO® Data Virtualization

480 | TDV Server REST APIs
Parameters:

Example to delete root from special vcs instance

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/vcs/v1/root/{vcsInstanceName}?cis_path
=/users/composite/admin/abc&rootType={type}" -H "Content-Type:
application/json"

POST /setCredential/{name}

This API is used to set credial for the vcs instance.

Parameters:

Request Body

Example Value - Schema

{
“username”: “string”,
“password”: “string”
}

Example to set credential

curl -X POST -u admin:admin --cookie "session9400={sessionToken}"
"http://localhost:9400/rest/vcs/v1/setCredential/{vcsInstanceName}
}" -H "Content-Type: application/json" -d '{"username":"gituser2",
"password":"foa23f9u"}'

Name Description Parameter Type Data Type

name path string

cis_path query string

rootType query string

Name Description Parameter Type Data Type

name path string

body body Model schema
TIBCO® Data Virtualization

TDV Server REST APIs |481
GET /status/{name}

This API is used to get resource status for special vcs instance.

Parameters:

Example to get resource status for special vcs instance

curl -X GET -u admin:admin
"http://localhost:9400/rest/vcs/v1/status/{vcsInstanceName}}" -H
"Content-Type: application/json"

GET /vcsAdapter/{adapter_name}

This API is used to get VCS adapter by adapter name.

Parameters:

Example to Get VCS adapter by adapter name

curl -X GET -u admin:admin
"http://localhost:9400/rest/vcs/v1/vcsAdapter/{adapterName}" -H
"Content-Type: application/json"

GET /vcsAdapters

This API is used to get VCS adapters.

Parameters:

None

Name Description Parameter Type Data Type

name path string

Name Description Parameter Type Data Type

adapterName name of the adapter path string
 TIBCO® Data Virtualization

482 | TDV Server REST APIs
Example to get VCS adapters

curl -X GET -u admin:admin
"http://localhost:9400/rest/vcs/v1/vcsAdapters" -H "Content-Type:
application/json"

POST /vcsInstance

This API is used to create vcs instance.

Parameters:

None

Request Body

Example Value - Schema

{
“cmdCheckIn”: “string”,
“cmdCheckOut: “string”,
“cmdAdd”: “string”,
“cmdRemove”: “string”,
“cmdRevert”: “string”,
“cmdStatus”: “string”,
“cmdDiff”: “string”,
“name”: “string,
“description”: “string”,
“providerId”: “string”,
“repository”: “string”,
“localWorkspace”: “string”,
“encryptionPassword”, “string”,
“branch”, “string”,
“ignoreEncryption”: “string”,
“base64Cer”: “string”,
“cmdHistory”: “string”
}

Example to create vcs instance

curl -X POST -u admin:admin
"http://localhost:9400/rest/vcs/v1/vcsInstance" -H "Content-Type:
application/json" -d '{"name":"vcssource1", "description": "dd",
"providerId":"svnAdapter", "repository":
"svn://172.23.5.76:3690/project6", "branch":"master",
TIBCO® Data Virtualization

TDV Server REST APIs |483
"encryptionPassword":"testPassword", "base64Cer":"Pem format
certificate" }'

GET /vcsInstance/{name}

This API is used to get vcs instance by name.

Parameters:

Example to get vcs instance by name

curl -X GET -u admin:admin
"http://localhost:9400/rest/vcs/v1/vcsInstance/{vcsInstanceName}"
-H "Content-Type: application/json"

PUT /vcsInstance/{name}

This API is used to update vcs instance.

Parameters:

Request Body

Example Value - Schema

{
“cmdCheckIn”: “string”,
“cmdCheckOut: “string”,
“cmdAdd”: “string”,
“cmdRemove”: “string”,
“cmdRevert”: “string”,
“cmdStatus”: “string”,
“cmdDiff”: “string”,
“name”: “string,
“description”: “string”,
“providerId”: “string”,
“repository”: “string”,

Name Description Parameter Type Data Type

name path string

Name Description Parameter Type Data Type

name path string
 TIBCO® Data Virtualization

484 | TDV Server REST APIs
“localWorkspace”: “string”,
“encryptionPassword”, “string”,
“branch”, “string”,
“ignoreEncryption”: “string”,
“base64Cer”: “string”,
“cmdHistory”: “string”
}

Example to update vcs instance

curl -X PUT -u admin:admin
"http://localhost:9400/rest/vcs/v1/vcsInstance/{vcsInstanceName}"
-H "Content-Type: application/json" -d '{"description": "dddddd",
"providerId":"svnAdapter", "repository": "svn://172.23.5.76:3690",
"branch":"master", "encryptionPassword":"testPassword",
"base64Cer":"Pem format certificate" }'

DELETE /vcsInstance/{name}

This API is used to delete vcs instance.

Parameters:

Example to delete vcs instance

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/vcs/v1/vcsInstance/{vcsInstanceName}"
-H "Content-Type: application/json"

GET /vcsInstances

This API is used to get all vcs instances.

Parameters:

None

Name Description Parameter Type Data Type

name path string
TIBCO® Data Virtualization

TDV Server REST APIs |485
Example to get all vcs instances

curl -X GET -u admin:admin
"http://localhost:9400/rest/vcs/v1/vcsInstances" -H "Content-Type:
application/json"

Workload Management

The following operations can be performed with the Workload Rules:

• GET /enable

• PUT /enable

• GET /rules

• POST /rules

• PUT /rules

• DELETE /rules

• GET /rules/effective

• GET /rules/effective/member

• GET /rules/effective/member/resource

GET /enable

This API is used to get enabled status of workload management.

Parameters:

None

Example to get status of workload management

curl -X GET -u admin:admin "http://localhost:9400/rest/workload/v1/enable"

PUT /enable

This API is used to enable or disable workload management.
 TIBCO® Data Virtualization

486 | TDV Server REST APIs
Parameters:

Example to enable workload

curl -X PUT -u admin:admin
"http://localhost:9400/rest/workload/v1/enable" -H
"Content-Type:application/json" -d "1"

Example to disable workload

curl -X PUT -u admin:admin
"http://localhost:9400/rest/workload/v1/enable" -H
"Content-Type:application/json" -d "0"

GET /rules

This API is used to get workload rules.

Parameters:

Example to get all workload rules that exist in the server.

curl -X GET -u admin:admin
"http://localhost:9400/rest/workload/v1/rules"

Example to get workload rule "rule1"

curl -X GET -u admin:admin
"http://localhost:9400/rest/workload/v1/rules?ruleName=rule1"

POST /rules

This API is used to create workload rules by specifying the filters, resource and
member assignments.

Name Description Parameter Type Data Type

body body integer

Name Description Parameter Type Data Type

ruleName query string
TIBCO® Data Virtualization

TDV Server REST APIs |487
Parameters:

Request Body

Example Value - Schema

{
“ruleName”: “string”,
“ruleType: “ROW_LIMIT”,
“maxRowCount”: 0,
“enabled”: true,
“annotation”: “string”,
“memberAssignments”: [
{
“domainName”: “string”,
“memberName”: “string”,
“group”: true
}
],
“resourceAssignments”: [
{
“resourcePath”: “string”,
“resourceType”: “string”
}
],
“memoryLimitPercentage”: 0,
“actionTypes”: “NOOP”
],
“emailActionData”: {
“from”: “string”,
“replyTo”: “string”,
“to”: [
“string”
],
“cc”: [
“string”
],
“bcc”: [
“string”
],

Name Description Parameter Type Data Type

body Workload rule body Array[#/definitions/
WorkloadRuleBean]
 TIBCO® Data Virtualization

488 | TDV Server REST APIs
“subject”: “string”,
“content”: “string”
},
“maxRequestTime” 0,
“maxRequestTimeUnit”: “NANOSECONDS”,
“newRuleName”: “string”,
“customMessage”: “string”
}
]

Example to create workload rule "rule1"

curl -X POST -u admin:admin
"http://localhost:9400/rest/workload/v1/rules" -H
"Content-Type:application/json" -d
"[{\"ruleName\":\"rule1\",\"enabled\":\"true\",
\"actionTypes\":[\"NOOP\"], \"ruleType\":\"FULL_TABLE_SCAN\",
\"annotation\":\"Rule to disallow select *\",
\"memberAssignments\":[{\"domainName\":\"composite\",
\"memberName\":\"customuser\", \"group\":\"false\"}],
\"resourceAssignments\":[{\"resourcePath\":\"/services/databases/f
oo/customers\", \"resourceType\":\"TABLE\"}] }]"

PUT /rules

This API is used to update workload rules.

Parameters:

None

Request Body

Example Value - Schema

{
“ruleName”: “string”,
“ruleType: “ROW_LIMIT”,
“maxRowCount”: 0,
“enabled”: true,
“annotation”: “string”,
“memberAssignments”: [
{
“domainName”: “string”,
“memberName”: “string”,
“group”: true
TIBCO® Data Virtualization

TDV Server REST APIs |489
}
],
“resourceAssignments”: [
{
“resourcePath”: “string”,
“resourceType”: “string”
}
],
“memoryLimitPercentage”: 0,
“actionTypes”: “NOOP”
],
“emailActionData”: {
“from”: “string”,
“replyTo”: “string”,
“to”: [
“string”
],
“cc”: [
“string”
],
“bcc”: [
“string”
],
“subject”: “string”,
“content”: “string”
},
“maxRequestTime” 0,
“maxRequestTimeUnit”: “NANOSECONDS”,
“newRuleName”: “string”,
“customMessage”: “string”
}
]

Example to update workload rule "/policy/workload/rule1" enabled status
and rule type

curl -X PUT -u admin:admin
"http://localhost:9400/rest/workload/v1/rules" -H
"Content-Type:application/json" -d
"[{\"ruleName\":\"rule1\",\"enabled\":\"false\",
\"actionTypes\":[\"NOOP\"], \"ruleType\":\"ROW_LIMIT\",
\"annotation\":\"Rule to limit rows\", \"maxRowCount\":\"10\",
\"memberAssignments\":[{\"domainName\":\"composite\",
\"memberName\":\"customuser\", \"group\":\"false\"}],
\"resourceAssignments\":[{\"resourcePath\":\"/services/databases/f
oo/customers\", \"resourceType\":\"TABLE\"}] }]"
 TIBCO® Data Virtualization

490 | TDV Server REST APIs
Example to rename workload rule "/policy/workload/rule1" to
"/policy/workload/rule2"

curl -X PUT -u admin:admin
"http://localhost:9400/rest/workload/v1/rules" -H
"Content-Type:application/json" -d
"[{\"ruleName\":\"rule1\",\"newRuleName\":\"rule2\",
\"enabled\":\"true\", \"actionTypes\":[\"NOOP\"],
\"ruleType\":\"ROW_LIMIT\", \"annotation\":\"Rule to limit rows\",
\"maxRowCount\":\"10\",
\"memberAssignments\":[{\"domainName\":\"composite\",
\"memberName\":\"customuser\", \"group\":\"false\"}],
\"resourceAssignments\":[{\"resourcePath\":\"/services/databases/f
oo/customers\", \"resourceType\":\"TABLE\"}] }]"

DELETE /rules

This API is used to delete workload rules.

Parameters:

None

Request Body

Example Value - Schema

[
“string”
]

Example to delete workload rules

curl -X DELETE -u admin:admin
"http://localhost:9400/rest/workload/v1/rules" -H
"Content-Type:application/json" -d "[\"rule1\", \"rule2\"]"

GET /rules/effective

This API is used to get effective rules of a resource.
TIBCO® Data Virtualization

TDV Server REST APIs |491
Parameters:

Example to get effective rules of a resource

curl -X GET -u admin:admin
"http://localhost:9400/rest/workload/v1/rules/effective?resourceId
s=10128&resourceIds=10138"

GET /rules/effective/member

This API is used to get workload rules of a user/group.

Parameters:

Example to get all workload rules that exist in the server.

curl -X GET -u admin:admin
"http://localhost:9400/rest/workload/v1/rules/effective/member"

Example to get effective workload rules of a user "u1"

curl -X GET -u admin:admin
"http://localhost:9400/rest/workload/v1/rules/effective/member?mem
berDomain=composite&memberName=u1"

GET /rules/effective/member/resource

This API is used to get effective workload rules of a user/group for specified
resource path types.

Name Description Parameter Type Data Type

resourceIds resource ids query Array[integer]

Name Description Parameter Type Data Type

memberDomain The domain of the
user.

query string

memberName The name of the user query string
 TIBCO® Data Virtualization

492 | TDV Server REST APIs
Parameters:

Example to get all workload rules that exist in the server.

curl -X GET -u admin:admin
"http://localhost:9400/rest/workload/v1/rules/effective/member/res
ource" -H "Content-Type:application/json" -d "[]"

Example to get all effective workload rules for specified resource path types

curl -X GET -u admin:admin
"http://localhost:9400/rest/workload/v1/rules/effective/member/res
ource?memberDomain=composite&memberName=u1&resourcePath=/services/
databases/foo/customers&resourceType=TABLE""

Auth

You can issue/request/revoke a token for authentication and authorization using
API calls. The operations that can be performed are:

POST/auth/refreshToken, page 492

DELETE/auth/revokeToken, page 493

POST/auth/requestToken, page 493

POST/auth/spnegoRequestToken, page 494

POST/auth/refreshToken

This API is used to issue a new token using refresh token. It is assumed that the
refresh token is in cookie.

Name Description Parameter Type Data Type

memberDomain The domain name of
user/group.

query string

memberName The name of the
user/group

query string

resourcePath Resource path query string

resourceType Resource type query string
TIBCO® Data Virtualization

TDV Server REST APIs |493
Parameters

None.

Example to issue a new token using the refresh token in the user's cookie

curl -X POST -b cookie.txt
"http://localhost:9400/rest/auth/v1/refreshToken"

DELETE/auth/revokeToken

Assuming the refresh token is in cookie, this API is used to revoke the token and
terminate the session.

Parameters

None

Example to revoke the refresh token in the cookie.

curl -X DELETE -b cookie.txt
"http://localhost:9400/rest/auth/v1/revokeToken"

POST/auth/requestToken

This API is used to request a token.

Parameters

None

Request Body

Example Value - Schema

[
{
"string"
}
]

Example to request a token for user "admin" in the request body

curl -X POST -u admin:admin -c cookie.txt
"http://localhost:9400/rest/auth/v1" -H
"Content-Type:application/json" -d "{\"appId\":\"Contrail\"}"
 TIBCO® Data Virtualization

494 | TDV Server REST APIs
POST/auth/spnegoRequestToken

This API is used to request a token using Kerberos (GSS) authentication.

Parameters

None

Request Body

Example Value - Schema

[
{
"string"
}
]

Example to request a token for a Kerberos user in the request body.

curl -X POST --negotiate -u : -c cookie.txt
"http://localhost:9400/rest/auth/v1/spnegoRequestToken" -H
"Content-Type:application/json" -d "{\"appId\":\"Contrail\"}"
TIBCO® Data Virtualization

495 | TIBCO Product Documentation and Support Services
TIBCO Product Documentation and Support Services

For information about this product, you can read the documentation, contact
TIBCO Support, and join the TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the TIBCO Product
Documentation website, mainly in HTML and PDF formats.

The TIBCO Product Documentation website is updated frequently and is more
current than any other documentation included with the product.

Product-Specific Documentation

The following documentation for this product is available on the TIBCO Data
Virtualization page.

• Users

TDV Getting Started Guide

TDV User Guide

TDV Web UI User Guide

TDV Client Interfaces Guide

TDV Tutorial Guide

TDV Northbay Example

• Administration

TDV Installation and Upgrade Guide

TDV Administration Guide

TDV Active Cluster Guide

TDV Security Features Guide

• Data Sources

TDV Adapter Guides

TDV Data Source Toolkit Guide (Formerly Extensibility Guide)

• References

TDV Reference Guide

TDV Application Programming Interface Guide
 TIBCO Data Virtualization Documentation and Support Services

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-data-virtualization
https://docs.tibco.com/products/tibco-data-virtualization
https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-data-virtualization
https://docs.tibco.com/products/tibco-data-virtualization

496 | TIBCO Product Documentation and Support Services
• Other

TDV Business Directory Guide

TDV Discovery Guide

• TIBCO TDV and Business Directory Release Notes Read the release notes for
a list of new and changed features. This document also contains lists of known
issues and closed issues for this release.

How to Contact TIBCO Support

Get an overview of TIBCO Support. You can contact TIBCO Support in the
following ways:

• For accessing the Support Knowledge Base and getting personalized content
about products you are interested in, visit the TIBCO Support website.

• For creating a Support case, you must have a valid maintenance or support
contract with TIBCO. You also need a user name and password to log in to
TIBCO Support website. If you do not have a user name, you can request one
by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and
employee subject matter experts to share and access their collective experience.
TIBCO Community offers access to Q&A forums, product wikis, and best
practices. It also offers access to extensions, adapters, solution accelerators, and
tools that extend and enable customers to gain full value from TIBCO products. In
addition, users can submit and vote on feature requests from within the TIBCO
Ideas Portal. For a free registration, visit TIBCO Community.
 TIBCO Data Virtualization Documentation and Support Services

https://www.tibco.com/services/support
https://ideas.tibco.com/portal_session/new
https://support.tibco.com
https://community.tibco.com
https://support.tibco.com
https://www.tibco.com/services/support
https://www.tibco.com/services/support
https://community.tibco.com
https://support.tibco.com
https://ideas.tibco.com/
https://ideas.tibco.com/

 TIBCO Data Virtualization Legal and Third-Party Notices

497 | Legal and Third-Party Notices

Legal and Third-Party Notices

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY
(OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE.
THE EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY
ANY OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND
CONDITIONS OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED
SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE
CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD
OR INSTALLATION OF THE SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE)
OR IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER
LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE
SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND
YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE
BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of TIBCO Software Inc.

TIBCO, TIBCO logo, Two-Second Advantage, TIBCO Spotfire, TIBCO ActiveSpaces, TIBCO Spotfire
Developer, TIBCO EMS, TIBCO Spotfire Automation Services, TIBCO Enterprise Runtime for R,
TIBCO Spotfire Server, TIBCO Spotfire Web Player, TIBCO Spotfire Statistics Services, S-PLUS, and
TIBCO Spotfire S+ are either registered trademarks or trademarks of TIBCO Software Inc. in the
United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle
Corporation and/or its affiliates.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system
platforms for a specific software version are released at the same time. See the readme file for the
availability of this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO
SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY
OR INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE,
INCLUDING BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please refer to
TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 2002-2021. TIBCO Software Inc. All Rights Reserved.

https://www.tibco.com/patents

	TIBCO Data Virtualization®
	Contents
	Introduction
	Purpose of the Web Services Operations
	Groups of Operations
	Administrative Operations
	Utility Operations

	Purpose of the Procedures
	Groups of Procedures
	Debug Procedures
	Deployment Procedures
	JMS Procedures
	Lineage Procedures
	Profile Procedures
	Resource Procedures
	Service Procedures
	Transformation Procedure
	User Procedures
	Utility Procedures

	Security Features

	Using Web Services Operations
	Using Operations in Studio
	Finding and Opening Operations
	Preparing and Executing an Operation

	Using Operations from a Web Services Client
	Web Services Port
	WSDL Definitions of Operations

	Web Services Operations
	Operations Reference
	addLicenses
	addLoginModule
	addPrincipalMapping
	addUsersToGroup
	addUserToGroups
	beginSession
	beginTransaction
	cancelArchive
	cancelCreateDomain
	cancelDataSourceReintrospect
	cancelResourceStatistics
	cancelServerTask
	changeResourceOwner
	clearIntrospectableResourceIdCache
	clearResourceCache
	clearResourceStatistics
	closeResult
	closeSession
	closeTransaction
	copyResource
	copyResourcePrivileges
	copyResources
	createCluster
	createConnector
	createCustomDataSourceType
	createDataSource
	createDBHealthMonitorTable
	createDomain
	createExportArchive
	createGroup
	createImportArchive
	createLink
	createLinksRecursively
	createResource
	createUser
	destroyConnector
	destroyCustomDataSourceType
	destroyDomain
	destroyGroup
	destroyResource
	destroyResources
	destroyUser
	executeNativeSql
	executeProcedure
	executeSql
	executePreparedSql
	executeSqlScript
	getAllResourcesByPath
	getAncestorResources
	getArchiveContents
	getArchiveExportData
	getArchiveExportSettings
	getArchiveImportReport
	getArchiveImportSettings
	getAvailableLoginModuleNames
	getCachedResourceStatisticsConfig
	getChildResources
	getClusterConfig
	getConnectorGroup
	getConnectorGroupNames
	getConnectors
	getCreateDBHealthMonitorTableSQL
	getDataSourceAttributeDefs
	getDataSourceChildResources
	getDataSourceReintrospectResult
	getDataSourceStatisticsConfig
	getDataSourceTypeAttributeDefs
	getDataSourceTypeCustomCapabilities
	getDataSourceTypes
	getDependentResources
	getDomainGroups
	getDomains
	getDomainTypeAttributeDefs
	getDomainTypes
	getDomainUsers
	getExtendableDataSourceTypes
	getGeneralSettings
	getGroups
	getGroupsByUser
	getIntrospectableResourceIdsResult
	getIntrospectableResourceIdsTask
	getIntrospectedResourceIdsResult
	getIntrospectedResourceIdsTask
	getIntrospectionAttributeDefs
	getIntrospectionAttributes
	getLicenses
	getLockedResources
	getLoginModule
	getLoginModuleDefaultProperties
	getLoginModuleList
	getMostRecentIntrospectionStatus
	getParentDataSourceType
	getParentResource
	getPrincipalMapping
	getPrincipalMappingList
	getProceduralResult
	getResource
	getResourceCacheConfig
	getResourcePlan
	getResourcePrivileges
	getResources
	getResourceStatisticsConfig
	getResourceStatsSummary
	getResourceUpdates
	getResultSetPlan
	getServerActions
	getServerAttributeDefChildren
	getServerAttributeDefs
	getServerAttributes
	getServerInfo
	getServerName
	getSqlPlan
	getTabularResult
	getTransformFunctions
	getUsedDataSources
	getUsedResources
	getUser
	getUsers
	getUsersByGroup
	introspectResourcesResult
	introspectResourcesTask
	joinCluster
	lockResource
	lockResources
	moveResource
	moveResources
	parseSqlQuery
	performArchiveImport
	performServerAction
	rbsAssignFilterPolicy
	rbsDeleteFilterPolicy
	rbsGetFilterPolicy
	rbsGetFilterPolicyList
	rbsIsEnabled
	rbsSetEnabled
	rbsWriteFilterPolicy
	rebindResources
	refreshResourceCache
	refreshResourceStatistics
	reintrospectDataSource
	removeFromCluster
	removeLicenses
	removeLoginModule
	removePrincipalMapping
	removeUserFromGroups
	removeUsersFromGroup
	renameResource
	repairCluster
	resourceExists
	syncDomainGroups
	testDataSourceConnection
	unlockResource
	unlockResources
	updateArchiveExportSettings
	updateArchiveImportSettings
	updateBasicTransformProcedure
	updateCachedResourceStatisticsConfig
	updateClusterName
	updateColumnAnnotation
	updateConnector
	updateCustomDataSourceType
	updateDataServicePort
	updateDataSource
	updateDataSourceChildInfos
	updateDataSourceChildInfosWithFilter
	updateDataSourcePort
	updateDataSourceStatisticsConfig
	updateDataSourceTypeCustomCapabilities
	updateDefinitionSet
	updateDomain
	updateExternalSqlProcedure
	updateGeneralSettings
	updateGroup
	updateImplementationContainer
	updateLink
	updateLoginModule
	updateLoginModuleList
	updatePrincipalMapping
	updateResourceAnnotation
	updateResourceCacheConfig
	updateResourceEnabled
	updateResourcePrivileges
	updateResources
	updateResourceStatisticsConfig
	updateServerAttributes
	updateServerName
	updateSqlScriptProcedure
	updateSqlTable
	updateStreamTransformProcedure
	updateTransformProcedure
	updateTrigger
	updateUser
	updateUserLockState
	updateXQueryProcedure
	updateXQueryTransformProcedure
	updateXSLTProcedure
	updateXsltTransformProcedure

	Recurring Element Structures
	Attribute Definitions Element
	Attributes Element
	Column Element
	Connector Element
	Domains Element
	Filter Policy Definition
	Groups Element
	Import Hints
	Introspection Plan Element
	Introspection Report Status Element
	Licenses Element
	Messages Element
	Parameters Element
	Refresh Element
	Reintrospect Report Element
	Resources Element
	Schedule Element
	User and Group Rights Mask
	User Element
	Users Element

	TDV Resource Types and Subtypes

	Built-in Procedures
	About TDV Built-in Procedures
	Naming Conflicts between User-Defined and Built-in Procedures
	Sample JMS Built-in Procedure
	Procedures Reference
	AddUsernameToken
	CancelDataSourceReintrospect
	CancelResourceStatistics
	ClearAllDataSourceCredentials
	ClearAlternatePrincipal
	ClearMessageProperties
	ClearResourceCache
	ClearResourceStatistics
	CopyResource
	CreateElement
	CreateResourceCacheKey
	DeleteElement
	EncryptElement
	ExecuteBasicTransform
	ExplainAttributes
	ExplainPrincipals
	ExplainResources
	GenerateEvent
	GetClaim
	GetColumnDependencies
	GetColumnProfiles
	GetColumnReferences
	GetDataSourceReintrospectReport
	GetEnvironment
	GetPartitionClauses
	GetPrincipalSet
	GetTableProfiles
	GetProperty
	GetResourceCacheStatus
	GetResourceSet
	HasClaim
	ListAttributes
	ListPrincipals
	ListResources
	LoadResourceCacheStatus
	Log
	LogError
	LogMessageToFile
	MoveResource
	Pause
	PreviewResourceSet
	Print
	ProcessSecurityHeader
	RefreshResourceCache
	RefreshResourceCacheSynchronously
	RefreshResourceStatistics
	ReintrospectDataSource
	RenameResource
	ResourceExists
	Search
	SendEMail
	SendMapMessage
	SendResultsInEMail
	SendTextMessage
	SetAlternatePrincipal
	SetAlternateSecurityProperty
	SetDataSourceCredentials
	SetEnvironment
	SetEnvironmentFromNodeValue
	SetMessageProperties
	SetMessageProperty
	SetNodeValueFromEnvironment
	SignElement
	SqlPerf
	SyncDomain
	TestAllDataSourceConnections
	TestDataSourceConnection
	TestUserIdentity
	UpdateResourceCacheEnabled
	UpdateResourceCacheKeyStatus
	UpdateResourceEnabled

	SQL Definition Sets
	extendedSql SQL Definition Set
	Jms SQL Definition Set
	ResourceDefs SQL Definition Set
	sql SQL Definition Set
	System SQL Definition Set
	UserDefs SQL Definition Set

	Server Actions
	About Server Actions
	Server Actions Reference
	CheckLicense
	ClearDataSourceConnectionPools
	ClearRepositoryCache
	ClearQueryPlanCache
	ClearServerProfile
	Echo
	FreeUnusedMemory
	GetServerProfile
	PurgeCompletedRequests
	PurgeCompletedSessions
	PurgeCompletedTransactions
	RegenerateFiles
	ResetSystemNamespace
	ShutdownServer
	TerminateRequests
	TerminateSessions
	TerminateTransactions
	TestAllDataSources

	DSL API
	Data Sources
	DSL Syntax
	Relational Data Sources
	File Delimited Data Sources
	Excel Data Sources
	System Tables
	Logging

	Data Views
	DSL Syntax
	Considerations
	Examples
	System Tables
	Logging

	SQL Script Procedures
	DSL Syntax
	Considerations
	Examples
	System Tables
	Logging

	Folders
	DSL Syntax
	Considerations
	Examples
	System Tables
	Logging

	Virtual Databases
	DSL Syntax
	Considerations
	Examples
	System Tables

	Virtual Tables and Procedures
	DSL Syntax
	Considerations
	Examples
	System Tables
	Logging

	Virtual Schemas
	DSL Syntax
	Considerations
	Examples
	System Tables

	Virtual Catalogs
	DSL Syntax
	Considerations
	Examples
	System Tables
	Logging

	DSL Support in SQL Scripts
	Examples

	REST API
	TDV Server REST APIs
	Catalog
	Column-Based Security
	Datasource
	Dataview
	Deployment Manager
	Execute
	Folders
	Link
	Resource
	Schema
	Script
	Security
	Session
	Version Control System
	Workload Management
	Auth

	TIBCO Product Documentation and Support Services
	How to Access TIBCO Documentation
	How to Contact TIBCO Support
	How to Join TIBCO Community

	Legal and Third-Party Notices

