
Copyright © 2002-2021. TIBCO Software Inc. All Rights Reserved.

TIBCO Data Virtualization®

Cosmos DB Adapter Guide
Version 8.5.0
Last Updated: July 5, 2021

Contents | 1
Contents

TDV Cosmos DB Adapter .3

Getting Started. 3
Deploying the Adapter . 3
Connecting to Cosmos DB . 3

Basic Tab. 3

Advanced Tab . 4
Connection String Options . 4

Logging . 29

Advanced Settings. 31
Accessing NoSQL Tables. 31
Fine Tuning Data Access . 31
Customizing the SSL Configuration . 32
Connecting Through a Firewall or Proxy . 32
Troubleshooting the Connection. 32

Changes in 2019 . 33

NoSQL Database. 33
Automatic Schema Discovery. 34
Free-Form Queries . 35
Vertical Flattening. 37
JSON Functions . 39
Sql API Built-In Functions. 41
Query Mapping (Sql API) . 46
Built-In functions . 48
Custom Schema Definitions . 48
Custom Schema Example . 50

Stored Procedures. 51

SQL Compliance . 52
SELECT Statements . 53
SELECT INTO Statements . 75
INSERT Statements . 75
UPDATE Statements . 76
DELETE Statements . 77
EXECUTE Statements . 77

TIBCO Product Documentation and Support Services .79

How to Access TIBCO Documentation. 79
How to Contact TIBCO Support . 80
How to Join TIBCO Community . 80
 TIBCO® Data Virtualization

2 | Contents
Legal and Third-Party Notices . 81
TIBCO® Data Virtualization

|3
TDV Cosmos DB Adapter

Cosmos DB Version Support

The adapter enables standards-based access to Cosmos DB.

Requirements and Restrictions

The SQL Compliance section shows the SQL syntax supported by the adapter and
points out any limitations.

Getting Started

Deploying the Adapter

For instructions on deploying the adapter, refer to the Installation Guide, section
Installing the Advanced Adapters.

Connecting to Cosmos DB

Basic Tab shows how to authenticate to Cosmos DB and configure any necessary
connection properties. Additional adapter capabilities can be configured using
the available Connection properties on the Advanced tab. The Advanced Settings
section shows how to set up more advanced configurations and troubleshoot
connection errors.

Basic Tab

Connecting to Cosmos DB

Rest API (SQL API)

To obtain the connection string needed to connect to a Cosmos DB account using
the SQL API, log in to the Azure Portal, select Azure Cosmos DB, and select your
account. In the Settings section, click Connection String and set the following
values:
 TIBCO® Data Virtualization

4 | Advanced Tab
• AccountEndpoint: The value should be the Cosmos DB account URL from the
Keys blade of the Cosmos DB account.

• AccountKey: In the Azure portal, navigate to the Cosmos DB service and
select your Azure Cosmos DB account. From the resource menu, go to the
Keys page. Find the PRIMARY KEY value and set Token to this value.

Advanced Tab

Connection String Options

The connection string properties describe the various options that can be used to
establish a connection.

Connection String Options

The following is the full list of the options you can configure in the connection
string for this provider.

Account
Endpoint

The value should be the Cosmos DB account URL from the Keys blade of the
Cosmos DB account.

Account Key A master key token or a resource token for connecting to the Cosmos DB REST
API.

Calculate
Aggregates

Specifies whether will return the calculated value of the aggregates or grouped
by partiton range.

Consistency
Level

Denotes the type of token: master or resource.

Firewall
Password

A password used to authenticate to a proxy-based firewall.

Firewall Port The TCP port for a proxy-based firewall.

Firewall Server The name or IP address of a proxy-based firewall.

Firewall Type The protocol used by a proxy-based firewall.

Firewall User The user name to use to authenticate with a proxy-based firewall.
TIBCO® Data Virtualization

Advanced Tab |5
Flatten Arrays By default, nested arrays are returned as strings of JSON. The FlattenArrays
property can be used to flatten the elements of nested arrays into columns of
their own. Set FlattenArrays to the number of elements you want to return
from nested arrays.

Flatten Objects Set FlattenObjects to true to flatten object properties into columns of their own.
Otherwise, objects nested in arrays are returned as strings of JSON.

Generate
Schema Files

Indicates the user preference as to when schemas should be generated and
saved.

Location A path to the directory that contains the schema files defining tables, views,
and stored procedures.

Max Rows Limits the number of rows returned rows when no aggregation or group by is
used in the query. This helps avoid performance issues at design time.

Multi Thread
Count

Aggregate queries in partitioned collections will require parallel requests for
different partition ranges. Set this to the number of parallel request to be issued
in the same time.

Other These hidden properties are used only in specific use cases.

Proxy Auth
Scheme

The authentication type to use to authenticate to the ProxyServer proxy.

Proxy Auto
Detect

This indicates whether to use the system proxy settings or not. This takes
precedence over other proxy settings, so you'll need to set ProxyAutoDetect to
FALSE in order use custom proxy settings.

Proxy
Exceptions

A semicolon separated list of hosts or IPs that are exempt from connecting
through the ProxyServer .

Proxy
Password

A password to be used to authenticate to the ProxyServer proxy.

Proxy Port The TCP port the ProxyServer proxy is running on.

Proxy Server The hostname or IP address of a proxy to route HTTP traffic through.

Proxy SSL
Type

The SSL type to use when connecting to the ProxyServer proxy.

Proxy User A user name to be used to authenticate to the ProxyServer proxy.
 TIBCO® Data Virtualization

6 | Advanced Tab
Account Endpoint

The value should be the Cosmos DB account URL from the Keys blade of the
Cosmos DB account.

Data Type

string

Default Value

""

Readonly You can use this property to enforce read-only access to Cosmos DB from the
provider.

Row Scan
Depth

The maximum number of rows to scan to look for the columns available in a
table. Set this property to gain more control over how the provider applies data
types to collections.

Schema Specify the Cosmos DB database you want to work with.

Separator
Character

The character or characters used to denote hierarchy.

SSL Client Cert The TLS/SSL client certificate store for SSL Client Authentication (2-way SSL).

SSL Client Cert
Password

The password for the TLS/SSL client certificate.

SSL Client Cert
Subject

The subject of the TLS/SSL client certificate.

SSL Client Cert
Type

The type of key store containing the TLS/SSL client certificate.

SSL Server Cert The certificate to be accepted from the server when connecting using TLS/SSL.

Timeout The value in seconds until the timeout error is thrown, canceling the operation.

Token Type Denotes the type of token: master or resource.

Type Detection
Scheme

Comma-separated options for how the provider will scan the data to
determine the fields and datatypes in each document collection.
TIBCO® Data Virtualization

Advanced Tab |7
Remarks

The value should be the Cosmos DB account URL from the Keys blade of the
Cosmos DB account.

Account Key

A master key token or a resource token for connecting to the Cosmos DB REST
API.

Data Type

string

Default Value

""

Remarks

In the Azure portal, navigate to the Cosmos DB service and select your Azure
Cosmos DB account. From the resource menu, go to the Keys page. Find the
PRIMARY KEY value and set Token to this value.

Calculate Aggregates

Specifies whether will return the calculated value of the aggregates or grouped by
partiton range.

Data Type

bool

Default Value

true

Remarks

Specifies whether will return the calculated value of the aggregates or grouped by
partiton range.

Consistency Level

Denotes the type of token: master or resource.
 TIBCO® Data Virtualization

8 | Advanced Tab
Data Type

string

Default Value

"SESSION"

Remarks

The consistency level override for read options against documents and
attachments. The valid values are: Strong, Bounded, Session, or Eventual (in
order of strongest to weakest). The override must be the same or weaker than the
account's configured consistency level.

The consistency level override for read options against documents and
attachments. The valid values are: Strong, Bounded, Session, or Eventual (in
order of strongest to weakest). The override must be the same or weaker than the
account's configured consistency level.

Firewall Password

A password used to authenticate to a proxy-based firewall.

Data Type

string

Default Value

""

Remarks

This property is passed to the proxy specified by FirewallServer and FirewallPort,
following the authentication method specified by FirewallType.

Firewall Port

The TCP port for a proxy-based firewall.

Data Type

string
TIBCO® Data Virtualization

Advanced Tab |9
Default Value

""

Remarks

This specifies the TCP port for a proxy allowing traversal of a firewall. Use
FirewallServer to specify the name or IP address. Specify the protocol with
FirewallType.

Firewall Server

The name or IP address of a proxy-based firewall.

Data Type

string

Default Value

""

Remarks

This property specifies the IP address, DNS name, or host name of a proxy
allowing traversal of a firewall. The protocol is specified by FirewallType: Use
FirewallServer with this property to connect through SOCKS or do tunneling. Use
ProxyServer to connect to an HTTP proxy.

Note that the adapter uses the system proxy by default. To use a different proxy,
set ProxyAutoDetect to false.

Firewall Type

The protocol used by a proxy-based firewall.

Data Type

string

Default Value

"NONE"
 TIBCO® Data Virtualization

10 | Advanced Tab
Remarks

This property specifies the protocol that the adapter will use to tunnel traffic
through the FirewallServer proxy. Note that by default, the adapter connects to
the system proxy; to disable this behavior and connect to one of the following
proxy types, set ProxyAutoDetect to false.

To connect to HTTP proxies, use ProxyServer and ProxyPort. To authenticate to
HTTP proxies, use ProxyAuthScheme, ProxyUser, and ProxyPassword.

Firewall User

The user name to use to authenticate with a proxy-based firewall.

Data Type

string

Default Value

""

Remarks

The FirewallUser and FirewallPassword properties are used to authenticate
against the proxy specified in FirewallServer and FirewallPort, following the
authentication method specified in FirewallType.

Type Default
Port

Description

TUNNE
L

80 When this is set, the adapter opens a connection to Cosmos DB and traffic
flows back and forth through the proxy.

SOCKS4 1080 When this is set, the adapter sends data through the SOCKS 4 proxy
specified by FirewallServer and FirewallPort and passes the FirewallUser
value to the proxy, which determines if the connection request should be
granted.

SOCKS5 1080 When this is set, the adapter sends data through the SOCKS 5 proxy
specified by FirewallServer and FirewallPort. If your proxy requires
authentication, set FirewallUser and FirewallPassword to credentials the
proxy recognizes.
TIBCO® Data Virtualization

Advanced Tab |11
Flatten Arrays

By default, nested arrays are returned as strings of JSON. The FlattenArrays
property can be used to flatten the elements of nested arrays into columns of their
own. Set FlattenArrays to the number of elements you want to return from nested
arrays.

Data Type

string

Default Value

"0"

Remarks

By default, nested arrays are returned as strings of JSON. The FlattenArrays
property can be used to flatten the elements of nested arrays into columns of their
own. This is only recommended for arrays that are expected to be short.

Set FlattenArrays to the number of elements you want to return from nested
arrays. The specified elements are returned as columns. The zero-based index is
concatenated to the column name. Other elements are ignored.

For example, you can return an arbitrary number of elements from an array of
strings:
["FLOW-MATIC","LISP","COBOL"]

When FlattenArrays is set to 1, the preceding array is flattened into the following
table:

Setting FlattenArrays to -1 will flatten all the elements of nested arrays.

Flatten Objects

Set FlattenObjects to true to flatten object properties into columns of their own.
Otherwise, objects nested in arrays are returned as strings of JSON.

Data Type

bool

Column Name Column Value

languages.0 FLOW-MATIC
 TIBCO® Data Virtualization

12 | Advanced Tab
Default Value

true

Remarks

Set FlattenObjects to true to flatten object properties into columns of their own.
Otherwise, objects nested in arrays are returned as strings of JSON. The property
name is concatenated onto the object name with a dot to generate the column
name.

For example, you can flatten the nested objects below at connection time:

[
 { "grade": "A", "score": 2 },
 { "grade": "A", "score": 6 },
 { "grade": "A", "score": 10 },
 { "grade": "A", "score": 9 },
 { "grade": "B", "score": 14 }
]

When FlattenObjects is set to true and FlattenArrays is set to 1, the preceding
array is flattened into the following table:

Generate Schema Files

Indicates the user preference as to when schemas should be generated and saved.

Data Type

string

Default Value

"Never"

Column Name Column Value

grades.0.grade A

grades.0.score 2
TIBCO® Data Virtualization

Advanced Tab |13
Remarks

GenerateSchemaFiles enables you to persist the table definitions identified by
Automatic Schema Discovery. This property outputs schemas to .rsd files in the
path specified by Location.

Available settings are the following:

• Never: A schema file will never be generated.

• OnUse: A schema file will be generated the first time a table is referenced,
provided the schema file for the table does not already exist.

• OnStart: A schema file will be generated at connection time for any tables that
do not currently have a schema file.

Note that if you want to regenerate a file, you will first need to delete it.

Generate Schemas with SQL

When you set GenerateSchemaFiles to OnUse, the adapter generates schemas as
you execute SELECT queries. Schemas are generated for each table referenced in
the query.

Generate Schemas on Connection

Another way to use this property is to obtain schemas for every table in your
database when you connect. To do so, set GenerateSchemaFiles to OnStart and
connect.

Editing Schemas

Schema files have a simple format that makes them easy to modify. See Custom
Schema Definitions for an end-to-end guide using the Cosmos DB restaurants
collection.

Using Dynamic Schemas Instead

If your data structures are volatile, consider setting GenerateSchemaFiles to
Never and using dynamic schemas, which change based on the metadata
retrieved when you connect. Also, note that you cannot execute Free-Form
Queries queries to a table that has a static schema definition.

Location

A path to the directory that contains the schema files defining tables, views, and
stored procedures.
 TIBCO® Data Virtualization

14 | Advanced Tab
Data Type

string

Default Value

"%APPDATA%\\CData\\CosmosDB Data Provider\\Schema"

Remarks

The path to a directory which contains the schema files for the adapter (.rsd files
for tables and views, .rsb files for stored procedures). The folder location can be a
relative path from the location of the executable. The Location property is only
needed if you want to customize definitions (for example, change a column name,
ignore a column, and so on) or extend the data model with new tables, views, or
stored procedures.

If left unspecified, the default location is "%APPDATA%\\CData\\CosmosDB
Data Provider\\Schema" with %APPDATA% being set to the user's
configuration directory:

Max Rows

Limits the number of rows returned rows when no aggregation or group by is
used in the query. This helps avoid performance issues at design time.

Data Type

string

Default Value

"-1"

Platform %APPDATA%

Windows The value of the APPDATA environment variable

Mac ~/Library/Application Support

Linux ~/.config
TIBCO® Data Virtualization

Advanced Tab |15
Remarks

Limits the number of rows returned rows when no aggregation or group by is
used in the query. This helps avoid performance issues at design time.

Multi Thread Count

Aggregate queries in partitioned collections will require parallel requests for
different partition ranges. Set this to the number of parallel request to be issued in
the same time.

Data Type

string

Default Value

"5"

Remarks

Aggregate queries in partitioned collections will require parallel requests for
different partition ranges. Set this to the number of parallel request to be issued in
the same time.

Other

These hidden properties are used only in specific use cases.

Data Type

string

Default Value

""

Remarks

The properties listed below are available for specific use cases. Normal driver use
cases and functionality should not require these properties.

Specify multiple properties in a semicolon-separated list.
 TIBCO® Data Virtualization

16 | Advanced Tab
Integration and Formatting

Proxy Auth Scheme

The authentication type to use to authenticate to the ProxyServer proxy.

Data Type

string

Default Value

"BASIC"

Remarks

This value specifies the authentication type to use to authenticate to the HTTP
proxy specified by ProxyServer and ProxyPort.

Note that the adapter will use the system proxy settings by default, without
further configuration needed; if you want to connect to another proxy, you will
need to set ProxyAutoDetect to false, in addition to ProxyServer and ProxyPort.
To authenticate, set ProxyAuthScheme and set ProxyUser and ProxyPassword, if
needed.

The authentication type can be one of the following:

• BASIC: The adapter performs HTTP BASIC authentication.

• DIGEST: The adapter performs HTTP DIGEST authentication.

• NEGOTIATE: The adapter retrieves an NTLM or Kerberos token based on the
applicable protocol for authentication.

• PROPRIETARY: The adapter does not generate an NTLM or Kerberos token.
You must supply this token in the Authorization header of the HTTP request.

If you need to use another authentication type, such as SOCKS 5 authentication,
see Firewall Type.

DefaultColumnSize Sets the default length of string fields when the data source does
not provide column length in the metadata. The default value is
2000.

ConvertDateTimeToGMT Determines whether to convert date-time values to GMT, instead of
the local time of the machine.

RecordToFile=filename Records the underlying socket data transfer to the specified file.
TIBCO® Data Virtualization

Advanced Tab |17
Proxy Auto Detect

This indicates whether to use the system proxy settings or not. This takes
precedence over other proxy settings, so you'll need to set ProxyAutoDetect to
FALSE in order use custom proxy settings.

Data Type

bool

Default Value

true

Remarks

This takes precedence over other proxy settings, so you'll need to set
ProxyAutoDetect to FALSE in order use custom proxy settings.

NOTE: When this property is set to True, the proxy used is determined as follows:

• A search from the JVM properties (http.proxy, https.proxy, socksProxy, etc.)
is performed.

• In the case that the JVM properties don't exist, a search from
java.home/lib/net.properties is performed.

• In the case that java.net.useSystemProxies is set to True, a search from the
SystemProxy is performed.

• In Windows only, an attempt is made to retrieve these properties from the
Internet Options in the registry.

To connect to an HTTP proxy, see Proxy Server. For other proxies, such as SOCKS
or tunneling, see Firewall Type.

Proxy Exceptions

A semicolon separated list of hosts or IPs that are exempt from connecting
through the ProxyServer .

Data Type

string

Default Value

""
 TIBCO® Data Virtualization

18 | Advanced Tab
Remarks

The ProxyServer is used for all addresses, except for addresses defined in this
property. Use semicolons to separate entries.

Note that the adapter uses the system proxy settings by default, without further
configuration needed; if you want to explicitly configure proxy exceptions for this
connection, you need to set ProxyAutoDetect = false, and configure ProxyServer
and ProxyPort. To authenticate, set ProxyAuthScheme and set ProxyUser and
ProxyPassword, if needed.

Proxy Password

A password to be used to authenticate to the ProxyServer proxy.

Data Type

string

Default Value

""

Remarks

This property is used to authenticate to an HTTP proxy server that supports
NTLM (Windows), Kerberos, or HTTP authentication. To specify the HTTP
proxy, you can set ProxyServer and ProxyPort. To specify the authentication type,
set ProxyAuthScheme.

If you are using HTTP authentication, additionally set ProxyUser and
ProxyPassword to HTTP proxy.

If you are using NTLM authentication, set ProxyUser and ProxyPassword to your
Windows password. You may also need these to complete Kerberos
authentication.

For SOCKS 5 authentication or tunneling, see Firewall Type.

By default, the adapter uses the system proxy. If you want to connect to another
proxy, set ProxyAutoDetect to false.

Proxy Port

The TCP port the ProxyServer proxy is running on.
TIBCO® Data Virtualization

Advanced Tab |19
Data Type

string

Default Value

"80"

Remarks

The port the HTTP proxy is running on that you want to redirect HTTP traffic
through. Specify the HTTP proxy in ProxyServer. For other proxy types, see
Firewall Type.

Proxy Server

The hostname or IP address of a proxy to route HTTP traffic through.

Data Type

string

Default Value

""

Remarks

The hostname or IP address of a proxy to route HTTP traffic through. The adapter
can use the HTTP, Windows (NTLM), or Kerberos authentication types to
authenticate to an HTTP proxy.

If you need to connect through a SOCKS proxy or tunnel the connection, see
Firewall Type.

By default, the adapter uses the system proxy. If you need to use another proxy,
set ProxyAutoDetect to false.

Proxy SSL Type

The SSL type to use when connecting to the ProxyServer proxy.

Data Type

string
 TIBCO® Data Virtualization

20 | Advanced Tab
Default Value

"AUTO"

Remarks

This property determines when to use SSL for the connection to an HTTP proxy
specified by ProxyServer. This value can be AUTO, ALWAYS, NEVER, or
TUNNEL. The applicable values are the following:

Proxy User

A user name to be used to authenticate to the ProxyServer proxy.

Data Type

string

Default Value

""

Remarks

The ProxyUser and ProxyPassword options are used to connect and authenticate
against the HTTP proxy specified in ProxyServer.

You can select one of the available authentication types in ProxyAuthScheme. If
you are using HTTP authentication, set this to the user name of a user recognized
by the HTTP proxy. If you are using Windows or Kerberos authentication, set this
property to a user name in one of the following formats:

user@domain
domain\user

AUTO Default setting. If the URL is an HTTPS URL, the adapter will use the TUNNEL
option. If the URL is an HTTP URL, the component will use the NEVER option.

ALWAYS The connection is always SSL enabled.

NEVER The connection is not SSL enabled.

TUNNEL The connection is through a tunneling proxy. The proxy server opens a connection
to the remote host and traffic flows back and forth through the proxy.
TIBCO® Data Virtualization

Advanced Tab |21
Readonly

You can use this property to enforce read-only access to Cosmos DB from the
provider.

Data Type

bool

Default Value

false

Remarks

If this property is set to true, the adapter will allow only SELECT queries.
INSERT, UPDATE, DELETE, and stored procedure queries will cause an error to
be thrown.

Row Scan Depth

The maximum number of rows to scan to look for the columns available in a table.
Set this property to gain more control over how the provider applies data types to
collections.

Data Type

string

Default Value

"100"

Remarks

Since Cosmos DB using the Cosmos DB API is schemaless, the columns in a table
must be determined by scanning table rows. This value determines the maximum
number of rows that will be scanned. The default value is 100.

Setting a high value may decrease performance. Setting a low value may prevent
the data type from being determined properly, especially when there is null data.

Schema

Specify the Cosmos DB database you want to work with.
 TIBCO® Data Virtualization

22 | Advanced Tab
Data Type

string

Default Value

""

Remarks

Specify the Cosmos DB database you want to work with.

Separator Character

The character or characters used to denote hierarchy.

Data Type

string

Default Value

"."

Remarks

In order to flatten out hierarchical structures, the adapter needs some specifier
that states the path to a column through the hierarchy. If this value is "." and a
column comes back with the name address.city, this indicates that there is a
mapped attribute with a child called city. If your data has columns that already
use a single period within the attribute name, set the SeparatorCharacter to a
different character or characters.

SSL Client Cert

The TLS/SSL client certificate store for SSL Client Authentication (2-way SSL).

Data Type

string

Default Value

""
TIBCO® Data Virtualization

Advanced Tab |23
Remarks

The name of the certificate store for the client certificate.

The SSLClientCertType field specifies the type of the certificate store specified by
SSLClientCert. If the store is password protected, specify the password in
SSLClientCertPassword.

SSLClientCert is used in conjunction with the SSLClientCertSubject field in order
to specify client certificates. If SSLClientCert has a value, and
SSLClientCertSubject is set, a search for a certificate is initiated. See SSL Client
Cert Type for more information.

Designations of certificate stores are platform-dependent.

The following are designations of the most common User and Machine certificate
stores in Windows:

In Java, the certificate store normally is a file containing certificates and optional
private keys.

When the certificate store type is PFXFile, this property must be set to the name of
the file. When the type is PFXBlob, the property must be set to the binary contents
of a PFX file (for example, PKCS12 certificate store).

SSL Client Cert Password

The password for the TLS/SSL client certificate.

Data Type

string

Default Value

""

MY A certificate store holding personal certificates with their associated private keys.

CA Certifying authority certificates.

ROOT Root certificates.

SPC Software publisher certificates.
 TIBCO® Data Virtualization

24 | Advanced Tab
Remarks

If the certificate store is of a type that requires a password, this property is used to
specify that password to open the certificate store.

SSL Client Cert Subject

The subject of the TLS/SSL client certificate.

Data Type

string

Default Value

"*"

Remarks

When loading a certificate the subject is used to locate the certificate in the store.

If an exact match is not found, the store is searched for subjects containing the
value of the property. If a match is still not found, the property is set to an empty
string, and no certificate is selected.

The special value "*" picks the first certificate in the certificate store.

The certificate subject is a comma separated list of distinguished name fields and
values. For example, "CN=www.server.com, OU=test, C=US,
E=support@company.com". The common fields and their meanings are shown
below.

Field Meaning

CN Common Name. This is commonly a host name like www.server.com.

O Organization

OU Organizational Unit

L Locality

S State

C Country

E Email Address
TIBCO® Data Virtualization

Advanced Tab |25
If a field value contains a comma, it must be quoted.

SSL Client Cert Type

The type of key store containing the TLS/SSL client certificate.

Data Type

string

Default Value

""

Remarks

This property can take one of the following values:

USER - default For Windows, this specifies that the certificate store is a certificate
store owned by the current user. Note that this store type is not
available in Java.

MACHINE For Windows, this specifies that the certificate store is a machine
store. Note that this store type is not available in Java.

PFXFILE The certificate store is the name of a PFX (PKCS12) file containing
certificates.

PFXBLOB The certificate store is a string (base-64-encoded) representing a
certificate store in PFX (PKCS12) format.

JKSFILE The certificate store is the name of a Java key store (JKS) file
containing certificates. Note that this store type is only available
in Java.

JKSBLOB The certificate store is a string (base-64-encoded) representing a
certificate store in JKS format. Note that this store type is only
available in Java.

PEMKEY_FILE The certificate store is the name of a PEM-encoded file that
contains a private key and an optional certificate.

PEMKEY_BLOB The certificate store is a string (base64-encoded) that contains a
private key and an optional certificate.
 TIBCO® Data Virtualization

26 | Advanced Tab
SSL Server Cert

The certificate to be accepted from the server when connecting using TLS/SSL.

Data Type

string

Default Value

""

Remarks

If using a TLS/SSL connection, this property can be used to specify the TLS/SSL
certificate to be accepted from the server. Any other certificate that is not trusted
by the machine is rejected.

This property can take the following forms:

PUBLIC_KEY_FILE The certificate store is the name of a file that contains a PEM- or
DER-encoded public key certificate.

PUBLIC_KEY_BLOB The certificate store is a string (base-64-encoded) that contains a
PEM- or DER-encoded public key certificate.

SSHPUBLIC_KEY_FILE The certificate store is the name of a file that contains an SSH-style
public key.

SSHPUBLIC_KEY_BLOB The certificate store is a string (base-64-encoded) that contains an
SSH-style public key.

P7BFILE The certificate store is the name of a PKCS7 file containing
certificates.

PPKFILE The certificate store is the name of a file that contains a PuTTY
Private Key (PPK).

XMLFILE The certificate store is the name of a file that contains a certificate
in XML format.

XMLBLOB The certificate store is a string that contains a certificate in XML
format.

Description Example
TIBCO® Data Virtualization

Advanced Tab |27
If not specified, any certificate trusted by the machine is accepted.

Certificates are validated as trusted by the machine based on the System's trust
store. The trust store used is the 'javax.net.ssl.trustStore' value specified for the
system. If no value is specified for this property, Java's default trust store is used
(for example, JAVA_HOME\lib\security\cacerts).

Use '*' to signify to accept all certificates. Note that this is not recommended due
to security concerns.

Timeout

The value in seconds until the timeout error is thrown, canceling the operation.

Data Type

string

Default Value

"60"

Remarks

If Timeout = 0, operations do not time out. The operations run until they complete
successfully or until they encounter an error condition.

A full PEM Certificate (example
shortened for brevity)

-----BEGIN CERTIFICATE-----
MIIChTCCAe4CAQAwDQYJKoZIhv......Qw==
-----END CERTIFICATE-----

A path to a local file containing the
certificate

C:\cert.cer

The public key (example shortened
for brevity)

-----BEGIN RSA PUBLIC KEY-----
MIGfMA0GCSq......AQAB -----END RSA PUBLIC
KEY-----

The MD5 Thumbprint (hex values can
also be either space or colon
separated)

ecadbdda5a1529c58a1e9e09828d70e4

The SHA1 Thumbprint (hex values
can also be either space or colon
separated)

34a929226ae0819f2ec14b4a3d904f801cbb150d
 TIBCO® Data Virtualization

28 | Advanced Tab
If Timeout expires and the operation is not yet complete, the adapter throws an
exception.

Token Type

Denotes the type of token: master or resource.

Data Type

string

Default Value

"master"

Remarks

The master key is created during the creation of an account. There are two sets of
master keys, the primary key and the secondary key. The administrator of the
account can then exercise key rotation using the secondary key. In addition, the
account administrator can also regenerate the keys as needed.

Resource tokens are created when users in a database are set up with access
permissions for precise access control on a resource, also known as a permission
resource. A permission resource contains a hash resource token constructed with
the information regarding the resource path and access type a user has access to.
The permission resource token is time bound and the validity period can be
overridden. When a permission resource is acted upon on (POST, GET, PUT), a
new resource token is generated.

Type Detection Scheme

Comma-separated options for how the provider will scan the data to determine
the fields and datatypes in each document collection.

Data Type

string

Default Value

"RowScan,Recent"
TIBCO® Data Virtualization

Logging |29
Remarks

Logging

The adapter uses log4j to generate log files. The settings within the log4j
configuration file are used by the adapter to determine the type of messages to
log. The following categories can be specified:

• Error: Only error messages are logged.

• Info: Both Error and Info messages are logged.

• Debug: Error, Info, and Debug messages are logged.

The Other property of the adapter can be used to set Verbosity to specify the
amount of detail to be included in the log file, that is:

Verbosity=4;

You can use Verbosity to specify the amount of detail to include in the log within
a category. The following verbosity levels are mapped to the log4j categories:

• 0 = Error

• 1-2 = Info

• 3-5 = Debug

For example, if the log4j category is set to DEBUG, the Verbosity option can be set
to 3 for the minimum amount of debug information or 5 for the maximum
amount of debug information.

Note that the log4j settings override the Verbosity level specified. The adapter
never logs at a Verbosity level greater than what is configured in the log4j
properties. In addition, if Verbosity is set to a level less than the log4j category
configured, Verbosity defaults to the minimum value for that particular category.
For example, if Verbosity is set to a value less than 3 and the Debug category is
specified, the Verbosity defaults to 3.

None Setting TypeDetectionScheme to None will return all columns as a string type.
Cannot be combined with other options.

RowScan Setting TypeDetectionScheme to RowScan will scan rows to heuristically determine
the data type. The RowScanDepth determines the number of rows to be scanned. Can
be used with Recent.

Recent Setting TypeDetectionScheme to Recent will determine whether RowScan is executed
on the most recent documents in the collection. Can be used with RowScan.
 TIBCO® Data Virtualization

30 | Logging
The following list is a breakdown of the Verbosity levels and the information that
they log.

• 1 - Will log the query, the number of rows returned by it, the start of execution
and the time taken, and any errors.

• 2 - Will log everything included in Verbosity 1 and HTTP headers.

• 3 - Will additionally log the body of the HTTP requests.

• 4 - Will additionally log transport-level communication with the data source.
This includes SSL negotiation.

• 5 - Will additionally log communication with the data source and additional
details that may be helpful in troubleshooting problems. This includes
interface commands.

Configure Logging for the Cosmos DB Adapter

By default, logging is turned on without debugging. If debugging information is
desired, uncomment the following line in the TDV Server's log4j.properties file
(default location of this file is: C:\Program Files\TIBCO\TDV Server
<version>\conf\server):

log4j.logger.com.cdata=DEBUG

The TDV Server must be restarted after changing the log4j.properties file, which
can be accomplished by running the composite.bat script located at: C:\Program
Files\TIBCO\TDV Server <version>\bin. Note that reauthenticating to the TDV
Studio is required after restarting the server.

Here is an example of the calls:

.\composite.bat monitor restart

All logs for the adapter are written to the "cs_cdata.log" file as specified in the
log4j properties.

Note: The "log4j.logger.com.cdata=DEBUG" option is not required if the Debug
Output Enabled option is set to true within the TDV Studio. To set this option,
navigate to Administrator > Configuration. Select Server > Configuration >
Debugging and set the Debug Output Enabled option to True.
TIBCO® Data Virtualization

Advanced Settings |31
Advanced Settings

Accessing NoSQL Tables

The adapter implements Automatic Schema Discovery that is highly
configurable. The following sections outline the adapter's defaults and link to
ways to further customize.

Flattening Nested JSON

By default, the adapter projects columns over the properties of objects. Arrays are
returned as JSON strings, by default. You can use the following properties to
access array elements, including objects nested in arrays.

• FlattenArrays: Set this property to the number of array elements that you
want to return as column values. You can also use this property with
FlattenObjects to extract the properties of objects nested in arrays.

• FlattenObjects: By default, this is true; that is, the properties of objects and
nested objects are returned as columns. When you set FlattenArrays, objects
nested in the specified array elements are also flattened and returned as
columns.

Other mechanisms for accessing nested objects are detailed in NoSQL Database.

Fine Tuning Data Access

You can use the following properties to gain greater control over Cosmos DB API
features and the strategies the adapter uses to surface them:

• RowScanDepth: This property determines the number of rows that will be
scanned to detect column data types when generating table metadata.

• TypeDetectionScheme: This property allows more control over the strategy
implemented by the RowScanDepth property.

• GenerateSchemaFiles: This property enables you to persist table metadata in
static schema files that are easy to customize, to persist your changes to
column data types, for example. You can set this property to "OnStart" to
generate schema files for all tables in your database at connection. Or, you can
generate schemas as you execute SELECT queries to tables. The resulting
schemas are based on the connection properties you use to configure
Automatic Schema Discovery.

To use the resulting schema files, set the Location property to the folder
containing the schemas.
 TIBCO® Data Virtualization

32 | Advanced Settings
Customizing the SSL Configuration

By default, the adapter attempts to negotiate SSL/TLS by checking the server's
certificate against the system's trusted certificate store. To specify another
certificate, see the SSL Client Cert property for the available formats to do so.

Connecting Through a Firewall or Proxy

To connect set FirewallType, FirewallServer, and FirewallPort. To tunnel the
connection, set FirewallType to TUNNEL. To authenticate specify FirewallUser
and FirewallPassword. To authenticate to a SOCKS proxy, set FirewallType to
SOCKS5.

Troubleshooting the Connection

To show adapter activity from query execution to HTTP calls, use Logfile and
Verbosity. The examples of common connection errors below show how to use
these properties to get more context. Contact the support team for help tracing the
source of an error or circumventing a performance issue.

• Authentication errors: Typically, recording a Logfile at Verbosity 4 is
necessary to get full details on an authentication error.

• Queries time out: A server that takes too long to respond will exceed the
adapter's client-side timeout. Often, setting the Timeout property to a higher
value will avoid a connection error. Another option is to disable the timeout
by setting the property to 0. Setting Verbosity to 2 will show where the time is
being spent.

• The certificate presented by the server cannot be validated: This error
indicates that the adapter cannot validate the server's certificate through the
chain of trust. (If you are using a self-signed certificate, there is only one
certificate in the chain).

• To resolve this error, you must verify yourself that the certificate can be
trusted and specify to the adapter that you trust the certificate. One way you
can specify that you trust a certificate is to add the certificate to the trusted
system store; another is to set SSLServerCert.
TIBCO® Data Virtualization

Changes in 2019 |33
Changes in 2019

DocumentDB API

The Cosmos DB Adapter has been completely rewritten. We now support
querying documents using SQL (Structured Query Language) as a JSON query
language on SQL API accounts instead of using the MongoDB API.

MongoDB API

We are no longer supporting the MongoDB API. Instead you can use the
MongoDB driver in order to connect with a MongoDB account. You will find the
required connection information in the help documentation of the MongoDB
driver.

NoSQL Database

Cosmos DB is a schemaless, document database that provides high performance,
availability, and scalability. These features are not necessarily incompatible with a
standards-compliant query language like SQL-92. In this section we will show
various schemes that the adapter offers to bridge the gap with relational SQL and
a document database.

Working with Cosmos DB Objects as Tables

The adapter models the schemaless Cosmos DB objects into relational tables and
translates SQL queries into Cosmos DB queries to get the requested data. See
Query Mapping (Sql API) for more details on how various Cosmos DB operations
are represented as SQL.

Discovering Schemas Automatically

The Automatic Schema Discovery scheme automatically finds the data types in a
Cosmos DB object by scanning a configured number of rows of the object. You
can use RowScanDepth, FlattenArrays, and FlattenObjects to control the
relational representation of the collections in Cosmos DB. You can also write
Free-Form Queries not tied to the schema.
 TIBCO® Data Virtualization

34 | NoSQL Database
Customizing Schemas

Optionally, you can use Custom Schema Definitions to project your chosen
relational structure on top of a Cosmos DB object. This allows you to define your
chosen names of columns, their data types, and the location of their values in the
collection.

Set GenerateSchemaFiles to save the detected schemas as simple configuration
files that are easy to extend. You can persist schemas for all collections in the
database or for the results of SELECT queries.

Automatic Schema Discovery

By default the adapter automatically infers a relational schema by inspecting a
series of Cosmos DB documents in a collection. You can use the RowScanDepth
property to define the number of documents the adapter will scan to do so. The
columns identified during the discovery process depend on the FlattenArrays
and FlattenObjects properties.

If FlattenObjects is set, all nested objects will be flattened into a series of columns.
For example, consider the following document:

{
 id: 12,
 name: "Lohia Manufacturers Inc.",
 address: {street: "Main Street", city: "Chapel Hill",
state: "NC"},
 offices: ["Chapel Hill", "London", "New York"],
 annual_revenue: 35,600,000
}

This document will be represented by the following columns:

Column Name Data
Type

Example Value

id Integer 12

name String Lohia Manufacturers Inc.

address.street String Main Street

address.city String Chapel Hill

address.state String NC
TIBCO® Data Virtualization

NoSQL Database |35
If FlattenObjects is not set, then the address.street, address.city, and address.state
columns will not be broken apart. The address column of type string will instead
represent the entire object. Its value would be {street: "Main Street", city: "Chapel
Hill", state: "NC"}. See JSON Functions for more details on working with JSON
aggregates.

The FlattenArrays property can be used to flatten array values into columns of
their own. This is only recommended for arrays that are expected to be short, for
example the coordinates below:

"coord": [-73.856077, 40.848447]

The FlattenArrays property can be set to 2 to represent the array above as follows:

It is best to leave other unbounded arrays as they are and piece out the data for
them as needed using JSON Functions.

Free-Form Queries

As discussed in Automatic Schema Discovery, intuited table schemas enable SQL
access to unstructured Cosmos DB data. JSON Functions enable you to use
standard JSON functions to summarize Cosmos DB data and extract values from
any nested structures. Custom Schema Definitions enable you to define static
tables and give you more granular control over the relational view of your data;
for example, you can write schemas defining parent/child tables or
fact/dimension tables. However, you are not limited to these schemes.

After connecting you can query any nested structure without flattening the data.
Any relations that you can access with FlattenArrays and FlattenObjects can also
be accessed with an ad hoc SQL query.

Let's consider an example document from the following Restaurant data set:

{

offices String ["Chapel Hill", "London", "New York"]

annual_revenue Double 35,600,000

Column Name Data
Type

Example Value

coord.0 Float -73.856077

coord.1 Float 40.848447
 TIBCO® Data Virtualization

36 | NoSQL Database
 "address": {
 "building": "1007",
 "coord": [
 -73.856077,
 40.848447
],
 "street": "Morris Park Ave",
 "zipcode": "10462"
 },
 "borough": "Bronx",
 "cuisine": "Bakery",
 "grades": [
 {
 "grade": "A",
 "score": 2,
 "date": {
 "$date": "1393804800000"
 }
 },
 {
 "date": {
 "$date": "1378857600000"
 },
 "grade": "B",
 "score": 6
 },
 {
 "score": 10,
 "date": {
 "$date": "1358985600000"
 },
 "grade": "C"
 }
],
 "name": "Morris Park Bake Shop",
 "restaurant_id": "30075445"
}
TIBCO® Data Virtualization

NoSQL Database |37
You can access any nested structure in this document as a column. Use the dot
notation to drill down to the values you want to access as shown in the query
below. Note that arrays have a zero-based index. For example, the following
query retrieves the second grade for the restaurant in the example:

SELECT "address.building", "grades.1.grade" FROM restaurants
WHERE restaurant_id = '30075445'

The preceding query returns the following results:

Vertical Flattening

It is possible to retrieve an array of documents as if it were a separate table. Take
the following JSON structure from the restaurants collection for example:

{
 "_id" : ObjectId("568c37b748ddf53c5ed98932"),
 "address" : {
 "building" : "1007",
 "coord" : [-73.856077, 40.848447],
 "street" : "Morris Park Ave",
 "zipcode" : "10462"
 },
 "borough" : "Bronx",
 "cuisine" : "Bakery",
 "grades" : [{
 "date" : ISODate("2014-03-03T00:00:00Z"),
 "grade" : "A",
 "score" : 2
 }, {
 "date" : ISODate("2013-09-11T00:00:00Z"),
 "grade" : "A",
 "score" : 6
 }, {
 "date" : ISODate("2013-01-24T00:00:00Z"),
 "grade" : "A",
 "score" : 10

Column Name Data
Type

Example Value

address.building String 1007

grades.1.grade String A
 TIBCO® Data Virtualization

38 | NoSQL Database
 }, {
 "date" : ISODate("2011-11-23T00:00:00Z"),
 "grade" : "A",
 "score" : 9
 }, {
 "date" : ISODate("2011-03-10T00:00:00Z"),
 "grade" : "B",
 "score" : 14
 }],
 "name" : "Morris Park Bake Shop",
 "restaurant_id" : "30075445"
}

Vertical flattening will allow you to retrieve the grades array as a separate table:

SELECT * FROM "restaurants.grades"

This query returns the following data set:

You may also want to include information from the base restaurants table. You
can do this with a join. Flattened arrays can only be joined with the root
document. The adapter expects the left part of the join is the array document you
want to flatten vertically. Disable SupportEnhancedSQL to join nested Cosmos
DB documents -- this type of query is supported through the Cosmos DB API.

SELECT "restaurants"."restaurant_id", "restaurants.grades".*
FROM "restaurants.grades" JOIN "restaurants" WHERE
"restaurants".name = 'Morris Park Bake Shop'

This query returns the following data set:

date grade score P_id _index

2014-03-03T00:00:00.000Z A 2 568c37b748ddf53c5ed98932 1

2013-09-11T00:00:00.000Z A 6 568c37b748ddf53c5ed98932 2

2013-01-24T00:00:00.000Z A 10 568c37b748ddf53c5ed98932 3

restaura
nt_id

date grade score P_id _index

30075445 2014-03-03T00:00:00.000Z A 2 568c37b748ddf53c5ed98932 1

30075445 2013-09-11T00:00:00.000Z A 6 568c37b748ddf53c5ed98932 2
TIBCO® Data Virtualization

NoSQL Database |39
JSON Functions

The adapter can return JSON structures as column values. The adapter enables
you to use standard SQL functions to work with these JSON structures. The
examples in this section use the following array:

[
 { "grade": "A", "score": 2 },
 { "grade": "A", "score": 6 },
 { "grade": "A", "score": 10 },
 { "grade": "A", "score": 9 },
 { "grade": "B", "score": 14 }
]

JSON_EXTRACT

The JSON_EXTRACT function can extract individual values from a JSON object.
The following query returns the values shown below based on the JSON path
passed as the second argument to the function:

SELECT Name, JSON_EXTRACT(grades,'[0].grade') AS Grade,
JSON_EXTRACT(grades,'[0].score') AS Score FROM Students;

JSON_COUNT

The JSON_COUNT function returns the number of elements in a JSON array
within a JSON object. The following query returns the number of elements
specified by the JSON path passed as the second argument to the function:

30075445 2013-01-24T00:00:00.000Z A 10 568c37b748ddf53c5ed98932 3

30075445 2011-11-23T00:00:00.000Z A 9 568c37b748ddf53c5ed98932 4

30075445 2011-03-10T00:00:00.000Z B 14 568c37b748ddf53c5ed98932 5

Column Name Example Value

Grade A

Score 2
 TIBCO® Data Virtualization

40 | NoSQL Database
SELECT Name, JSON_COUNT(grades,'[x]') AS NumberOfGrades FROM
Students;

JSON_SUM

The JSON_SUM function returns the sum of the numeric values of a JSON array
within a JSON object. The following query returns the total of the values specified
by the JSON path passed as the second argument to the function:

SELECT Name, JSON_SUM(score,'[x].score') AS TotalScore FROM
Students;

JSON_MIN

The JSON_MIN function returns the lowest numeric value of a JSON array within
a JSON object. The following query returns the minimum value specified by the
JSON path passed as the second argument to the function:

SELECT Name, JSON_MIN(score,'[x].score') AS LowestScore FROM
Students;

JSON_MAX

The JSON_MAX function returns the highest numeric value of a JSON array
within a JSON object. The following query returns the maximum value specified
by the JSON path passed as the second argument to the function:

SELECT Name, JSON_MAX(score,'[x].score') AS HighestScore
FROM Students;

Column Name Example Value

NumberOfGrades 5

Column Name Example Value

TotalScore 41

Column Name Example Value

LowestScore 2

Column Name Example Value
TIBCO® Data Virtualization

NoSQL Database |41
DOCUMENT

The DOCUMENT function can be used to retrieve the entire document as a JSON
string. See the following query and its result as an example:

SELECT DOCUMENT(*) FROM Customers;

The query above will return the entire document as shown.

{ "id": 12, "name": "Lohia Manufacturers Inc.", "address": {
"street": "Main Street", "city": "Chapel Hill", "state":
"NC"}, "offices": ["Chapel Hill", "London", "New York"],
"annual_revenue": 35,600,000 }

Sql API Built-In Functions

Cosmos DB also supports a number of built-in functions for common operations,
that can be used inside queries.

Mathematical functions

The mathematical functions each perform a calculation, based on input values
that are provided as arguments, and return a numeric value. Here's a table of
supported built-in mathematical functions.

HighestScore 14

Function group Operations

Mathematical functions ABS, CEILING, EXP, FLOOR, LOG, LOG10, POWER, ROUND,
SIGN, SQRT, SQUARE, TRUNC, ACOS, ASIN, ATAN, ATN2, COS,
COT, DEGREES, PI, RADIANS, SIN, and TAN

Type checking functions IS_ARRAY, IS_BOOL, IS_NULL, IS_NUMBER, IS_OBJECT,
IS_STRING, IS_DEFINED, and IS_PRIMITIVE

String functions CONCAT, CONTAINS, ENDSWITH, INDEX_OF, LEFT, LENGTH,
LOWER, LTRIM, REPLACE, REPLICATE, REVERSE, RIGHT,
RTRIM, STARTSWITH, SUBSTRING, and UPPER

Array functions ARRAY_CONCAT, ARRAY_CONTAINS, ARRAY_LENGTH, and
ARRAY_SLICE

Usage Description
 TIBCO® Data Virtualization

42 | NoSQL Database
ABS (num_expr) Returns the absolute (positive) value of the specified
numeric expression.

CEILING (num_expr) Returns the smallest integer value greater than, or equal
to, the specified numeric expression.

FLOOR (num_expr) Returns the largest integer less than or equal to the
specified numeric expression.

EXP (num_expr) Returns the exponent of the specified numeric expression.

LOG (num_expr [,base]) Returns the natural logarithm of the specified numeric
expression, or the logarithm using the specified base

LOG10 (num_expr) Returns the base-10 logarithmic value of the specified
numeric expression.

ROUND (num_expr) Returns a numeric value, rounded to the closest integer
value.

TRUNC (num_expr) Returns a numeric value, truncated to the closest integer
value.

SQRT (num_expr) Returns the square root of the specified numeric
expression.

SQUARE (num_expr) Returns the square of the specified numeric expression.

POWER (num_expr, num_expr) Returns the power of the specified numeric expression to
the value specified.

SIGN (num_expr) Returns the sign value (-1, 0, 1) of the specified numeric
expression.

ACOS (num_expr) Returns the angle, in radians, whose cosine is the specified
numeric expression; also called arccosine.

ASIN (num_expr) Returns the angle, in radians, whose sine is the specified
numeric expression. This is also called arcsine.

ATAN (num_expr) Returns the angle, in radians, whose tangent is the
specified numeric expression. This is also called
arctangent.
TIBCO® Data Virtualization

NoSQL Database |43
Type checking functions

The type checking functions allow you to check the type of an expression within
SQL queries. Type checking functions can be used to determine the type of
properties within documents on the fly when it is variable or unknown. Here's a
table of supported built-in type checking functions.

ATN2 (num_expr) Returns the angle, in radians, between the positive x-axis
and the ray from the origin to the point (y, x), where x and
y are the values of the two specified float expressions.

COS (num_expr) Returns the trigonometric cosine of the specified angle, in
radians, in the specified expression.

COT (num_expr) Returns the trigonometric cotangent of the specified angle,
in radians, in the specified numeric expression.

DEGREES (num_expr) Returns the corresponding angle in degrees for an angle
specified in radians.

PI () Returns the constant value of PI.

RADIANS (num_expr) Returns radians when a numeric expression, in degrees, is
entered.

SIN (num_expr) Returns the trigonometric sine of the specified angle, in
radians, in the specified expression.

TAN (num_expr) Returns the tangent of the input expression, in the
specified expression.

Usage Description

IS_ARRAY (expr) Returns a Boolean indicating if the type of the value is an array.

IS_BOOL (expr) Returns a Boolean indicating if the type of the value is a Boolean.

IS_NULL (expr) Returns a Boolean indicating if the type of the value is null.

IS_NUMBER (expr) Returns a Boolean indicating if the type of the value is a number.

IS_OBJECT (expr) Returns a Boolean indicating if the type of the value is a JSON object.

IS_STRING (expr) Returns a Boolean indicating if the type of the value is a string.
 TIBCO® Data Virtualization

44 | NoSQL Database
String functions

The following scalar functions perform an operation on a string input value and
return a string, numeric or Boolean value. Here's a table of built-in string
functions:

IS_DEFINED (expr) Returns a Boolean indicating if the property has been assigned a value.

IS_PRIMITIVE (expr) Returns a Boolean indicating if the type of the value is a string,
number, Boolean or null.

Usage Description

LENGTH (str_expr) Returns the number of characters of the specified
string expression

CONCAT (str_expr, str_expr [, str_expr]) Returns a string that is the result of concatenating
two or more string values.

SUBSTRING (str_expr, num_expr,
num_expr)

Returns part of a string expression.

STARTSWITH (str_expr, str_expr) Returns a Boolean indicating whether the first
string expression starts with the second

ENDSWITH (str_expr, str_expr) Returns a Boolean indicating whether the first
string expression ends with the second

CONTAINS (str_expr, str_expr) Returns a Boolean indicating whether the first
string expression contains the second.

INDEX_OF (str_expr, str_expr) Returns the starting position of the first occurrence
of the second string expression within the first
specified string expression, or -1 if the string is not
found.

LEFT (str_expr, num_expr) Returns the left part of a string with the specified
number of characters.

RIGHT (str_expr, num_expr) Returns the right part of a string with the specified
number of characters.

LTRIM (str_expr) Returns a string expression after it removes leading
blanks.
TIBCO® Data Virtualization

NoSQL Database |45
Array functions

The following scalar functions perform an operation on an array input value and
return numeric, Boolean or array value. Here's a table of built-in array functions:

Query Mapping (Sql API)

The adapter maps SQL queries into the corresponding Cosmos DB SQL API
queries. A detailed description of all the transformations is out of scope, but we
will describe some of the common elements that are used. The adapter takes
advantage of SQL API features such as the aggregation framework to compute
the desired results.

RTRIM (str_expr) Returns a string expression after truncating all
trailing blanks.

LOWER (str_expr) Returns a string expression after converting
uppercase character data to lowercase.

UPPER (str_expr) Returns a string expression after converting
lowercase character data to uppercase.

REPLACE (str_expr, str_expr, str_expr) Replaces all occurrences of a specified string value
with another string value.

REPLICATE (str_expr, num_expr) Repeats a string value a specified number of times.

REVERSE (str_expr) Returns the reverse order of a string value.

Usage Description

ARRAY_LENGTH (arr_expr) Returns the number of elements of the specified
array expression.

ARRAY_CONCAT (arr_expr,
arr_expr [, arr_expr])

Returns an array that is the result of concatenating
two or more array values.

ARRAY_CONTAINS (arr_expr, expr
[, bool_expr])

Returns a Boolean indicating whether the array
contains the specified value. Can specify if the
match is full or partial.

ARRAY_SLICE (arr_expr, num_expr
[, num_expr])

Returns part of an array expression.
 TIBCO® Data Virtualization

46 | NoSQL Database
SELECT Queries

Since all requests can be submitted to a specific collection, we can send any
constant string as table name to the API. Following the Azure Portal standard we
are using the "C" character as table name.

Aggregate Queries

The adapter makes extensive use of this for various aggregate queries. See some
examples below:

SQL Query Sql API Query

SELECT id, name FROM Users SELECT C.id, C.name FROM C

SELECT * FROM Users WHERE
name = 'A'

SELECT * FROM C WHERE C.name = 'A'

SELECT * FROM Users WHERE
name = 'A' OR email =
'zoe55@gmail.com'

SELECT * FROM C WHERE C.name = 'A' OR C.email
= 'zoe55@gmail.com'

SELECT id, grantamt FROM
WorldBank WHERE grantamt IN
(4500000, 85400000) OR grantamt =
16200000

SELECT C.id, C.grantamt FROM C WHERE
C.grantamt IN (4500000, 85400000) OR C.grantamt =
16200000

SELECT * FROM WorldBank WHERE
CountryCode = 'A' ORDER BY
TotalCommAmt ASC

SELECT * FROM C WHERE C.countrycode = 'AL'
ORDER BY C.totalcommamt ASC

SELECT * FROM WorldBank WHERE
CountryCode = 'A' ORDER BY
TotalCommAmt DESC

SELECT * FROM C WHERE C.countrycode = 'AL'
ORDER BY C.totalcommamt DESC

SQL Query Sql API Query

SELECT COUNT(grantamt) AS
COUNT_GRAMT FROM WorldBank

SELECT COUNT(C.grantamt) AS
COUNT_GRAMT FROM C

SELECT SUM(grantamt) AS
SUM_GRAMT FROM WorldBank

SELECT SUM(C.grantamt) AS
SUM_GRAMT FROM C
TIBCO® Data Virtualization

NoSQL Database |47
Built-In functions

Custom Schema Definitions

You can extend the table schemas created with Automatic Schema Discovery by
saving them into schema files. The schema files have a simple format that makes
the schemas to edit.

Generating Schema Files

Set GenerateSchemaFiles to "OnStart" to persist schemas for all tables when you
connect. You can also generate table schemas as needed: Set GenerateSchemaFiles
to "OnUse" and execute a SELECT query to the table.

For example, consider a schema for the restaurants data set. This is a sample data
set provided by Cosmos DB.

Below is an example document from the collection:

{
 "address":{
 "building":"461",
 "coord":[
 -74.138492,
 40.631136
],
 "street":"Port Richmond Ave",
 "zipcode":"10302"
 },
 "borough":"Staten Island",
 "cuisine":"Other",
 "name":"Indian Oven",
 "restaurant_id":"50018994"

SQL Query Sql API Query

SELECT IS_NUMBER(grantamt) AS
ISN_ATTR, IS_NUMBER(id) AS
ISN_ID FROM WorldBank

SELECT IS_NUMBER(C.grantamt) AS ISN_ATTR,
IS_NUMBER(C.id) AS ISN_ID FROM C

SELECT POWER(totalamt, 2) AS
POWERS_A, LENGTH(id) AS
LENGTH_ID, PI() AS ThePI FROM
WorldBank

SELECT POWER(C.totalamt, 2) AS POWERS_A,
LENGTH(C.id) AS LENGTH_ID, PI() AS ThePI
FROM C
 TIBCO® Data Virtualization

48 | NoSQL Database
}

Customizing a Schema

When GenerateSchemaFiles is set, the adapter saves schemas into the folder
specified by the Location property. You can then change column behavior in the
resulting schema.

The following schema uses the other:bsonpath property to define where in the
collection to retrieve the data for a particular column. Using this model you can
flatten arbitrary levels of hierarchy.

The collection attribute specifies the collection to parse. The collection attribute
gives you the flexibility to use multiple schemas for the same collection. If
collection is not specified, the filename determines the collection that is parsed.

Below are the corresponding column definitions for the restaurants data set. In
Custom Schema Example, you will find the complete schema.

<rsb:script
xmlns:rsb="http://www.rssbus.com/ns/rsbscript/2">

 <rsb:info title="StaticRestaurants" description="Custom
Schema for the restaurants data set.">
 <!-- Column definitions -->
 <attr name="borough" xs:type="string"
other:bsonpath="$.borough" />
 <attr name="cuisine" xs:type="string"
other:bsonpath="$.cuisine" />
 <attr name="building" xs:type="string"
other:bsonpath="$.address.building" />
 <attr name="street" xs:type="string"
other:bsonpath="$.address.street" />
 <attr name="latitude" xs:type="double"
other:bsonpath="$.address.coord.0" />
 <attr name="longitude" xs:type="double"
other:bsonpath="$.address.coord.1" />
 <input name="rows@next" desc="Internal attribute used
for paging through data." />
 </rsb:info>

 <rsb:set attr="collection" value="restaurants"/>

</rsb:script>
TIBCO® Data Virtualization

NoSQL Database |49
Custom Schema Example

In this section is a complete schema. The info section enables a relational view of a
Cosmos DB object. For more details, see Custom Schema Definitions. The table
below allows the SELECT, INSERT, UPDATE, and DELETE commands as
implemented in the GET, POST, MERGE, and DELETE sections of the schema
below.

Use the collection attribute to specify the name of the collection you want to
parse. You can use the collection attribute to define multiple schemas for the same
collection.

If collection is not specified, the filename determines the collection that is parsed.

Copy the rows@next input as-is into your schema. The operations, such as
cosmosdbadoSysData, are internal implementations and can also be copied as is.

<rsb:script
xmlns:rsb="http://www.rssbus.com/ns/rsbscript/2">

 <rsb:info title="StaticRestaurants" description="Custom
Schema for the restaurants data set.">
 <!-- Column definitions -->
 <attr name="borough" xs:type="string"
other:bsonpath="$.borough" />
 <attr name="cuisine" xs:type="string"
other:bsonpath="$.cuisine" />
 <attr name="building" xs:type="string"
other:bsonpath="$.address.building" />
 <attr name="street" xs:type="string"
other:bsonpath="$.address.street" />
 <attr name="latitude" xs:type="double"
other:bsonpath="$.address.coord.0" />
 <attr name="longitude" xs:type="double"
other:bsonpath="$.address.coord.1" />
 <input name="rows@next" desc="Internal attribute used
for paging through data." />
 </rsb:info>

 <rsb:set attr="collection" value="restaurants"/>

 <rsb:script method="GET">
 <rsb:call op="cosmosdbadoSysData">
 <rsb:push />
 TIBCO® Data Virtualization

50 | Stored Procedures
 </rsb:call>
 </rsb:script>

 <rsb:script method="POST">
 <rsb:call op="cosmosdbadoSysData">
 <rsb:push />
 </rsb:call>
 </rsb:script>

 <rsb:script method="MERGE">
 <rsb:call op="cosmosdbadoSysData">
 <rsb:push />
 </rsb:call>
 </rsb:script>

 <rsb:script method="DELETE">
 <rsb:call op="cosmosdbadoSysData">
 <rsb:push />
 </rsb:call>
 </rsb:script>

</rsb:script>

Stored Procedures

Stored procedures are available to complement the data available from the
NoSQL Database. It may be necessary to update data available from a view using
a stored procedure because the data does not provide for direct, table-like,
two-way updates. In these situations, the retrieval of the data is done using the
appropriate view or table, while the update is done by calling a stored procedure.
Stored procedures take a list of parameters and return back a dataset that contains
the collection of tuples that constitute the response.
TIBCO® Data Virtualization

SQL Compliance |51
Cosmos DB Adapter Stored Procedures

CreateSchema

Creates a schema file for the collection.

Input

Result Set Columns

SQL Compliance

The Cosmos DB Adapter supports several operations on data, including
querying, deleting, modifying, and inserting.

SELECT Statements

See SELECT Statements for a syntax reference and examples.

See NoSQL Database for information on the capabilities of the Cosmos DB API.

INSERT Statements

See INSERT Statements for a syntax reference and examples.

Name Description

CreateSchema Creates a schema file for the collection.

Name Type Description

SchemaName String The schema of the collection.

TableName String The name of the collection.

FileName String The full name of the generated schema.

Name Type Description

Result String Returns Success or Failure.
 TIBCO® Data Virtualization

52 | SQL Compliance
UPDATE Statements

The primary key _id is required to update a record. See UPDATE Statements for a
syntax reference and examples.

DELETE Statements

The primary key _id is required to delete a record. See DELETE Statements for a
syntax reference and examples.

EXECUTE Statements

Use EXECUTE or EXEC statements to execute stored procedures. See EXECUTE
Statements for a syntax reference and examples.

Names and Quoting

• Table and column names are considered identifier names; as such, they are
restricted to the following characters: [A-Z, a-z, 0-9, _:@].

• To use a table or column name with characters not listed above, the name
must be quoted using double quotes ("name") in any SQL statement.

• Strings must be quoted using single quotes (e.g., 'John Doe').

SELECT Statements

A SELECT statement can consist of the following basic clauses.

• SELECT

• INTO

• FROM

• JOIN

• WHERE

• GROUP BY

• HAVING

• UNION

• ORDER BY

• LIMIT
TIBCO® Data Virtualization

SQL Compliance |53
SELECT Syntax

The following syntax diagram outlines the syntax supported by the Cosmos DB
adapter:

SELECT {
 [TOP <numeric_literal>]
 {
 *
 | {
 <expression> [[AS] <column_reference>]
 | { <table_name> | <correlation_name> } .*
 } [, ...]
 }
 [INTO csv:// [filename=] <file_path> [;delimiter=tab]
]
 {
 FROM <table_reference> [[AS] <identifier>]
 } [, ...]
 [
 JOIN <table_reference> [ON <search_condition>] [[AS]
<identifier>]
] [...]
 [WHERE <search_condition>]
 [
 LIMIT <expression>
]
} | SCOPE_IDENTITY()

 <expression> ::=
 | <column_reference>
 | @ <parameter>
 | ?
 | COUNT(* | { [DISTINCT] <expression> })
 | { AVG | MAX | MIN | SUM | COUNT } (<expression>)
 | NULLIF (<expression> , <expression>)
 | COALESCE (<expression> , ...)
 | CASE <expression>
 WHEN { <expression> | <search_condition> } THEN {
<expression> | NULL } [...]
 [ELSE { <expression> | NULL }]
 END
 TIBCO® Data Virtualization

54 | SQL Compliance
 | <literal>
 | <sql_function>

 <search_condition> ::=
 {
 <expression> { = | > | < | >= | <= | <> | != | IN | AND
| OR } [<expression>]
 } [{ AND | OR } ...]

Examples

1. Return all columns:

SELECT * FROM Customers

2. Rename a column:

SELECT "CompanyName" AS MY_CompanyName FROM Customers

3. Cast a column's data as a different data type:

SELECT CAST(Balance AS VARCHAR) AS Str_Balance FROM
Customers

4. Search data:

SELECT * FROM Customers WHERE Country = 'US';

5. The Cosmos DB APIs support the following operators in the WHERE clause:
=, >, <, >=, <=, <>, !=, IN, AND, OR.

SELECT * FROM Customers WHERE Country = 'US';

6. Return the number of items matching the query criteria:

SELECT COUNT(*) AS MyCount FROM Customers

7. Summarize data:

SELECT MAX(Balance) FROM Customers

See Aggregate Functions for details.

8. Retrieve data from multiple tables.

SELECT "restaurants"."restaurant_id",
"restaurants".name, "restaurants.grades".* FROM
"restaurants.grades" JOIN "restaurants" WHERE
"restaurants".name = 'Morris Park Bake Shop'

See JOIN Queries for details.
TIBCO® Data Virtualization

SQL Compliance |55
Aggregate Functions

Examples of Aggregate Functions

Below are several examples of SQL aggregate functions.

COUNT

Returns the number of rows matching the query criteria.

SELECT COUNT(*) FROM Customers WHERE Country = 'US'

AVG

Returns the average of the column values.

SELECT AVG(Balance) FROM Customers WHERE Country = 'US'

MIN

Returns the minimum column value.

SELECT MIN(Balance) FROM Customers WHERE Country = 'US'

MAX

Returns the maximum column value.

SELECT MAX(Balance) FROM Customers WHERE Country = 'US'

SUM

Returns the total sum of the column values.

SELECT SUM(Balance) FROM Customers WHERE Country = 'US'

JOIN Queries

The Cosmos DB Adapter supports joins of a nested array with its parent
document.

Joining Nested Structures

The adapter expects the left part of the join is the array document you want to
flatten vertically. This type of query is supported through the Cosmos DB API.

For example, consider the following query from Cosmos DB's restaurants
collection:
 TIBCO® Data Virtualization

56 | SQL Compliance
SELECT "restaurants"."restaurant_id", "restaurants".name,
"restaurants.grades".*
FROM "restaurants.grades"
JOIN "restaurants"
WHERE "restaurants".name = 'Morris Park Bake Shop'

See Vertical Flattening for more details.

Projection Functions

ABS(numeric_expr)

Returns the absolute (positive) value of the specified numeric expression.

• numeric_expr: A numeric expression.

ACOS(numeric_expr)

Returns the angle, in radians, whose cosine is the specified numeric expression;
also called arccosine.

• numeric_expr: A numeric expression.

ASIN(numeric_expr)

Returns the angle, in radians, whose sine is the specified numeric expression. This
is also called arcsine.

• numeric_expr: A numeric expression.

ATAN(numeric_expr)

Returns the angle, in radians, whose tangent is the specified numeric expression.
This is also called arctangent.

• numeric_expr: A numeric expression.

CEILING(numeric_expr)

Returns the smallest integer value greater than, or equal to, the specified numeric
expression.

• numeric_expr: A numeric expression.
TIBCO® Data Virtualization

SQL Compliance |57
COS(numeric_expr)

Returns the trigonometric cosine of the specified angle, in radians, in the specified
expression.

• numeric_expr: A numeric expression.

COT(numeric_expr)

Returns the trigonometric cotangent of the specified angle, in radians, in the
specified numeric expression.

• numeric_expr: A numeric expression.

DEGREES(numeric_expr)

Returns the corresponding angle in degrees for an angle specified in radians.

• numeric_expr: A numeric expression.

FLOOR(numeric_expr)

Returns the largest integer less than or equal to the specified numeric expression.

• numeric_expr: A numeric expression.

EXP(numeric_expr)

Returns the exponential value of the specified numeric expression.

• numeric_expr: A numeric expression.

LOG10(numeric_expr)

Returns the base-10 logarithm of the specified numeric expression.

• numeric_expr: A numeric expression.

RADIANS(numeric_expr)

Returns radians when a numeric expression, in degrees, is entered.

• numeric_expr: A numeric expression.

ROUND(numeric_expr)

Returns a numeric value, rounded to the closest integer value.

• numeric_expr: A numeric expression.
 TIBCO® Data Virtualization

58 | SQL Compliance
SIGN(numeric_expr)

Returns the positive (+1), zero (0), or negative (-1) sign of the specified numeric
expression.

• numeric_expr: A numeric expression.

SIN(numeric_expr)

Returns the trigonometric sine of the specified angle, in radians, in the specified
expression.

• numeric_expr: A numeric expression.

SQRT(numeric_expr)

Returns the square root of the specified numeric value.

• numeric_expr: A numeric expression.

SQUARE(numeric_expr)

Returns the square of the specified numeric value.

• numeric_expr: A numeric expression.

TAN(numeric_expr)

Returns the tangent of the specified angle, in radians, in the specified expression.

• numeric_expr: A numeric expression.

TRUNC(numeric_expr)

Returns a numeric value, truncated to the closest integer value.

• numeric_expr: A numeric expression.

ATAN2(y_expr, x_expr)

Returns the principal value of the arc tangent of y/x, expressed in radians.

• y_expr: The y numeric expression.

• x_expr: The x numeric expression.

LOG(numeric_expr [, base])

Returns the natural logarithm of the specified numeric expression.
TIBCO® Data Virtualization

SQL Compliance |59
• numeric_expr: A numeric expression.

• base: Optional numeric argument that sets the base for the logarithm.

PI()

Returns the constant value of PI.

POWER(numeric_expr, power_expr)

Returns the value of the specified expression to the specified power.

• numeric_expr: A numeric expression.

• power_expr: Is the power to which to raise numeric_expr.

IS_ARRAY(expr)

Returns a Boolean value indicating if the type of the specified expression is an
array.

• expr: Any valid expression.

IS_BOOL(expr)

Returns a Boolean value indicating if the type of the specified expression is a
Boolean.

• expr: Any valid expression.

IS_DEFINED(expr)

Returns a Boolean indicating if the property has been assigned a value.

• expr: Any valid expression.

IS_NULL(expr)

Returns a Boolean value indicating if the type of the specified expression is null.

• expr: Any valid expression.

IS_NUMBER(expr)

Returns a Boolean value indicating if the type of the specified expression is a
number.

• expr: Any valid expression.
 TIBCO® Data Virtualization

60 | SQL Compliance
IS_OBJECT(expr)

Returns a Boolean value indicating if the type of the specified expression is a
JSON object.

• expr: Any valid expression.

IS_PRIMITIVE(expr)

Returns a Boolean value indicating if the type of the specified expression is a
primitive (string, Boolean, numeric, or null).

• expr: Any valid expression.

IS_STRING(expr)

Returns a Boolean value indicating if the type of the specified expression is a
string.

• expr: Any valid expression.

CONCAT(str1, str2 [, str3] [, ...])

Returns a string that is the result of concatenating two or more string values.

• str1: The first string to concatenate.

• str2: The second string to concatenate.

• str3: The third string to concatenate.

CONTAINS(str1, str2)

Returns a Boolean indicating whether the first string expression contains the
second.

• str1: The string to search in.

• str2: The string to search for.

ENDSWITH(str1, str2)

Returns a Boolean indicating whether the first string expression ends with the
second.

• str1: The string to search in.

• str2: The string to search for.
TIBCO® Data Virtualization

SQL Compliance |61
INDEX_OF(str1, str2)

Returns the starting position of the first occurrence of the second string
expression within the first specified string expression, or -1 if the string is not
found.

• str1: The string to search in.

• str2: The string to search for.

LEFT(str, num_expr)

Returns the left part of a string with the specified number of characters.

• str: A valid string expression.

• num_expr: The number of characters to return.

LENGTH(str)

Returns the number of characters of the specified string expression.

• str: Any valid string expression.

LOWER(str)

Returns a string expression after converting uppercase character data to
lowercase.

• str: Any valid string expression.

LTRIM(str)

Returns a string expression after it removes leading blanks.

• str: Any valid string expression.

REPLACE(original_value, from_value, to_value)

Replaces all occurrences of a specified string value with another string value.

• original_value: The string to search in.

• from_value: The string to search for.

• to_value: The string to replace instances of from_value.

REPLICATE(str, repeat_num)

Repeats a string value a specified number of times.
 TIBCO® Data Virtualization

62 | SQL Compliance
• str: The string expression to repeat.

• repeat_num: The number of times to repeat the str expression.

REVERSE(str)

Returns the reverse order of a string value.

• str: Any valid string expression.

RIGHT(str, num_expr)

Returns the right part of a string with the specified number of characters.

• str: Any valid string expression.

• num_expr: The starting index.

RTRIM(str)

Returns a string expression after it removes trailing blanks.

• str: Any valid string expression.

STARTSWITH(str1, str2)

Returns a Boolean indicating whether the first string expression starts with the
second.

• str1: The string to search in.

• str2: The string to search for.

SUBSTRING(str, start_index, length)

Returns part of a string expression starting at the specified character zero-based
position and continues to the specified length, or to the end of the string.

• str: Any valid string expression.

• start_index: The starting index.

• length: The length of the string to return.

TOSTRING(expr)

Returns a string representation of scalar expression.

• expr: Any valid expression.
TIBCO® Data Virtualization

SQL Compliance |63
TRIM(str)

Returns a string expression after it removes leading and trailing blanks.

• str: Any valid string expression.

UPPER(str)

Returns a string expression after converting lowercase character data to
uppercase.

• str: Any valid string expression.

ARRAY_CONCAT(array_exp1, array_exp2 [, array_exp3])

Returns an array that is the result of concatenating two or more array values.

• array_exp1: Any valid array expression.

• array_exp2: Any valid array expression.

• array_exp3: Any valid array expression.

ARRAY_CONTAINS(array_exp, expr [, bool_expr])

Returns a Boolean indicating whether the array contains the specified value. You
can check for a partial or full match of an object by using a boolean expression
within the command.

• array_exp1: Any array expression.

• expr: The expression to search for.

• bool_expr: If it's set to 'true'and if the specified search value is an object, the
command checks for a partial match (the search object is a subset of one of the
objects). If it's set to 'false', the command checks for a full match of all objects
within the array. The default value if not specified is false.

ARRAY_LENGTH(array_exp)

Returns the number of elements of the specified array expression.

• array_exp: Any valid array expression.

ARRAY_SLICE(array_exp, start_index, max_size)

Returns part of an array expression.

• array_exp: Any valid array expression.
 TIBCO® Data Virtualization

64 | SQL Compliance
• start_index: Zero-based numeric index at which to begin the array. Negative
values may be used to specify the starting index relative to the last element of
the array i.e. -1 references the last element in the array.

• max_size: Maximum number of elements in the resulting array.

ST_DISTANCE(spatial_expr1, spatial_expr2)

Returns the distance between the two GeoJSON Point, Polygon, or LineString
expressions.

• spatial_expr1: Is any valid GeoJSON Point, Polygon, or LineString object
expression.

• spatial_expr2: Is any valid GeoJSON Point, Polygon, or LineString object
expression.

ST_WITHIN(spatial_expr1, spatial_expr2)

Returns a Boolean expression indicating whether the GeoJSON object (Point,
Polygon, or LineString) specified in the first argument is within the GeoJSON
(Point, Polygon, or LineString) in the second argument.

• spatial_expr1: Is any valid GeoJSON Point, Polygon, or LineString object
expression.

• spatial_expr2: Is any valid GeoJSON Point, Polygon, or LineString object
expression.

ST_INTERSECTS(1, 2)

Returns a Boolean expression indicating whether the GeoJSON object (Point,
Polygon, or LineString) specified in the first argument intersects the GeoJSON
(Point, Polygon, or LineString) in the second argument.

• spatial_expr1: Is any valid GeoJSON Point, Polygon, or LineString object
expression.

• spatial_expr2: Is any valid GeoJSON Point, Polygon, or LineString object
expression.

ST_ISVALID(spatial_expr)

Returns a Boolean value indicating whether the specified GeoJSON Point,
Polygon, or LineString expression is valid.

• spatial_expr: Is any valid GeoJSON Point, Polygon, or LineString object
expression.
TIBCO® Data Virtualization

SQL Compliance |65
ST_ISVALIDDETAILED(spatial_expr)

Returns a JSON value containing a Boolean value if the specified GeoJSON Point,
Polygon, or LineString expression is valid, and if invalid, additionally the reason
as a string value.

• spatial_expr: Is any valid GeoJSON Point, Polygon, or LineString object
expression.

Predicate Functions

ABS(numeric_expr)

Returns the absolute (positive) value of the specified numeric expression.

• numeric_expr: A numeric expression.

ACOS(numeric_expr)

Returns the angle, in radians, whose cosine is the specified numeric expression;
also called arccosine.

• numeric_expr: A numeric expression.

ASIN(numeric_expr)

Returns the angle, in radians, whose sine is the specified numeric expression. This
is also called arcsine.

• numeric_expr: A numeric expression.

ATAN(numeric_expr)

Returns the angle, in radians, whose tangent is the specified numeric expression.
This is also called arctangent.

• numeric_expr: A numeric expression.

CEILING(numeric_expr)

Returns the smallest integer value greater than, or equal to, the specified numeric
expression.

• numeric_expr: A numeric expression.
 TIBCO® Data Virtualization

66 | SQL Compliance
COS(numeric_expr)

Returns the trigonometric cosine of the specified angle, in radians, in the specified
expression.

• numeric_expr: A numeric expression.

COT(numeric_expr)

Returns the trigonometric cotangent of the specified angle, in radians, in the
specified numeric expression.

• numeric_expr: A numeric expression.

DEGREES(numeric_expr)

Returns the corresponding angle in degrees for an angle specified in radians.

• numeric_expr: A numeric expression.

FLOOR(numeric_expr)

Returns the largest integer less than or equal to the specified numeric expression.

• numeric_expr: A numeric expression.

EXP(numeric_expr)

Returns the exponential value of the specified numeric expression.

• numeric_expr: A numeric expression.

LOG10(numeric_expr)

Returns the base-10 logarithm of the specified numeric expression.

• numeric_expr: A numeric expression.

RADIANS(numeric_expr)

Returns radians when a numeric expression, in degrees, is entered.

• numeric_expr: A numeric expression.

ROUND(numeric_expr)

Returns a numeric value, rounded to the closest integer value.

• numeric_expr: A numeric expression.
TIBCO® Data Virtualization

SQL Compliance |67
SIGN(numeric_expr)

Returns the positive (+1), zero (0), or negative (-1) sign of the specified numeric
expression.

• numeric_expr: A numeric expression.

SIN(numeric_expr)

Returns the trigonometric sine of the specified angle, in radians, in the specified
expression.

• numeric_expr: A numeric expression.

SQRT(numeric_expr)

Returns the square root of the specified numeric value.

• numeric_expr: A numeric expression.

SQUARE(numeric_expr)

Returns the square of the specified numeric value.

• numeric_expr: A numeric expression.

TAN(numeric_expr)

Returns the tangent of the specified angle, in radians, in the specified expression.

• numeric_expr: A numeric expression.

TRUNC(numeric_expr)

Returns a numeric value, truncated to the closest integer value.

• numeric_expr: A numeric expression.

ATAN2(y_expr, x_expr)

Returns the principal value of the arc tangent of y/x, expressed in radians.

• y_expr: The y numeric expression.

• x_expr: The x numeric expression.

LOG(numeric_expr [, base])

Returns the natural logarithm of the specified numeric expression.
 TIBCO® Data Virtualization

68 | SQL Compliance
• numeric_expr: A numeric expression.

• base: Optional numeric argument that sets the base for the logarithm.

PI()

Returns the constant value of PI.

POWER(numeric_expr, power_expr)

Returns the value of the specified expression to the specified power.

• numeric_expr: A numeric expression.

• power_expr: Is the power to which to raise numeric_expr.

IS_ARRAY(expr)

Returns a Boolean value indicating if the type of the specified expression is an
array.

• expr: Any valid expression.

IS_BOOL(expr)

Returns a Boolean value indicating if the type of the specified expression is a
Boolean.

• expr: Any valid expression.

IS_DEFINED(expr)

Returns a Boolean indicating if the property has been assigned a value.

• expr: Any valid expression.

IS_NULL(expr)

Returns a Boolean value indicating if the type of the specified expression is null.

• expr: Any valid expression.

IS_NUMBER(expr)

Returns a Boolean value indicating if the type of the specified expression is a
number.

• expr: Any valid expression.
TIBCO® Data Virtualization

SQL Compliance |69
IS_OBJECT(expr)

Returns a Boolean value indicating if the type of the specified expression is a
JSON object.

• expr: Any valid expression.

IS_PRIMITIVE(expr)

Returns a Boolean value indicating if the type of the specified expression is a
primitive (string, Boolean, numeric, or null).

• expr: Any valid expression.

IS_STRING(expr)

Returns a Boolean value indicating if the type of the specified expression is a
string.

• expr: Any valid expression.

CONCAT(str1, str2 [, str3] [, ...])

Returns a string that is the result of concatenating two or more string values.

• str1: The first string to concatenate.

• str2: The second string to concatenate.

• str3: The third string to concatenate.

CONTAINS(str1, str2)

Returns a Boolean indicating whether the first string expression contains the
second.

• str1: The string to search in.

• str2: The string to search for.

ENDSWITH(str1, str2)

Returns a Boolean indicating whether the first string expression ends with the
second.

• str1: The string to search in.

• str2: The string to search for.
 TIBCO® Data Virtualization

70 | SQL Compliance
INDEX_OF(str1, str2)

Returns the starting position of the first occurrence of the second string
expression within the first specified string expression, or -1 if the string is not
found.

• str1: The string to search in.

• str2: The string to search for.

LEFT(str, num_expr)

Returns the left part of a string with the specified number of characters.

• str: A valid string expression.

• num_expr: The number of characters to return.

LENGTH(str)

Returns the number of characters of the specified string expression.

• str: Any valid string expression.

LOWER(str)

Returns a string expression after converting uppercase character data to
lowercase.

• str: Any valid string expression.

LTRIM(str)

Returns a string expression after it removes leading blanks.

• str: Any valid string expression.

REPLACE(original_value, from_value, to_value)

Replaces all occurrences of a specified string value with another string value.

• original_value: The string to search in.

• from_value: The string to search for.

• to_value: The string to replace instances of from_value.

REPLICATE(str, repeat_num)

Repeats a string value a specified number of times.
TIBCO® Data Virtualization

SQL Compliance |71
• str: The string expression to repeat.

• repeat_num: The number of times to repeat the str expression.

REVERSE(str)

Returns the reverse order of a string value.

• str: Any valid string expression.

RIGHT(str, num_expr)

Returns the right part of a string with the specified number of characters.

• str: Any valid string expression.

• num_expr: The starting index.

RTRIM(str)

Returns a string expression after it removes trailing blanks.

• str: Any valid string expression.

STARTSWITH(str1, str2)

Returns a Boolean indicating whether the first string expression starts with the
second.

• str1: The string to search in.

• str2: The string to search for.

SUBSTRING(str, start_index, length)

Returns part of a string expression starting at the specified character zero-based
position and continues to the specified length, or to the end of the string.

• str: Any valid string expression.

• start_index: The starting index.

• length: The length of the string to return.

TOSTRING(expr)

Returns a string representation of scalar expression.

• expr: Any valid expression.
 TIBCO® Data Virtualization

72 | SQL Compliance
TRIM(str)

Returns a string expression after it removes leading and trailing blanks.

• str: Any valid string expression.

UPPER(str)

Returns a string expression after converting lowercase character data to
uppercase.

• str: Any valid string expression.

ARRAY_CONCAT(array_exp1, array_exp2 [, array_exp3])

Returns an array that is the result of concatenating two or more array values.

• array_exp1: Any valid array expression.

• array_exp2: Any valid array expression.

• array_exp3: Any valid array expression.

ARRAY_CONTAINS(array_exp, expr [, bool_expr])

Returns a Boolean indicating whether the array contains the specified value. You
can check for a partial or full match of an object by using a boolean expression
within the command.

• array_exp1: Any array expression.

• expr: The expression to search for.

• bool_expr: If it's set to 'true'and if the specified search value is an object, the
command checks for a partial match (the search object is a subset of one of the
objects). If it's set to 'false', the command checks for a full match of all objects
within the array. The default value if not specified is false.

ARRAY_LENGTH(array_exp)

Returns the number of elements of the specified array expression.

• array_exp: Any valid array expression.

ARRAY_SLICE(array_exp, start_index, max_size)

Returns part of an array expression.

• array_exp: Any valid array expression.
TIBCO® Data Virtualization

SQL Compliance |73
• start_index: Zero-based numeric index at which to begin the array. Negative
values may be used to specify the starting index relative to the last element of
the array i.e. -1 references the last element in the array.

• max_size: Maximum number of elements in the resulting array.

ST_DISTANCE(spatial_expr1, spatial_expr2)

Returns the distance between the two GeoJSON Point, Polygon, or LineString
expressions.

• spatial_expr1: Is any valid GeoJSON Point, Polygon, or LineString object
expression.

• spatial_expr2: Is any valid GeoJSON Point, Polygon, or LineString object
expression.

ST_WITHIN(spatial_expr1, spatial_expr2)

Returns a Boolean expression indicating whether the GeoJSON object (Point,
Polygon, or LineString) specified in the first argument is within the GeoJSON
(Point, Polygon, or LineString) in the second argument.

• spatial_expr1: Is any valid GeoJSON Point, Polygon, or LineString object
expression.

• spatial_expr2: Is any valid GeoJSON Point, Polygon, or LineString object
expression.

ST_INTERSECTS(1, 2)

Returns a Boolean expression indicating whether the GeoJSON object (Point,
Polygon, or LineString) specified in the first argument intersects the GeoJSON
(Point, Polygon, or LineString) in the second argument.

• spatial_expr1: Is any valid GeoJSON Point, Polygon, or LineString object
expression.

• spatial_expr2: Is any valid GeoJSON Point, Polygon, or LineString object
expression.

ST_ISVALID(spatial_expr)

Returns a Boolean value indicating whether the specified GeoJSON Point,
Polygon, or LineString expression is valid.

• spatial_expr: Is any valid GeoJSON Point, Polygon, or LineString object
expression.
 TIBCO® Data Virtualization

74 | SQL Compliance
ST_ISVALIDDETAILED(spatial_expr)

Returns a JSON value containing a Boolean value if the specified GeoJSON Point,
Polygon, or LineString expression is valid, and if invalid, additionally the reason
as a string value.

• spatial_expr: Is any valid GeoJSON Point, Polygon, or LineString object
expression.

SELECT INTO Statements

You can use the SELECT INTO statement to export formatted data to a file.

Data Export with an SQL Query

The following query exports data into a file formatted in comma-separated values
(CSV):

boolean ret = stat.execute("SELECT City, CompanyName INTO
"csv://c:/Customers.txt" FROM "Customers" WHERE Country =
'US'");
System.out.println(stat.getUpdateCount()+" rows affected");

You can specify other file formats in the URI. The following example exports
tab-separated values:

Statement stat = conn.createStatement();
boolean ret = stat.execute("SELECT * INTO "Customers" IN
'csv://filename=c:/Customers.csv;delimiter=tab' FROM
"Customers" WHERE Country = 'US'");
System.out.println(stat.getUpdateCount()+" rows affected");

INSERT Statements

To create new records, use INSERT statements.

INSERT Syntax

The INSERT statement specifies the columns to be inserted and the new column
values. You can specify the column values in a comma-separated list in the
VALUES clause, as shown in the following example:

INSERT INTO <table_name>
(<column_reference> [, ...])
VALUES
({ <expression> | NULL } [, ...])
TIBCO® Data Virtualization

SQL Compliance |75

<expression> ::=
 | @ <parameter>
 | ?
 | <literal>

You can use the executeUpdate method of the Statement and PreparedStatement
classes to execute data manipulation commands and retrieve the rows affected.

String cmd = "INSERT INTO Customers (CompanyName) VALUES
(?)";
PreparedStatement pstmt = connection.prepareStatement(cmd);
pstmt.setString(1, "Caterpillar");
int count = pstmt.executeUpdate();
System.out.println(count+" rows were affected");
connection.close();

UPDATE Statements

To modify existing records, use UPDATE statements.

Update Syntax

The UPDATE statement takes as input a comma-separated list of columns and
new column values as name-value pairs in the SET clause, as shown in the
following example:

UPDATE <table_name> SET { <column_reference> = <expression>
} [, ...] WHERE { _id = <expression> } [{ AND | OR } ...
]

<expression> ::=
 | @ <parameter>
 | ?
 | <literal>

You can use the executeUpdate method of the Statement or PreparedStatement
classes to execute data manipulation commands and retrieve the rows affected, as
shown in the following example:

String cmd = "UPDATE Customers SET CompanyName='Caterpillar'
WHERE _id = ?";
PreparedStatement pstmt = connection.prepareStatement(cmd);
pstmt.setString(1, "22");
 TIBCO® Data Virtualization

76 | SQL Compliance
int count = pstmt.executeUpdate();
System.out.println(count + " rows were affected");
connection.close();

DELETE Statements

To delete information from a table, use DELETE statements.

DELETE Syntax

The DELETE statement requires the table name in the FROM clause and the row's
primary key in the WHERE clause, as shown in the following example:

<delete_statement> ::= DELETE FROM <table_name> WHERE { _id
= <expression> } [{ AND | OR } ...]

<expression> ::=
 | @ <parameter>
 | ?
 | <literal>

You can use the executeUpdate method of the Statement or PreparedStatement
classes to execute data manipulation commands and retrieve the number of
affected rows, as shown in the following example:

Connection connection =
DriverManager.getConnection("jdbc:cosmosdb:AccountEndpoint=m
yAccountEndpoint;AccountKey=myAccountKey;",);
String cmd = "DELETE FROM Customers WHERE _id = ?";
PreparedStatement pstmt = connection.prepareStatement(cmd);
pstmt.setString(1, "22");
int count=pstmt.executeUpdate();
connection.close();

EXECUTE Statements

To execute stored procedures, you can use EXECUTE or EXEC statements.

EXEC and EXECUTE assign stored procedure inputs, referenced by name, to
values or parameter names.

Stored Procedure Syntax

To execute a stored procedure as an SQL statement, use the following syntax:
TIBCO® Data Virtualization

SQL Compliance |77

{ EXECUTE | EXEC } <stored_proc_name>
{
 [@] <input_name> = <expression>
} [, ...]

<expression> ::=
 | @ <parameter>
 | ?
 | <literal>

Example Statements

Reference stored procedure inputs by name:

EXECUTE my_proc @second = 2, @first = 1, @third = 3;

Execute a parameterized stored procedure statement:

EXECUTE my_proc second = @p1, first = @p2, third = @p3;
 TIBCO® Data Virtualization

78 | SQL Compliance
TIBCO® Data Virtualization

79 | TIBCO Product Documentation and Support Services
TIBCO Product Documentation and Support Services

For information about this product, you can read the documentation, contact
TIBCO Support, and join the TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the TIBCO Product
Documentation website, mainly in HTML and PDF formats.

The TIBCO Product Documentation website is updated frequently and is more
current than any other documentation included with the product.

Product-Specific Documentation

The following documentation for this product is available on the TIBCO Data
Virtualization page.

• Users

TDV Getting Started Guide

TDV User Guide

TDV Web UI User Guide

TDV Client Interfaces Guide

TDV Tutorial Guide

TDV Northbay Example

• Administration

TDV Installation and Upgrade Guide

TDV Administration Guide

TDV Active Cluster Guide

TDV Security Features Guide

• Data Sources

TDV Adapter Guides

TDV Data Source Toolkit Guide (Formerly Extensibility Guide)

• References

TDV Reference Guide

TDV Application Programming Interface Guide
 TIBCO Data Virtualization Documentation and Support Services

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-data-virtualization
https://docs.tibco.com/products/tibco-data-virtualization
https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-data-virtualization
https://docs.tibco.com/products/tibco-data-virtualization

80 | TIBCO Product Documentation and Support Services
• Other

TDV Business Directory Guide

TDV Discovery Guide

• TIBCO TDV and Business Directory Release Notes Read the release notes for
a list of new and changed features. This document also contains lists of known
issues and closed issues for this release.

How to Contact TIBCO Support

Get an overview of TIBCO Support. You can contact TIBCO Support in the
following ways:

• For accessing the Support Knowledge Base and getting personalized content
about products you are interested in, visit the TIBCO Support website.

• For creating a Support case, you must have a valid maintenance or support
contract with TIBCO. You also need a user name and password to log in to
TIBCO Support website. If you do not have a user name, you can request one
by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and
employee subject matter experts to share and access their collective experience.
TIBCO Community offers access to Q&A forums, product wikis, and best
practices. It also offers access to extensions, adapters, solution accelerators, and
tools that extend and enable customers to gain full value from TIBCO products. In
addition, users can submit and vote on feature requests from within the TIBCO
Ideas Portal. For a free registration, visit TIBCO Community.
 TIBCO Data Virtualization Documentation and Support Services

https://www.tibco.com/services/support
https://ideas.tibco.com/portal_session/new
https://support.tibco.com
https://community.tibco.com
https://support.tibco.com
https://www.tibco.com/services/support
https://www.tibco.com/services/support
https://community.tibco.com
https://support.tibco.com
https://ideas.tibco.com/
https://ideas.tibco.com/

 TIBCO Data Virtualization Legal and Third-Party Notices

81 | Legal and Third-Party Notices

Legal and Third-Party Notices

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY
(OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE.
THE EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY
ANY OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND
CONDITIONS OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED
SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE
CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD
OR INSTALLATION OF THE SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE)
OR IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER
LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE
SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND
YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE
BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of TIBCO Software Inc.

TIBCO, TIBCO logo, Two-Second Advantage, TIBCO Spotfire, TIBCO ActiveSpaces, TIBCO Spotfire
Developer, TIBCO EMS, TIBCO Spotfire Automation Services, TIBCO Enterprise Runtime for R,
TIBCO Spotfire Server, TIBCO Spotfire Web Player, TIBCO Spotfire Statistics Services, S-PLUS, and
TIBCO Spotfire S+ are either registered trademarks or trademarks of TIBCO Software Inc. in the
United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle
Corporation and/or its affiliates.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system
platforms for a specific software version are released at the same time. See the readme file for the
availability of this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO
SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY
OR INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE,
INCLUDING BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please refer to
TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 2002-2021. TIBCO Software Inc. All Rights Reserved.

https://www.tibco.com/patents

	TIBCO Data Virtualization®
	Contents
	TDV Cosmos DB Adapter
	Getting Started
	Deploying the Adapter
	Connecting to Cosmos DB

	Basic Tab
	Advanced Tab
	Connection String Options

	Logging
	Advanced Settings
	Accessing NoSQL Tables
	Fine Tuning Data Access
	Customizing the SSL Configuration
	Connecting Through a Firewall or Proxy
	Troubleshooting the Connection

	Changes in 2019
	NoSQL Database
	Automatic Schema Discovery
	Free-Form Queries
	Vertical Flattening
	JSON Functions
	Sql API Built-In Functions
	Query Mapping (Sql API)
	Built-In functions
	Custom Schema Definitions
	Custom Schema Example

	Stored Procedures
	SQL Compliance
	SELECT Statements
	SELECT INTO Statements
	INSERT Statements
	UPDATE Statements
	DELETE Statements
	EXECUTE Statements

	TIBCO Product Documentation and Support Services
	How to Access TIBCO Documentation
	How to Contact TIBCO Support
	How to Join TIBCO Community

	Legal and Third-Party Notices

