
Copyright © 2002-2023. Cloud Software Group, Inc. All Rights Reserved.

TIBCO® Data Virtualization
Client Interfaces Guide
Version 8.7.0 | October 2023

TIBCO® Data Virtualization Client Interfaces Guide

2 | Contents

Contents
Contents 2

Introduction to Accessing Your Data through Client Interfaces 9
About Client Interface Connections 9

Connecting Client Applications to TDV Resources 10
Driver Support 11

TDV Port Settings for Client Connections to TDV 13

TDV Data Retrieval Tuning for Client Connections to TDV 14

Connecting to TDV Server through JDBC 17
Installing JDBC Drivers 17

Updating the JDBC Driver 18

Setting the Java CLASSPATH for the JDBC Driver 18

Setting Pass-Through Credentials for JDBC Clients 19

Connecting to TDV Server through TIBCO Spotfire 23

Connecting to TDV Server through SQuirreL 24

Defining a JDBC Client using a Connection URL 25
JDBC Driver Connection URL Properties 27

Examples 34
Example Java JDBC Client Application Code 34

Examples of Accessing Data through JDBC 46

Tips From an Expert on Duplicate Schema Names in a Catalog 76

Unsupported JDBC Methods 76

Connecting to TDV Server through ODBC 86
ODBC Driver Requirements 87

Installing the ODBC Driver 87
Installing the ODBC Client Driver on Windows 88

TIBCO® Data Virtualization Client Interfaces Guide

3 | Contents

Uninstalling the ODBC Client Driver on Windows 89

Installing the ODBC Client Driver on UNIX 89

Setting the ODBC Environment Variables on UNIX 90

Creating a DSN with driverConfig on UNIX 91

Uninstalling the ODBC Client Driver on Unix 94

Updating the ODBC Driver 94

Preparing TDV Data Services for ODBC Client Connections 95

Configuring Each Windows System Data Source Name 96

Adding a New System DSN 96

Override the Configured Settings 101

Defining an ODBC Client using a Connection String 101
ODBC Driver Connection String Properties 103

TDV Supported Encoding Standards 110
Windows 110

Unix 112

Connecting Cognos to TDV Using ODBC 114

Connecting Oracle Database Gateway to TDV Using ODBC 116

Connecting MicroStrategy to TDV Using ODBC 117

Connecting Tableau to TDV Using ODBC 120

Connecting PowerBI to TDV Using ODBC 121

Examples Using ODBC to Connect to TDV Server 122
PERL Code Sample for Connecting to TDV Server 122

C++ Example using the Connection String (DSN-less connection) 123

C++ UNIX Code Sample for Connecting to TDV Server 132

VBA Code Sample for Connecting to TDV Server 141

Power BI Connector for TIBCO(R) Data Virtualization 145
Getting Started 146

Installing the Connector 146

Creating the Data Source Name 146

Advanced Settings 147

Using the Connector 147

TIBCO® Data Virtualization Client Interfaces Guide

4 | Contents

Connecting to Data 148

Querying Data 150

Advanced Features 153
SSL Configuration 154

Firewall and Proxy 154

Logging 155

Connection String Options 157
Authentication 158

Kerberos 158

SSL 159

Logging 159

Schema 160

Miscellaneous 160

Other 163

Connecting to TDV Server through Web Interfaces 196
Connecting to TDV Server through SOAP 196

SOAP Message Compression 198

SOAP Message Optimization 198

Connecting to TDV Server through REST 199

Connecting to TDV Server through OData 200

Connecting to TDV Server through ADO.NET 202
Setting Up the ADO.NET Driver 202

Client-Side ADO.NET Driver Support 203

Installing the ADO.NET Driver 203

Uninstalling and Repairing ADO.NET 204

Updating the ADO.NET Driver 204

Configure an ADO.NET Connection to a Client Restricted Server 205

Adding and Configuring a Connection to TDV in Visual Studio 205

Modifying or Deleting a Connection 213

Working with the Server Explorer 213

TIBCO® Data Virtualization Client Interfaces Guide

5 | Contents

Working with the Visual ToolBox Items 214

Defining an ADO.NET Client using a Connection URL 216
ADO.NET Driver Connection URL Properties 217

Sample Code for Testing of an ADO.NET Driver 224
Create a CompositeConnection Object 225

Create a CompositeCommand Object 229

Select Data from a TDV Published Resource 231

Select Data from a TDV Published Resource on the Server 233

Getting the Column Type 235

Getting Column Metadata 237

Using an Update Operation in the Sample Code 241

About Using Parameters 243

About ADO.NET Placeholders 247

Invoking a Stored Procedure Example 247

Using CompositeCommandBuilder 253

Example with Special Data Types 257

Retrieving Metadata 261

Retrieving Tables with a Named Schema 264

ADO.NET Provider for TIBCO(R) Data Virtualization 266
Overview 266

Getting Started 268
Establishing a Connection 269

Using ADO.NET 269
Installed Assemblies 270

Connecting from Code 271

Querying with the DataReader 273

Querying with the DataAdapter 274

Using the CompositeDataSource 277

Batch Processing 278

Connection Pooling 286

Calling Stored Procedures 287

TIBCO® Data Virtualization Client Interfaces Guide

6 | Contents

Using ADO.Net - Entity Framework 292
Using EF 6 293

Model-First Approach 294

Code-First Approach 296

Using ADO.Net - Entity Framework Core 299
Getting Started with EFCore 300

Reverse Engineering (Scaffolding) 302

Code-First Approach 303

EFCore Console Application 304

EFCore ASP.NET Application 305

Using ADO.Net SSRS 306
Deploy the Provider 306

Create a Data Source 307

Create a Dataset 307

Publish a Report 308

Using DbProviderFactory 309
Creating DbConnections 310

Executing DbCommands 313

Schema Discovery 315
Tables 316

Views 318

Columns 320

Procedures 324

Procedure Parameters 326

Indexes 329

Index Columns 332

Foreign Keys 334

Databases 337

Users 339

Connection Properties 341

Result Sets 343

Advanced Features 346

TIBCO® Data Virtualization Client Interfaces Guide

7 | Contents

SSL Configuration 346

Firewall and Proxy 347

Logging 347

Connection String Options 350
Authentication 350

Kerberos 351

SSL 351

Logging 352

Schema 352

Miscellaneous 353

Other 356

TIBCO SSIS Components for TDV 388
Getting Started 389

Adding Items to the Toolbox 390

Establishing a Connection 390

Deploying to Azure 390

Changelog 395

General Changes 395

Advanced Features 398
SSL Configuration 398

Firewall and Proxy 399

Logging 399

Using the SSIS Components 401
Using the Source Component 402

Using the Destination Component 404

Using the Lookup Component 406

Using the Execute SQL Task 407

Calling Stored Procedures 409

Connection Properties 415
Authentication 420

Kerberos 425

TIBCO® Data Virtualization Client Interfaces Guide

8 | Contents

SSL 428

Logging 434

Schema 437

Miscellaneous 441

Other 459

TIBCO Documentation and Support Services 461

Legal and Third-Party Notices 463

TIBCO® Data Virtualization Client Interfaces Guide

9 | Introduction to Accessing Your Data through Client Interfaces

Introduction to Accessing Your Data through
Client Interfaces
This topic gives an overview of the client interfaces TDV supports and introduces the
process for implementing client interfaces. Topics covered include:

• About Client Interface Connections

• Connecting Client Applications to TDV Resources

• TDV Port Settings for Client Connections to TDV

• TDV Data Retrieval Tuning for Client Connections to TDV

About Client Interface Connections
This guide describes how to retrieve data through TDV using a client application. Client
interfaces allow you to access data through TDV and consume it in your client applications.
After you use TDV to define and publish views and other resource objects, you need to
access that data so that you can perform data entry or complex data analysis on the data.
Client applications can retrieve data from published resources in TDV through the following
access mechanisms:

• JDBC • ADO.NET

• REST • ODBC

• OData • SOAP

Before you can access and introspect underlying data sources, you must set up
connections between your data sources and TDV. After using Studio to design and publish
your virtual data resources, you need to set up the client interface connections to access
those resources in TDV.

TIBCO® Data Virtualization Client Interfaces Guide

10 | Introduction to Accessing Your Data through Client Interfaces

The exact methods that you use to connect to your published data resources in TDV vary
depending on your system architecture, what the applications are, and how they need to
connect to TDV. For example, your organization might need to write a Java application that
uses ODBC to access the data through TDV. Another organization might need to create a
Web application that uses SOAP to access the data through TDV.

Because the exact requirements of your organization are not known to us, we can only
provide this guide as generalized information advising you on the steps that might be
required. You need to analyze the advice in this guide and determine how to modify the
steps to make them work for your organization.

Connecting Client Applications to TDV
Resources
The general steps to configuring your client application to access data through TDV are
described in this section.

To connect to data through TDV
1. Identify the underlying data sources, the virtual data resources that need to be built

and published in TDV, and the client applications that will consume the TDV data
resources.

2. Configure the data source connections between TDV and the underlying data
sources.

3. Define and publish your data resources in TDV.

4. Determine how your client applications need to access the published resources in
TDV (JDBC, ODBC, etc.) Refer to Driver Support for the drivers supported.

TIBCO® Data Virtualization Client Interfaces Guide

11 | Introduction to Accessing Your Data through Client Interfaces

5. Configure the connections between TDV and the client applications as described in
one of the following sections:

Connector Type See

JDBC Connecting to TDV Server through JDBC

ODBC Connecting to TDV Server through ODBC

SOAP Connecting to TDV Server through SOAP

REST Connecting to TDV Server through REST

OData Connecting to TDV Server through OData

ADO.Net Connecting to TDV Server through ADO.NET

6. Test your client application access to TDV.

Driver Support

Driver Server Version TDV Support

ODBC iODBC Driver Manager v3.52.12 for AIX and Linux Active

ODBC iODBC Driver Manager v3.521 for HP-UX (PA-RISC,
Itanium 32- and 64-bit)

Not
Supported

ODBC Windows Driver Manager

The Windows Driver Manager is part of your Windows
Operating System. Refer to the section Operating System
Support for Server in the TDV Installation and Upgrade
Guide for a list of supported OS.

Active

JDBC Java 2 Runtime, SE v1.4.2 Not

TIBCO® Data Virtualization Client Interfaces Guide

12 | Introduction to Accessing Your Data through Client Interfaces

Driver Server Version TDV Support

supported

ODBC DataDirect Driver Manager v8.0

Note: DataDirect Driver Manager is supported on Linux
and AIX platforms. There is no extra configuration
needed for using TDV ODBC driver with DataDirect Driver
Manager

Active

ODBC unixODBC Driver Manager(v2.3.1)

Note: unixODBC Driver Manager is supported on Linux
and AIX platforms. For using TDV ODBC driver with the
unixODBC Driver Manager, set the environment variable
TDV_ODBC_UODBC to TRUE for the applications that use
TDV ODBC Driver.

set TDV_ODBC_UODBC=TRUE

Active

JDBC JRE v11 (csjdbc.jar) and conforms to JDBC API 4.0 Active

JDBC JRE v1.8 (csjdbc8.jar) and conforms to JDBC API 4.0

Example: If you are running a client using JRE 8(also
known as 1.8), you would include csjdbc8.jar in the
CLASSPATH as shown below:

"C:\Program Files\Java\jdk1.8.0_211\bin\java" -classpath
.;.\csjdbc8.jar Test

Active

ADO.NETr ADO.NET (32-bit and 64-bit) Active
Support

Power BI
Data
Connector

20.0.7656 Active

SSIS 20.0.7668 Active

ADO.Net ADO.Net 2021 Data Provider - v20.0.7656 Active

TIBCO® Data Virtualization Client Interfaces Guide

13 | Introduction to Accessing Your Data through Client Interfaces

TDV Port Settings for Client Connections to TDV
The port settings for clients connecting to TDV using JDBC, ODBC, ADO.NET, and SSL are
derived from the HTTP base port setting which is 9400 by default. The default settings for
client connections are as follows:

Connection Port Default Port
Numbers

Editable

HTTP base port 9400 Yes

JDBC, ODBC, and ADO.NET 9401 (base port + 1) No

HTTP SSL 9402 (base port + 2) No

JDBC, ODBC, and ADO.NET SSL 9403 (base port + 3) No

You can view the current base port, connection ports, and SSL security connection ports
using Studio. Optionally, you can change the HTTP base port upon server restart which
affects the other connection ports.

To view the JDBC, ODBC, and ADO.NET port value for client connections
1. Select Administration > Configuration from the Studio toolbar to open the

Configuration panel.

2. Navigate to the Server > Client Drivers > Communications node. The Port value is the
port used for JDBC, ODBC, and ADO.NET client connections. The SSL Port value is
used for JDBC, ODBC, and ADO.NET client connections using SSL. Both values are
derived from the HTTP base port and are read-only.

TIBCO® Data Virtualization Client Interfaces Guide

14 | Introduction to Accessing Your Data through Client Interfaces

To change the HTTP base port and SSL port settings
3. Navigate to the Server > Web Services Interface > Communications > HTTP.

4. Select Port (Current). This value is the HTTP base port upon which all other ports are
based.

5. Optionally, select Port (On Server Restart) and change the HTTP base port value. The
SSL port for JDBC, ODBC, and ADO.NET will be the new value + 3.

If you change the HTTP base port, consider the system impact. Remember that all of
the other ports are derived from this value.

6. Click OK.

7. Restart your machine to make this change take effect.

TDV Data Retrieval Tuning for Client
Connections to TDV
The way that data is retrieved from data sources and queued up in the TDV Server to
provide data for your client applications can be tuned to optimize its retrieval. This method
of retrieving data can approximate multithreaded data retrieval for client applications. This
is especially beneficial for queries that return a large data set.

This feature improves the performance of queries by prefetching data from a data source
and optimizing the data processing.

TDV can prefetch data for clients and store it on the TDV Server. The amount of data and
the number of buffers used to store that data can be configured.

This tuning can be done using several TDV configuration parameters. The parameters work
together to achieve results. Because each client application, query, and data source
perform in different ways, it could take several attempts to determine the best settings for
your exact circumstances.

TIBCO® Data Virtualization Client Interfaces Guide

15 | Introduction to Accessing Your Data through Client Interfaces

Configuration
Parameter

Description

DbChannel Prefetch
Optimization

A boolean value that enables or disables this type of data
retrieval tuning.

DbChannel Queue Size An integer value between 0 and 100 that specifies the number of
buffers that are allocated for prefetching data from a data
source. It is recommended to use 10 as the starting value.

If you observe an increase in memory usage this parameter can
be used to control the amount of memory used to prefetch data.

0: No queuing or prefetch of the results done on the server.

1 – 100:

• If prefetch optimization is enabled: This determines the
max number of buffers a prefetch optimization can fill in
on the server. The size of the buffer is determined by the
fetchBytes, which can be set on the client. Default size of
the fetchBytes is 128K.

• If prefetch optimization is disabled: Is always
interpreted as 1 and the buffer size is the lesser of
fetchBytes or fetchRows.

DbChannel Zigzag
String Optimization

Zigzag strings, which can save bytes over the wire, will be used
in client communications if requested by the client. This setting
can be used to ignore the client setting.

If the setting is FALSE, the server will ignore the client setting,
and the server will NOT send zigzag strings.

If the setting is TRUE, the client can request zigzagStrings to be
sent across the wire.

It will not be necessary to restart server if this value changed.

DBChannel Flood
Optimization

Setting the Flood Optimization option to True, will enable the
Flood protocol to be used in client communications if requested
by the client. The default value is True.

TIBCO® Data Virtualization Client Interfaces Guide

16 | Introduction to Accessing Your Data through Client Interfaces

Configuration
Parameter

Description

Note: It will not be necessary to restart server if this value
changed.

DBChannel Write
Timeout Window

This option indicates the Timeout value when writing to the
client, specified in seconds. Server closes a connection if it times
out. The default value is 30 seconds.

It is recommended that this feature be turned on.

To tune data retrieval
1. Select Administration > Configuration from the Studio toolbar to open the

Configuration panel.

2. Search for DBChannel.

3. Set DbChannel Queue Size to 10 (as a starting value).

4. Select Apply.

5. Set DbChannel Prefetch Optimization to true.

6. Select Apply.

7. Select OK to save changes and exit the Configuration dialog.

8. If necessary set the value of fetchBytes for your client interface.

TIBCO® Data Virtualization Client Interfaces Guide

17 | Connecting to TDV Server through JDBC

Connecting to TDV Server through JDBC
JDBC client applications can connect to the TDV Server to retrieve data from services
managed, secured, and published by TDV-defined resources.

• Installing JDBC Drivers

• Updating the JDBC Driver

• Setting the Java CLASSPATH for the JDBC Driver

• Setting Pass-Through Credentials for JDBC Clients

• Connecting to TDV Server through TIBCO Spotfire

• Connecting to TDV Server through SQuirreL

• Defining a JDBC Client using a Connection URL

• Examples

• Tips From an Expert on Duplicate Schema Names in a Catalog

• Unsupported JDBC Methods

Installing JDBC Drivers
Make sure the JDBC driver is installed on the machine where you want to develop and run
your JDBC client application that accesses data through the TDV Server. The TDV JDBC
driver must be made available locally for each client that accesses TDV.

By default, TDV Server listens on port 9401 for JDBC connections, and the JDBC drivers are
installed in subdirectories of the installation’s root directory.

Note: Some clients might not be JDBC-4.0 compliant. An older version of the csjdbc.jar is
available from Support to support older JDBC interfaces. If you have a previous release of
TDV, you can use the csjdbc.jar file provided with that release.

TIBCO® Data Virtualization Client Interfaces Guide

18 | Connecting to TDV Server through JDBC

To install the JDBC drivers to establish the connections between client
applications and the TDV Server

1. If TDV Server is running on a machine that has a Windows firewall, the firewall must
be configured to allow JDBC clients to connect to the server through Studio.

2. Obtain and install the JDBC driver on the machine with the client application that
accesses data through the TDV Server. Depending on the requirements of your
organization, use your organizations copy of the JDBC driver or obtain the TDV JDBC
driver from the TDV installer distribution. The TDV JDBC driver must be placed in an
appropriate directory of any client application that connects to the TDV Server.

3. If you are using the AIX platform, see the TDV Administration Guide for information
on “Configuring TDV for AIX Platforms.”

Updating the JDBC Driver
When updating JDBC drivers, there is no need to update your client programs or
connection strings.

To update the JDBC driver
1. Shut down all local applications using the JDBC driver.

2. Move the old csjdbc.jar file to an archive location.

3. Paste the newer file to the original csjdbc.jar location.

4. Restart your applications.

5. If you are using the AIX platform, see the TDV Administration Guide for information
on “Configuring TDV for AIX Platforms”.

Setting the Java CLASSPATH for the JDBC
Driver
When using one of the TDV JDBC drivers with client applications written in Java, make sure
that csjdbc.jar is available in your system’s CLASSPATH. For the list of supported drivers,
see Driver Support, page 16.

import-link:ch_1_introduction_1675903542_support_for_virtualization_environments

TIBCO® Data Virtualization Client Interfaces Guide

19 | Connecting to TDV Server through JDBC

To set the CLASSPATH for JDBC driver
1. Make sure that the JDBC driver JAR file is available in your system’s CLASSPATH.

2. Run the following command, depending on your operating system, to set the
CLASSPATH:

OS Command

Windows
set CLASSPATH=%CLASSPATH%;<PATH>\csjdbc.jar

UNIX
export CLASSPATH=$CLASSPATH:<PATH>/csjdbc.jar

<PATH> is the valid path where the JDBC driver is located.

3. Run your Java-based client application:

OS Command

Windows
java -classpath "%CLASSPATH%;<PATH>\csjdbc.jar" <CLIENT_
JDBC_PROGRAM>

UNIX
java -classpath "$CLASSPATH:<PATH>/csjdbc.jar" <CLIENT_JDBC_
PROGRAM>

<CLIENT_JDBC_PROGRAM> is your client application that is written in Java and
accesses data through TDV.

Setting Pass-Through Credentials for JDBC
Clients
When data sources are configured to use pass-through login, the TDV Server session
credentials are used by default to log in to the data source when no other credentials have

TIBCO® Data Virtualization Client Interfaces Guide

20 | Connecting to TDV Server through JDBC

been set by the JDBC client. Different data source credentials can be specified using the
JDBC driver to negotiate data source access. When a data source is configured to use pass-
through login, a data source credential establishes the connection and session. Credentials
set with the JDBC driver are only valid for use with data sources that have been configured
to use pass-through authentication, and connections created with them are only valid for
the current JDBC client session.

Each named resource can be set with a username-password pair when creating
connections with resources configured to use pass-through login. This can also be done for
a generic “null data source” setting instance for unspecified resources.

The setDataSourceCredentials() method, registers the data source pass-through credentials
for the current session for each data source specified. It can be called as many times as is
necessary to set credentials on each pass-through login-enabled resource from which data
is to be retrieved.

setDataSourceCredentials("<fullpath>","<username>", "<password>");

Variable Description

<fullpath> Provides the full path to the data source or can be NULL.

If the path refers to a data source that the user does not have privileges
to access, the program returns an error message.

<username> Only one username-password pair can be set for a path.

<password> Password to the data source.

Rules for Credentials Usage

The following rules govern the use of credentials:

• Connections and sessions with data sources are not created unless the client
requests data from those resources.

• The connection and credentials are only valid for the current JDBC client session.

• For data sources configured to use pass-through, TDV does not re-use other
connections, or sessions created by other users. Credentials set by the JDBC client
are only available for the current client session. If the client connection is terminated
abnormally, the connection is not returned to the pool for use by other clients.

TIBCO® Data Virtualization Client Interfaces Guide

21 | Connecting to TDV Server through JDBC

• When the data source path matches a data source name for which credentials have
been specified, those credentials are used to attempt data retrieval. To enhance
security, any failure to connect or retrieve data with those credentials stops the
retrieval process without attempts to use other credentials, even if suitable
credentials were set on a NULL data source.

• If setDataSourceCredentials() is used to specify a user (e.g. 'userabc') normally, the
data source will proceed to log in to the database server as this user. But the case in
which the client has logged in to the TDV server as 'admin' is an exception. In this
case, setDataSourceCredentials() is ignored and instead, TDV defaults to using the
data source credentials to log in to the database server.

Note: When using pooled connections, it is recommended that JDBC clients clear any
credentials that were set prior to returning the connection to the pool by calling the
clearAllDataSourceCredentials (no arguments) method.

To set credential for pass-through login
1. Determine that you want to use pass-through login for your client application.

2. Read the Rules for Credentials Usage to make sure that your situation qualifies for
use of pass-through.

3. Add the connection URL to your client program. For example, for Java you might
add:

String url = "jdbc:compositesw:dbapi@localhost:9401?"

 +"domain=composite&dataSource=cdspt";

 String user = "compUser";

 String pass = "compPassword";

 // Load driver

 Class.forName("cs.jdbc.driver.CompositeDriver");

TIBCO® Data Virtualization Client Interfaces Guide

22 | Connecting to TDV Server through JDBC

 // Create connection

 conn = DriverManager.getConnection(url, user, pass);

4. Add the setDataSourceCredentials method. For example add the following to your
Java client application:

 ((cs.jdbc.driver.CompositeConnection)conn)
 .setDataSourceCredentials
("/shared/sources/dsPassThru", "dsUser",
"dsPassword");

5. If you are using pooled connecAdd the clearAllDataSourceCredentials (no
arguments) method to clear any credentials that were set prior to returning the
connection to the pool

6. For more detailed sample code, see one of the following topics.

Reference Description

Example 2: Set Data
Source Credentials to
Use Pass-through Data
Sources

When data is requested from a data source enabled for pass-
through login, the TDV Server first checks to see if the requesting
client has credentials set for that named resource. If credentials
have been set, they are passed through to establish a connection
and session to get data from that source.

Example 3: Setting
Credentials for Use with
Any Pass-through Data
Source

If no credentials have been set on the data source from which
data is required, the TDV Server checks to see if the
setDataSourceCredentials() method was used to set credentials on
the null data source (NULL). If setDataSourceCredentials()was
used to set credentials on the null data source, those credentials
are used to attempt data retrieval.

Example 4: Set TDV
Server Credentials to Use
Pass-through Data
Sources

If credentials have not been set on the specifically named data
source or on NULL, the TDV Server tries to access the data source
using the same login credentials as those used to establish a
connection with the TDV Server.

TIBCO® Data Virtualization Client Interfaces Guide

23 | Connecting to TDV Server through JDBC

Connecting to TDV Server through TIBCO
Spotfire
TIBCO Spotfire is a third-party tool. These instructions are included only as a guideline;
your system and the steps necessary to configure it might vary from the test system that
was used in this sample. You will need to refer to TIBCO Spotfire documentation and
perform thorough testing of your system after completing the install and configuration.

This configuration to connect to TDV is based on Spotfire 3.1.

To connect to TDV Server through Spotfire
1. Check whether TDV is already installed with the Spotfire installation.

2. If TDV is installed, configure the connection to TDV server in Spotfire Information
Designer using the TDV connection type.

3. If TDV is not installed yet, install TDV JDBC component on Spotfire box and follow
these instructions to enable TDV:

Launch the TIBCO Spotfire Server configuration tool.

In the TIBCO Spotfire Server Configuration Tool, select the Configuration tab.

On the Configuration tab, in the navigation pane to the left, select Data Source
Templates.

To enable the TDV template, select the Enabled check box.

To add a new data source template, click New and enter the name of the template.

To save your changes, click Save Configuration. In the dialog, click Next, add a
comment, and then click Finish.

For your changes to take effect, restart the TIBCO Spotfire Server service.

4. Your data source template is available to use in the Information Designer in Spotfire
Analyst. You can use it to create information links for accessing data from the
corresponding external data source type.

Once you connect to TDV Server and configure your TDV integration, you will be able to
browse TDV data directly from the Files and Data Flyout in Spotfire.

For more information about the Spotfire Information Designer and Server Configuration
tool, refer to the TIBCO Spotfire documentation.

TIBCO® Data Virtualization Client Interfaces Guide

24 | Connecting to TDV Server through JDBC

Connecting to TDV Server through SQuirreL
SQuirreL is a third-party tool. These instructions are included only as a guideline; your
system and the steps necessary to configure it might vary from the test system that was
used in this sample. You will need to refer to SQuirreL documentation and perform
thorough testing of your system after completing the install and configuration.

It is not necessary to have TDV installed on your computer to connect Squirrel to TDV. You
can get a copy of the csjdbc.jar file from someone who has TDV installed. Save the
csjdbc.jar file anywhere on your local file system, and provide its path to Squirrel so that
Squirrel can find it.

To connect TDV and SQuirrel
1. Complete or review the instructions in the following sections:

— Installing JDBC Drivers

— Updating the JDBC Driver

— Setting the Java CLASSPATH for the JDBC Driver

2. Note the location of your csjdbc.jar file.

3. Launch Squirrel.

4. Select the Drivers tab.

5. Click on the blue icon with a plus (+) sign or choose Drivers -> Add New Driver to
create a new driver.

6. Type values for the following fields:

Field For Example

Name TDV Server

Example URL jdbc:compositesw:dbapi@<server name>:9401?domain=<domain
name>&dataSource=<TDV published datasource name>

Website URL www.TIBCO.com (Users may use any website url)

7. Choose the Extra Class Path tab.

TIBCO® Data Virtualization Client Interfaces Guide

25 | Connecting to TDV Server through JDBC

8. Click Add.

9. Type the full directory path location to your csjdbc.jar file.

10. Click Ok to get back the main screen.

11. Verify that TDV Server is added to the list of drivers. A message will be displayed
when the driver is successfully created.

12. Select the Alias tab.

13. Click on the blue icon with a plus (+) sign to create a new alias.

14. Type values for the following fields:

Field For Example

Name DEV_TDV_Server<ver>

Driver TDV Server

URL jdbc:compositesw:dbapi@lctcvd0250:9401?domain=composite&dataSource=BB
MS

Note: The server, domain, datasource may vary according to your environment.

User Name Use an existing account.

Password

The URL points to a database called “BBMS.” You might need to point to a different
database.

15. Click Test and execute a SELECT query, to test your connection.

Defining a JDBC Client using a Connection URL
The following instruction are provided as guidelines only. You will need to determine
exactly what your client programming environment requires.

This topic also includes the following:

• JDBC Driver Connection URL Properties

TIBCO® Data Virtualization Client Interfaces Guide

26 | Connecting to TDV Server through JDBC

To create a client program
1. Create your client application and declare your connection URL, using the following

syntax:

{TDV <version number>};Server=fully qualified
hostname;Port=9401;User=username;Password=password;domain=Composi
te domainname;dataSource=datasource name

For example, for Java you might add:

String url = "jdbc:compositesw:dbapi@localhost:9401?"

 +"domain=composite&dataSource=cdspt";

 String user = "compUser";

 String pass = "compPassword";

 // Load driver

 Class.forName("cs.jdbc.driver.CompositeDriver");

 // Create connection

 conn = DriverManager.getConnection(url, user, pass);

For other URL properties, see JDBC Driver Connection URL Properties .

2. Declare the username and password variables for use in the connection statement.

3. (Optional) Determine the JDBC driver name using one of the following methods,
depending on platform type:

TIBCO® Data Virtualization Client Interfaces Guide

27 | Connecting to TDV Server through JDBC

Platform Location of Name

Windows The Driver Name can be found from the Data
Source tab of the JDBC Data Source
Administrator.

4. (Optional) Write a small sample program that you can use to test the connection
URL.

5. Create or modify your client program so that it includes the connection syntax. For
example, you must include a statement similar to the following to establish the
connection:

conn = DriverManager.getConnection(url, userName, password);

JDBC Driver Connection URL Properties
This table lists the names of properties that you can specify in the JDBC connection URL.

Non-alphanumeric characters within a NAME or VALUE must be URL-encoded.

JDBC Property Name Description

alternatesecuritycredentials Specifies an alternate security property value to the identity
within the current session. This is used to allow the user
passing security property to the data source.

Note: You may get unexpected results when multiple
requests are made on the same session or when multiple
identities access the same session.

caseSensitive Specifies case sensitivity in the request values. By default
(false), requests are not case-sensitive.

commitFailure Behavior if commit failed, possible values: rollback or
bestEffort.

commitInterrupt Specifies the behavior if a commit is interrupted, possible

TIBCO® Data Virtualization Client Interfaces Guide

28 | Connecting to TDV Server through JDBC

JDBC Property Name Description

values are: ignore, log, fail.

compensate If enabled, compensation blocks will be run if the
transaction rolls back. Possible values: disabled or enabled.
Default value is disabled.

connectTimeout Time-out for initial connection, in seconds. Use 0 (zero) for
infinite time-out.

convertToLocalTimezone When set to the default value (false), the client receives
TIMESTAMP values directly from the published data source,
without conversion to the client’s local time zone. If the
value from the data source had a time zone associated with
a TIMESTAMP, that value is preserved.

When set to true, TIMESTAMP values are converted to the
client’s time zone (as in some earlier releases of TDV).

disableClustering When set to the default value (false), enables data views
from system tables from individual TDV instances in a
cluster.

enableTDVConnectionPool By default the value of this property is set to false. If set to
true, the driver will revert to previous behavior where the
connections to TDV server are pooled.

enableTDVTimestamp Set this property in the JDBC driver to get the correct hour
value, regardless of the current time zone or DST setting on
the host server. When this property is enabled:

• ResultSet.getObject() returns a custom child class of
java.sql.Timestamp, with unchanged timestamp.

• ResultSet.getTime() returns a java.sql.Time object
with unchanged time (hour, minute, second), but the
time from epoch is changed.

• ResultSet.getString() returns the unchanged
timestamp text.

TIBCO® Data Virtualization Client Interfaces Guide

29 | Connecting to TDV Server through JDBC

JDBC Property Name Description

• ResultSet.getTimestamp() returns
java.sql.Timestamp with changed timestamp
regardless of the value of this property.

Notes:

1) This JDBC property is required only if current time setting
enables the clock to automatically adjust for daylight saving
time (DST), and timestamp in database is a DST transition
time (for example, from 2010-03-14 02:00:00 to 2010-03-14
02:59:59).

2) This JDBC property only affects getObject(), getTime(),
and getString() of class ResultSet.

enableFastExec Values are true or false, and the default value is false.

Results are processed and returned immediately (instead of
a round trip) when a query is submitted, potentially
improving performance of low latency queries.

enableFlood Values are true or false. Default value is true.

If true, the server will constantly send data, filling the
network buffer.Useful for larger result sets.

enableReconnectOnError Specifies cluster reconnection behavior.

encrypt When set to true, automatically passes JDBC messages to
the SSL port for processing with the TDV SSL Certificate.
See “Web Services Security” in the TDV User Guide.

fetchBytes Maximum number of rows to fetch for a batch based on
batch size, in bytes. Setting fetchBytes to a very large
number can cause an Out Of Memory error in the server.
The value set for fetchBytes affects the memory used on the
JDBC client and the TDV server, so the value should be set
based on the heap size configured.

TIBCO® Data Virtualization Client Interfaces Guide

30 | Connecting to TDV Server through JDBC

JDBC Property Name Description

fetchRows Maximum number of rows to fetch for a batch. Set to zero
to return an unlimited number of rows.

ignoreTrailingSpace Ignore trailing spaces at the end of values. Default: false.

kerberos.krb5.conf Path to krb5.conf file.

locale Value that defines the user’s language and country.

nometadata Blocks return of result-set metadata during query execution.

paramMode Controls the behavior of OUT parameters for stored
procedures:

• normal—Report OUT parameters in procedure
metadata as OUT parameters.

• return—Report OUT parameters as return values.

• omit—Omit OUT parameters from metadata.

• omitCursors—Omit output cursors from metadata.

pingInterval Maximum time to wait before sending a ping request while
waiting for result from TDV, in seconds.

pingTimeoutWindow The length of time the JDBC or ODBC client waits before
closing a connection to the TDV server, after a ping to the
TDV server has failed.

The value of this parameter should be greater than or equal
to the "PingInterval" parameter. If a ping sent to the TDV
server fails, the ODBC or JDBC client continues to send
pings to TDV to check status. If these client pings continue
to fail after the TimeoutWindow has expired, the ODBC or
JDBC client closes the connection to the TDV server and
sends a message. While the TimeoutWindow has not
expired, the ODBC or JDBC client connection stays open
and continues to send pings to the TDV server waiting for a
response. The default for this property is "0", which means

TIBCO® Data Virtualization Client Interfaces Guide

31 | Connecting to TDV Server through JDBC

JDBC Property Name Description

the setting is not being used. If not set, the session timeout
and or request timeout is used instead.

registerOutputCursors • true—Bind or register output cursors as output
parameters.

• false—Do not bind or register output cursors as
output parameters; instead, use SQLMoreResults or
Statement.getMoreResults() to access the cursors.
See Example of Calling Procedures.

requestTimeout Time-out for query commands and other requests.

sessionTimeout Session inactivity time-out, in seconds. Set to zero for
infinite time-out.

sessionToken Uses the JDBC URL to set a session token value for client
authorization when using TDV with a client restricted
license.

Example: &sessionToken=<VALUE>

singleLogSize Maximum log file size to saving to next log file, in M bytes.

stripDuplicates Values are true or false. Default value is false.

If true, the server will detect for duplicate CHAR/VARCHAR
columns in subsequent rows, and will not re-transmit the
data across the wire.

This would potentially lead to data savings across the wire.

stripTrailingZeros Determines whether decimal result values are to be
returned with trailing zeros removed.

traceLevel Valid values are off, fatal, error (this is the default), debug,
warn, info, debug, and all.

The valid values for client-side log settings are off, fatal,

TIBCO® Data Virtualization Client Interfaces Guide

32 | Connecting to TDV Server through JDBC

JDBC Property Name Description

error (default), warn, info, debug, all, stdout.

On UNIX-based platforms, the log file CsOdbcDebug.log is
created in the directory specified by the environment
variable COMPOSITE_HOME.

unsupportedMode Valid values are silent, warn, or fail. The default value is fail.

When set to silent, unsupported methods do nothing and
return. When set to warn, the JDBC driver logs a warning
message in the log file, Otherwise, the JDBC driver returns a
SQL_ERROR when it encounters unsupported methods. See
Unsupported JDBC Methods.

user_tokens Authentication values that can be packaged for delivery.
The URL can pass the user_tokens property to the server at
the init command, in the form:

"user_tokens=(" NAME "=" VALUE ("," NAME "=" VALUE)*
")"

validateRemoteCert False (default): no certificate validation is performed before
establishing a connection. Also by default, a placeholder
certificate is installed; csjdbc.jar uses a default bundled
truststore for validation, unless the client system truststore
is present and configured.

True: The TDV JDBC client initiates the validation
handshake, using the TDV certificate a for password
encryption. If validation fails, no connection is established.

The TDV Server certificate is loaded from the file specified
in the Truststore File Location configuration parameter.

The Keystore Key Alias is used when it is configured.

The TDV JDBC client driver uses the client system’s
truststore properties to validate the certificate:

• javax.net.ssl.trustStore

TIBCO® Data Virtualization Client Interfaces Guide

33 | Connecting to TDV Server through JDBC

JDBC Property Name Description

• javax.net.ssl.trustStorePassword

• javax.net.ssl.trustStoreType

The TDV Server certificate must be added to this client’s
truststore; otherwise, validation fails.

The placeholder TDV certificate does not work after the
client system truststore is enabled, unless it is added to the
client truststore.

validateRemoteHostname False (default): No host name validation is performed.

True: The csjdbc.jar compares the value of host in JDBC
URL with the subject CN (common name) value in the
certificate received from the targeted TDV Server.

If host name validation fails, the connection is not
established.

AccessToken The authorization tokens used for OAuth2 authentication.
The access token is used in place of id/password
credentials, with a limited lifetime & privileges.

AccessTokenType Indicates the type of AccessToken.

enableKeepAlive Property Type: Boolean

Default Value: false

When set to true, the driver enables TCP-KeepAlive for the
connection.

delegateOauth2flowToServer This is a flag used to indicate whether the OAUTH2 ROPC
flow delegation is used for JDBC driver.

Setting this to True will

 1. Delegate OAUTH2 ROPC flow to TDV Server from the
JDBC driver.

TIBCO® Data Virtualization Client Interfaces Guide

34 | Connecting to TDV Server through JDBC

JDBC Property Name Description

 2. Invoke a call to the OAUTH ID Provider and get token
from it.

Setting this to False indicates not to delegate OAUTH2
ROPC flow to TDV Server from the JDBC driver.

Examples
• Example Java JDBC Client Application Code

• Examples of Accessing Data through JDBC

Example Java JDBC Client Application Code
This section provides a sample template for using the JDBC driver in Java code. You must
provide appropriate values for ip, datasource, userName, password, and the SQL
statement.

import java.sql.*;

class JdbcSample

{

 public static void main(String args[])

 {

 if (args.length != 7) {

TIBCO® Data Virtualization Client Interfaces Guide

35 | Connecting to TDV Server through JDBC

 System.err.println("usage : prog <datasource name> <host
name> <port> <user> <password> <domain name> \"<sql statement>\"");

 System.exit(1);

 }

 String datasource = args[0]; // datasource_name

 String ip = args[1]; // IP or host name of TDV Server

 // port of TDV Server dbapi service

 int port = 0;

 try {

 port = Integer.parseInt(args[2]);

 } catch (Exception e) {

 port = 9401;

 }

 String userName = args[3];

 String password = args[4];

 String domain = args[5];

TIBCO® Data Virtualization Client Interfaces Guide

36 | Connecting to TDV Server through JDBC

 String url = null;

 Connection conn = null;

 Statement stmt = null;

 ResultSet rs = null;

 ResultSetMetaData rsmd = null;

 try {

 Class.forName("cs.jdbc.driver.CompositeDriver");

 url = "jdbc:compositesw:dbapi@" + ip + ":" + port +
"?domain=" +

 domain + "&dataSource=" + datasource;

 conn = DriverManager.getConnection(url, userName, password);

((cs.jdbc.driver.CompositeConnection)conn).clearAllDataSourceCredentials
();

 ((cs.jdbc.driver.CompositeConnection)conn)

.setDataSourceCredentials(<datasourcename>,user,password);

 stmt = conn.createStatement();

 boolean isNotUpdate = stmt.execute(args[6]);

TIBCO® Data Virtualization Client Interfaces Guide

37 | Connecting to TDV Server through JDBC

 int rows = 0;

 // return type is a result set

 if (isNotUpdate == true) {

 rs = stmt.getResultSet();

 if (rs == null) {

 throw new SQLException("sql=`"+args[6]+"` did not
generate a result set");

 }

 rsmd = rs.getMetaData();

 int columns = rsmd.getColumnCount();

 System.out.println("column count = " + columns);

 rows = 1;

 int type = 0;

 while (rs.next()) {

 System.out.print("row = `" + rows + "` ");

 for (int i=1; i <= columns; i++) {

TIBCO® Data Virtualization Client Interfaces Guide

38 | Connecting to TDV Server through JDBC

 type = rsmd.getColumnType(i);

 switch (type) {

 case Types.INTEGER:

 System.out.print(" col[" + i + "]=`" +
rs.getInt(i) + "` ");

 break;

 case Types.SMALLINT:

 System.out.print(" col[" + i + "]=`" +
rs.getShort(i) + "` ");

 break;

 case Types.TINYINT:

 System.out.print(" col[" + i + "]=`" +
rs.getByte(i) + "` ");

 break;

 case Types.BIGINT:

 System.out.print(" col[" + i + "]=`" +
rs.getLong(i) + "` ");

 break;

TIBCO® Data Virtualization Client Interfaces Guide

39 | Connecting to TDV Server through JDBC

 case Types.FLOAT:

 System.out.print(" col[" + i + "]=`" +
rs.getFloat(i) + "` ");

 break;

 case Types.REAL:

 System.out.print(" col[" + i + "]=`" +
rs.getFloat(i) + "` ");

 break;

 case Types.DECIMAL:

 System.out.print(" col[" + i + "]=`" +
rs.getFloat(i) + "` ");

 break;

 case Types.DOUBLE:

 System.out.print(" col[" + i + "]=`" +
rs.getDouble(i) + "` ");

 break;

 case Types.NUMERIC:

 System.out.print(" col[" + i + "]=`" +
rs.getFloat(i) + "` ");

TIBCO® Data Virtualization Client Interfaces Guide

40 | Connecting to TDV Server through JDBC

 break;

 case Types.CHAR:

 System.out.print(" col[" + i + "]=`" +
rs.getString(i) + "` ");

 break;

 case Types.VARCHAR:

 System.out.print(" col[" + i + "]=`" +
rs.getString(i) + "` ");

 break;

 case Types.LONGVARCHAR:

 System.out.print(" col[" + i + "]=`" +
rs.getString(i) + "` ");

 break;

 case Types.DATE:

 System.out.print(" col[" + i + "]=`" +
rs.getDate(i) + "` ");

 break;

 case Types.TIME:

TIBCO® Data Virtualization Client Interfaces Guide

41 | Connecting to TDV Server through JDBC

 System.out.print(" col[" + i + "]=`" +
rs.getTime(i) + "` ");

 break;

 case Types.TIMESTAMP:

 System.out.print(" col[" + i + "]=`" +
rs.getTimestamp(i) + "` ");

 break;

 case Types.BOOLEAN:

 System.out.print(" col[" + i + "]=`" +
rs.getBoolean(i) + "` ");

 break;

 default:

 System.out.print(" col[" + i + "]=`" +
rs.getString(i) + "` ");

 break;

 }

 }

 System.out.println("\n");

TIBCO® Data Virtualization Client Interfaces Guide

42 | Connecting to TDV Server through JDBC

 rows++;

 }

 rs.close();

 } else {

 // return type is not a result set

 rows = stmt.getUpdateCount();

 System.out.println("sql=`"+args[4]+"` affected " + rows +
" row(s)");

 }

 stmt.close();

 conn.close();

 } catch (Exception e) {

 e.printStackTrace();

 if (rs != null) {

 try {

 rs.close();

TIBCO® Data Virtualization Client Interfaces Guide

43 | Connecting to TDV Server through JDBC

 } catch (SQLException ignore) { }

 }

 if (stmt != null) {

 try {

 stmt.close();

 } catch (SQLException ignore) { }

 }

 if (conn != null) {

 try {

 conn.close();

 } catch (SQLException ignore) { }

 }

 } finally {

 rs = null;

 stmt = null;

TIBCO® Data Virtualization Client Interfaces Guide

44 | Connecting to TDV Server through JDBC

 conn = null;

 }

 }

}

Example of Calling Procedures

JDBC supports the getMoreResults method and the getResultSet method. The following
pseudocode illustrates how to use those methods when registerOutputCursor is set to true.

The registerOutputCursors property might not be best for use in JDBC, ODBC, and ADO.NET
client connections. TDV provides a standard way to call procedures with or without
registerOutputCursors in JDBC, ODBC, and ADO.NET connections.

String query = "{call LookupProduct(?,?,?,?)}";

cst = conn.prepareCall(query);

cst.setInt(1, 3);

cst.registerOutParameter(2, Types.OTHER);

cst.setInt(3, 3);

cst.registerOutParameter(4, Types.OTHER);

cst.execute();

/**

TIBCO® Data Virtualization Client Interfaces Guide

45 | Connecting to TDV Server through JDBC

 * Method 1:

 */

rs = (ResultSet) cst.getObject(2);

rs = (ResultSet) cst.getObject(4);

/**

* Method 2:

*

* rs = cst.getResultSet();

* if(cst.getMoreResults())

* rs = cst.getResultSet();

*/

while (rs.next())

 ;

conn.close();

The following pseudocode shows how to use getResultSet() and getMoreResults() whether
or not registerOutputCursors is set to true.

TIBCO® Data Virtualization Client Interfaces Guide

46 | Connecting to TDV Server through JDBC

String query = "{call LookupProduct(?,?)}";

cst = conn.prepareCall(query);

cst.setInt(1, 3);

cst.setInt(2, 4);

cst.execute();

rs = cst.getResultSet();

if (cst.getMoreResults())

 rs = cst.getResultSet();

while (rs.next())

 ;

conn.close();

Examples of Accessing Data through JDBC
The TDV JDBC driver supports the following statement types:

• Examples of Accessing Data through JDBC Using Statements

• Examples of Accessing Data through JDBC Using Prepared Statements

To use these examples in your TDV environment
1. Supply values for the following:

TIBCO® Data Virtualization Client Interfaces Guide

47 | Connecting to TDV Server through JDBC

— Login credentials for accessing TDV Server

— Login credentials for accessing the data source

— SELECT statement

2. Set the CLASSPATH to csjdbc.jar, which contains the TDV JDBC driver.

3. Compile and run your code.

Examples of Accessing Data through JDBC Using Statements

This section contains examples to illustrate the use of statements and specifications for
pass-through login credentials.

• Example 1: Submit a Select Statement Using the JDBC Driver

• Example 2: Set Data Source Credentials to Use Pass-through Data Sources

• Example 3: Setting Credentials for Use with Any Pass-through Data Source

• Example 4: Set TDV Server Credentials to Use Pass-through Data Sources

Example 1: Submit a Select Statement Using the JDBC Driver

This example demonstrates how to submit a SELECT statement to the TDV JDBC driver.

In this example, the data source does not require pass-through login credentials. Instead,
the login credentials are compUser and compPassword.

import java.util.*;

import java.sql.*;

public class SelectExample {

public static void main(String[] arg) throws Exception {

Connection conn = null;

Statement stmt = null;

TIBCO® Data Virtualization Client Interfaces Guide

48 | Connecting to TDV Server through JDBC

ResultSet rs = null;

try {

String url = "jdbc:compositesw:dbapi@localhost:9401?"
+"domain=composite&dataSource=cds";

String user = "compUser";

String pass = "compPassword";

// Load driver

Class.forName("cs.jdbc.driver.CompositeDriver");

// Create connection

conn = DriverManager.getConnection(url, user, pass);

// Create statement

stmt = conn.createStatement();

// Execute statement

rs = stmt.executeQuery("SELECT * FROM catalog.schema.table");

// Get column count

ResultSetMetaData rsmd = rs.getMetaData();

TIBCO® Data Virtualization Client Interfaces Guide

49 | Connecting to TDV Server through JDBC

int columns = rsmd.getColumnCount();

// Get results

while(rs.next()) {

for (int i=0; i<columns; i++) {

Object o = rs.getObject(i+1);

if (o == null) {

System.out.print("[NULL]");

} else {

System.out.print(o.toString());

}

System.out.print(" ");

}

System.out.println();

}

} finally {

TIBCO® Data Virtualization Client Interfaces Guide

50 | Connecting to TDV Server through JDBC

if (rs != null) {

rs.close();

}

if (stmt != null) {

stmt.close();

}

if (conn != null) {

conn.close();

}

}

 }

}

Example 2: Set Data Source Credentials to Use Pass-through Data
Sources

This example illustrates how to submit a SELECT statement to a data source that requires
pass-through credentials (dsUser, dsPassword). These data source login credentials are
different from the ones used for accessing TDV Server (compUser, compPassword).

 import java.util.*;

TIBCO® Data Virtualization Client Interfaces Guide

51 | Connecting to TDV Server through JDBC

import java.sql.*;

public class multiPassThruWithTDVLogInCred {

 public static void main(String[] arg) throws Exception {

 Connection conn = null;

 Statement stmt = null;

 ResultSet rs = null;

 try {

 String url = "jdbc:compositesw:dbapi@localhost:9401?"

 +"domain=composite&dataSource=cdspt";

 String user = "compUser";

 String pass = "compPassword";

 // Load driver

 Class.forName("cs.jdbc.driver.CompositeDriver");

 // Create connection

 conn = DriverManager.getConnection(url, user, pass);

TIBCO® Data Virtualization Client Interfaces Guide

52 | Connecting to TDV Server through JDBC

 ((cs.jdbc.driver.CompositeConnection)conn)
 .setDataSourceCredentials("/shared/sources/dsPassThru",
 "dsUser", "dsPassword");

 // Create statement

 stmt = conn.createStatement();

 // Execute statement

 rs = stmt.executeQuery("SELECT * FROM
catalog.schema.table");

 // Get column count

 ResultSetMetaData rsmd = rs.getMetaData();

 int columns = rsmd.getColumnCount();

 // Get results

 while(rs.next()) {

 for (int i=0; i<columns; i++) {

 Object o = rs.getObject(i+1);

 if (o == null) {

 System.out.print("[NULL]");

 } else {

TIBCO® Data Virtualization Client Interfaces Guide

53 | Connecting to TDV Server through JDBC

 System.out.print(o.toString());

 }

 System.out.print(" ");

 }

 System.out.println();

 }

 } finally {

 if (rs != null) {

 rs.close();

 }

 if (stmt != null) {

 stmt.close();

 }

 if (conn != null) {

 conn.close();

TIBCO® Data Virtualization Client Interfaces Guide

54 | Connecting to TDV Server through JDBC

 }

 }

 }

}

Example 3: Setting Credentials for Use with Any Pass-through Data
Source

In this example, the path to the data source is specified as NULL. When NULL is specified
as the resource path, the credential is added to the session’s list of generic credentials for
the user.

The program tries to connect with the data source using different credentials for the user,
but connects only with a data source that has the specified user name and password. By
not having to specify a resource path, the client can be ignorant of data source namespace,
at the cost of having to try various login credentials to achieve a successful connection.

 import java.util.*;

import java.sql.*;

public class multiPassThruWithNull {

 public static void main(String[] arg) throws Exception {

 Connection conn = null;

 Statement stmt = null;

 ResultSet rs = null;

TIBCO® Data Virtualization Client Interfaces Guide

55 | Connecting to TDV Server through JDBC

 try {

 String url = "jdbc:compositesw:dbapi@localhost:9401?"

 +"domain=composite&dataSource=cdspt";

 String user = "compUser";

 String pass = "compPassword";

 // Load driver

 Class.forName("cs.jdbc.driver.CompositeDriver");

 // Create connection

 conn = DriverManager.getConnection(url, user, pass);

 ((cs.jdbc.driver.CompositeConnection)conn)
 .setDataSourceCredentials(NULL, "dsUser", "dsPassword");

 // Create statement

 stmt = conn.createStatement();

 // Execute statement

 rs = stmt.executeQuery("SELECT * FROM
catalog.schema.table");

 // Get column count

TIBCO® Data Virtualization Client Interfaces Guide

56 | Connecting to TDV Server through JDBC

 ResultSetMetaData rsmd = rs.getMetaData();

 int columns = rsmd.getColumnCount();

 // Get results

 while(rs.next()) {

 for (int i=0; i<columns; i++) {

 Object o = rs.getObject(i+1);

 if (o == null) {

 System.out.print("[NULL]");

 } else {

 System.out.print(o.toString());

 }

 System.out.print(" ");

 }

 System.out.println();

 }

TIBCO® Data Virtualization Client Interfaces Guide

57 | Connecting to TDV Server through JDBC

 } finally {

 if (rs != null) {

 rs.close();

 }

 if (stmt != null) {

 stmt.close();

 }

 if (conn != null) {

 conn.close();

 }

 }

 }

}

Example 4: Set TDV Server Credentials to Use Pass-through Data Sources

This example is similar to Example 2: Set Data Source Credentials to Use Pass-through Data
Sources. The login credentials for accessing TDV Server are the same as those for accessing
the data source.

TIBCO® Data Virtualization Client Interfaces Guide

58 | Connecting to TDV Server through JDBC

 import java.util.*;

import java.sql.*;

public class multiPassThruWithTDVLogInCred {

 public static void main(String[] arg) throws Exception {

 Connection conn = null;

 Statement stmt = null;

 ResultSet rs = null;

 try {

 String url = "jdbc:compositesw:dbapi@localhost:9401?"

 +"domain=composite&dataSource=cdspt";

 String user = "dsUser";

 String pass = "dsPassword";

 // Load driver

 Class.forName("cs.jdbc.driver.CompositeDriver");

 // Create connection

TIBCO® Data Virtualization Client Interfaces Guide

59 | Connecting to TDV Server through JDBC

 conn = DriverManager.getConnection(url, user, pass);

 ((cs.jdbc.driver.CompositeConnection)conn)
 .setDataSourceCredentials
("/shared/sources/dsPassThru" "dsUser", "dsPassword");

 // Create statement

 stmt = conn.createStatement();

 // Execute statement

 rs = stmt.executeQuery("SELECT * FROM
catalog.schema.table");

 // Get column count

 ResultSetMetaData rsmd = rs.getMetaData();

 int columns = rsmd.getColumnCount();

 // Get results

 while(rs.next()) {

 for (int i=0; i<columns; i++) {

 Object o = rs.getObject(i+1);

 if (o == null) {

 System.out.print("[NULL]");

TIBCO® Data Virtualization Client Interfaces Guide

60 | Connecting to TDV Server through JDBC

 } else {

 System.out.print(o.toString());

 }

 System.out.print(" ");

 }

 System.out.println();

 }

 } finally {

 if (rs != null) {

 rs.close();

 }

 if (stmt != null) {

 stmt.close();

 }

 if (conn != null) {

TIBCO® Data Virtualization Client Interfaces Guide

61 | Connecting to TDV Server through JDBC

 conn.close();

 }

 }

 }

}

Examples of Accessing Data through JDBC Using Prepared Statements

A prepared statement is an object that contains an SQL statement, possibly with varying
input parameters, that can be executed multiple times. Use a question mark (?) as a
placeholder for a parameter within the SQL statement. After all placeholder parameters are
set, the query is executed.

For further details on prepared statements, see references on JDBC API, and the
information provided on JDBC at
http://www.oracle.com/technetwork/java/javase/jdbc/index.html.

• Restrictions When Using Prepared Statement

• Prepared Statements Examples

Restrictions When Using Prepared Statement

The following rules apply when you submit a prepared statement to the TDV JDBC driver to
access the server:

• You can create and use multiple prepared statements on one connection to the
server.

• The server maintains a cache of prepared statements, some of which exist across
multiple connections, so that when you create a prepared statement that is already
in the cache, the server does not need to recreate the query plan. The cache size is
configurable, and access is through Manager. For details, see the TDV Administration
Guide.

TIBCO® Data Virtualization Client Interfaces Guide

62 | Connecting to TDV Server through JDBC

• The placeholder for a query parameter can be used anywhere a literal can be used.

• Prepared statements with placeholder parameters (?) cannot used with Netezza data
ship because all variables must be resolved before submitting SQL to the data
source. Federated queries with database-specific native functions must be able to
push SQL directly to the data source, or the query fails.

• The DatabaseMetaData.getMetaData() method is not supported. However, you can
get ResultSetMetaData by using ResultSet.getMetaData().

Prepared Statements Examples

The following examples show how to use prepared statements in TDV Server.

• Example 1: SELECT Statement

• Example 2: INSERT Statement

• Example 3: UPDATE Statement

• Example 4: DELETE Statement

Example 1: SELECT Statement

The following sample code demonstrates how to use a prepared statement that contains a
SELECT statement. In this example, the SELECT statement queries the customers table and
retrieves the required data under a certain condition, which initially uses the placeholder
parameter ?. This example uses a for loop to set values for parameters in the prepared
statement.

import java.sql.*;

public class PreparedStatementSample

{

 private static final String COMPOSITE_URL =

TIBCO® Data Virtualization Client Interfaces Guide

63 | Connecting to TDV Server through JDBC

"jdbc:compositesw:dbapi@localhost:9401?domain=composite&dataSource=cdb
s";

 private static final String COMPOSITE_DRIVER =

 "cs.jdbc.driver.CompositeDriver";

 private static final String COMPOSITE_USER = "admin";

 private static final String COMPOSITE_PASSWORD = "admin";

 public static void main(String[] args) {

 try {

 Class.forName(COMPOSITE_DRIVER);

 } catch (ClassNotFoundException ex) {

 ex.printStackTrace();

 return;

 }

 try {

 execute();

 } catch (SQLException ex) {

TIBCO® Data Virtualization Client Interfaces Guide

64 | Connecting to TDV Server through JDBC

 ex.printStackTrace();

 return;

 }

 }

 private static void execute()

 throws SQLException

 {

 Connection conn = DriverManager.getConnection(

 COMPOSITE_URL, COMPOSITE_USER, COMPOSITE_PASSWORD);

 PreparedStatement stmt = conn.prepareStatement(

 "SELECT * FROM products WHERE ProductID = ?”);

 for (int i = 1; i <= 5 ; i++) {

 stmt.setInt(1, i);

 ResultSet rs = stmt.executeQuery();

 System.out.println("Row " + i);

TIBCO® Data Virtualization Client Interfaces Guide

65 | Connecting to TDV Server through JDBC

 printResultSet(rs);

 rs.close();

 }

 stmt.close();

 conn.close();

 }

 private static void printResultSet(ResultSet rs)

 throws SQLException

 {

 ResultSetMetaData metaData = rs.getMetaData();

 while (rs.next()) {

 for (int i=1; i<=metaData.getColumnCount(); i++) {

 System.out.println(" Column " + i + " " +
metaData.getColumnName(i) +

 " " + rs.getString(i));

 }

TIBCO® Data Virtualization Client Interfaces Guide

66 | Connecting to TDV Server through JDBC

 }

 }

}

Example 2: INSERT Statement

The following sample code demonstrates the usage of a prepared statement that contains
an INSERT statement. This example works like Example 1: SELECT Statement, except that
here executeUpdate() is used instead of executeQuery() to execute the SQL, and the result
set is the number of rows affected by the insert operation.

import java.sql.*;

import java.math.BigDecimal;

public class PreparedStatementInsert

{

 private static final String COMPOSITE_URL =

"jdbc:compositesw:dbapi@localhost:9401?domain=composite&dataSource=tutor
ial";

 private static final String COMPOSITE_DRIVER =

 "cs.jdbc.driver.CompositeDriver";

 private static final String COMPOSITE_USER = "admin";

TIBCO® Data Virtualization Client Interfaces Guide

67 | Connecting to TDV Server through JDBC

 private static final String COMPOSITE_PASSWORD = "admin";

 public static void main(String[] args) {

 try {

 Class.forName(COMPOSITE_DRIVER);

 } catch (ClassNotFoundException ex) {

 ex.printStackTrace();

 return;

 }

 try {

 execute();

 } catch (SQLException ex) {

 ex.printStackTrace();

 return;

 }

 }

TIBCO® Data Virtualization Client Interfaces Guide

68 | Connecting to TDV Server through JDBC

 private static void execute()

 throws SQLException

 {

 Connection conn = DriverManager.getConnection(

 COMPOSITE_URL, COMPOSITE_USER, COMPOSITE_PASSWORD);

 PreparedStatement stmt = conn.prepareStatement(

 "INSERT INTO products (ProductID, ProductName, UnitPrice)" +

 "VALUES (?, ?, ?)");

 stmt.setInt(1, 50);

 stmt.setString(2, "new");

 stmt.setBigDecimal(3, new BigDecimal(50.00));

 int rowsInserted = stmt.executeUpdate();

 System.out.println("Rows inserted " + rowsInserted);

 stmt.close();

 conn.close();

TIBCO® Data Virtualization Client Interfaces Guide

69 | Connecting to TDV Server through JDBC

 }

 private static void printResultSet(ResultSet rs)

 throws SQLException

 {

 ResultSetMetaData metaData = rs.getMetaData();

 int rowIndex = 0;

 while (rs.next()) {

 System.out.println("Row " + rowIndex++);

 for (int i=1; i<=metaData.getColumnCount(); i++) {

 System.out.println(" Column " + i + " " +
metaData.getColumnName(i) +

 " " + rs.getString(i));

 }

 }

 }

}

TIBCO® Data Virtualization Client Interfaces Guide

70 | Connecting to TDV Server through JDBC

Example 3: UPDATE Statement

The following sample code demonstrates the usage of a prepared statement that contains
an UPDATE statement. This example works similar to Example 2: INSERT Statement. Here,
the result set is the number of rows affected by the update operation.

import java.sql.*;

import java.math.BigDecimal;

public class PreparedStatementUpdate

{

 private static final String COMPOSITE_URL =

"jdbc:compositesw:dbapi@localhost:9401?domain=composite&dataSource=tutor
ial";

 private static final String COMPOSITE_DRIVER =

 "cs.jdbc.driver.CompositeDriver";

 private static final String COMPOSITE_USER = "admin";

 private static final String COMPOSITE_PASSWORD = "admin";

 public static void main(String[] args) {

 try {

 Class.forName(COMPOSITE_DRIVER);

TIBCO® Data Virtualization Client Interfaces Guide

71 | Connecting to TDV Server through JDBC

 } catch (ClassNotFoundException ex) {

 ex.printStackTrace();

 return;

 }

 try {

 execute();

 } catch (SQLException ex) {

 ex.printStackTrace();

 return;

 }

 }

 private static void execute()

 throws SQLException

 {

 Connection conn = DriverManager.getConnection(

TIBCO® Data Virtualization Client Interfaces Guide

72 | Connecting to TDV Server through JDBC

 COMPOSITE_URL, COMPOSITE_USER, COMPOSITE_PASSWORD);

 PreparedStatement stmt = conn.prepareStatement(

 "UPDATE products SET ProductName = ? WHERE ProductID = ?");

 stmt.setString(1, "newProduct");

 stmt.setBigDecimal(2, new BigDecimal(50.00));

 int rowsUpdated = stmt.executeUpdate();

 System.out.println("Rows updated " + rowsUpdated);

 stmt.close();

 conn.close();

 }

 private static void printResultSet(ResultSet rs)

 throws SQLException

 {

 ResultSetMetaData metaData = rs.getMetaData();

 int rowIndex = 0;

TIBCO® Data Virtualization Client Interfaces Guide

73 | Connecting to TDV Server through JDBC

 while (rs.next()) {

 System.out.println("Row " + rowIndex++);

 for (int i=1; i<=metaData.getColumnCount(); i++) {

 System.out.println(" Column " + i + " " +
metaData.getColumnName(i) +

 " " + rs.getString(i));

 }

 }

 }

}

Example 4: DELETE Statement

The following sample code demonstrates the usage of a prepared statement that contains
a DELETE statement. This example works similar to Example 2: INSERT Statement. Here,
the result set is the number of rows affected by the delete operation.

import java.sql.*;

import java.math.BigDecimal;

public class PreparedStatementDelete

{

TIBCO® Data Virtualization Client Interfaces Guide

74 | Connecting to TDV Server through JDBC

 private static final String COMPOSITE_URL =

"jdbc:compositesw:dbapi@localhost:9401?domain=composite&dataSource=tutor
ial";

 private static final String COMPOSITE_DRIVER =

 "cs.jdbc.driver.CompositeDriver";

 private static final String COMPOSITE_USER = "admin";

 private static final String COMPOSITE_PASSWORD = "admin";

 public static void main(String[] args) {

 try {

 Class.forName(COMPOSITE_DRIVER);

 } catch (ClassNotFoundException ex) {

 ex.printStackTrace();

 return;

 }

 try {

 execute();

TIBCO® Data Virtualization Client Interfaces Guide

75 | Connecting to TDV Server through JDBC

 } catch (SQLException ex) {

 ex.printStackTrace();

 return;

 }

 }

 private static void execute()

 throws SQLException

 {

 Connection conn = DriverManager.getConnection(

 COMPOSITE_URL, COMPOSITE_USER, COMPOSITE_PASSWORD);

 PreparedStatement stmt = conn.prepareStatement(

 "DELETE FROM products WHERE ProductID = ?");

 stmt.setInt(1, 50);

 int rowsDeleted = stmt.executeUpdate();

 System.out.println("Rows deleted " + rowsDeleted);

TIBCO® Data Virtualization Client Interfaces Guide

76 | Connecting to TDV Server through JDBC

 stmt.close();

 conn.close();

}

Tips From an Expert on Duplicate Schema
Names in a Catalog
Sometimes the JDBC driver returns a schema name multiple times in a catalog. For certain
JDBC clients like Squirrel or DB Visualizer, when exact names of catalogs and/or schemas
are used more than once in different places in a single TDV service the JDBC driver returns
the name multiple times.

This occurs when you a virtual database has one or more catalogs that contain a schema
with the exact same name. The number of times the identical schema is returned depends
on how many catalogs it has been created under.

This is a limitation associated with the JDBC clients.

Unsupported JDBC Methods
Unsupported JDBC methods can be handled in one of two ways:

• If you try to access a JDBC method that TDV Server does not support, the system
throws a SQLException with the message, “The operation X is not supported.”

• If you prefer that the system not throw exceptions when you use unsupported
methods, set unsupportedMode to silent in the JDBC connection URL, as in the
following example:

jdbc:compositesw:dbapi@localhost:9401?domain=composite&dataSource
=examples&unsupportedMode=silent

TIBCO® Data Virtualization Client Interfaces Guide

77 | Connecting to TDV Server through JDBC

CallableStatements (not supported)

Array getArray(int parameterIndex)

Array getArray(String parameterName)

BigDecimal getBigDecimal(int parameterIndex, int scale)

Object getObject(int parameterIndex, Map map)

Object getObject(String parameterName, Map map)

Ref getRef(int parameterIndex)

Ref getRef(String parameterName)

URL getURL(int parameterIndex)

URL getURL(String parameterName)

void registerOutParameter(int parameterIndex, int sqlType, int scale)

void registerOutParameter(int parameterIndex, int sqlType, String
typeName)

void registerOutParameter(String parameterName, int sqlType, int scale)

void registerOutParameter(String parameterName, int sqlType, String
typeName)

void setNull(String parameterName, int sqlType, String typeName)

 setObject(String parameterName, Object x, int targetSqlType, int
scale)

void setURL(String parameterName, URL x)

TIBCO® Data Virtualization Client Interfaces Guide

78 | Connecting to TDV Server through JDBC

Connections (not supported)

Properties getClientInfo()

String nativeSQL(String sql)

PreparedStatement prepareStatement(String sql, int
autoGeneratedKeys)

PreparedStatement prepareStatement(String sql, int[]
columnIndexes)

PreparedStatement prepareStatement(String sql, String[]
columnNames)

void releaseSavepoint(Savepoint
savepoint)

void setHoldability(int holdability)

void setReadOnly(boolean readOnly)

Savepoint setSavepoint()

 setSavepoint(String name)

void setTypeMap(Map map)

DatabaseMetaData (not supported)

boolean allProceduresAreCallable()

boolean allTablesAreSelectable()

ResultSet getAttributes(String catalog, String schemaPattern, String
typeNamePattern, String attributeNamePattern)

TIBCO® Data Virtualization Client Interfaces Guide

79 | Connecting to TDV Server through JDBC

int getSQLStateType()

ResultSet getSuperTables(String catalog, String schemaPattern, String
typeNamePattern)

ResultSet getSuperTypes(String catalog, String schemaPattern, String
typeNamePattern)

boolean supportsConvert(int fromType, int toType)

PreparedStatements (not supported)

void addBatch()

boolean execute(String sql)

int executeUpdate(String sql)

 setArray(int i, Array x)

void setNull(int paramIndex, int sqlType, String typeName)

void setObject(int parameterIndex, Object x, int targetSqlType, int scale)

void setRef(int i, Ref x)

void setURL(int parameterIndex, URL x)

Blob (not supported)

java.io.OutputStream setBinaryStream(long pos)

int setBytes(long pos, byte[] bytes, int
offset, int len)

int setBytes(long pos, byte[] bytes)

TIBCO® Data Virtualization Client Interfaces Guide

80 | Connecting to TDV Server through JDBC

Clob (not supported)

java.io.OutputStream setAsciiStream(long pos)

java.io.Writer setCharacterStream(long pos)

int setString(long pos, String str, int
offset, int len)

int setString(long pos, String str)

ResultSet (not supported)

boolean absolute(int row)

void afterLast()

void beforeFirst()

void cancelRowUpdates()

void deleteRow()

boolean first()

Array getArray(int i)

Array getArray(String colName)

InputStream getAsciiStream(int columnIndex)

BigDecimal getBigDecimal(int columnIndex, int scale)

String getCursorName()

Object getObject(int i, Map map)

TIBCO® Data Virtualization Client Interfaces Guide

81 | Connecting to TDV Server through JDBC

Ref getRef(int i)

InputStream getUnicodeStream(int columnIndex)

URL getURL(int columnIndex)

URL getURL(String columnName)

void insertRow()

boolean last()

void moveToCurrentRow()

void moveToInsertRow()

Object Object getObject(String colName, Map map)

boolean previous()

Ref Ref getRef(String colName)

void refreshRow()

boolean relative(int rows)

void setFetchDirection(int direction)

void updateArray(int columnIndex, Array x)

void updateArray(String columnName, Array x)

void updateAsciiStream(int columnIndex, InputStream x,
int length)

void updateAsciiStream(String columnName, InputStream
x, int length)

void updateBigDecimal(int columnIndex, BigDecimal x)

TIBCO® Data Virtualization Client Interfaces Guide

82 | Connecting to TDV Server through JDBC

void updateBigDecimal(String columnName, BigDecimal x)

void updateBinaryStream(int columnIndex, InputStream x,
int length)

void updateBinaryStream(String columnName,
InputStream x, int length)

void updateBlob(int columnIndex, Blob x)

void updateBlob(String columnName, Blob x)

void updateBoolean(int columnIndex, boolean x)

void updateBoolean(String columnName, boolean x)

void updateByte(int columnIndex, byte x)

void updateByte(String columnName, byte x)

void updateBytes(int columnIndex, byte x[])

void updateBytes(String columnName, byte x[])

void updateCharacterStream(int columnIndex, Reader x,
int length)

void updateCharacterStream(String columnName, Reader
reader, int length)

void updateClob(int columnIndex, Clob x)

void updateClob(String columnName, Clob x)

void updateDate(int columnIndex, java.sql.Date x)

void updateDate(String columnName, java.sql.Date x)

void updateDouble(int columnIndex, double x)

TIBCO® Data Virtualization Client Interfaces Guide

83 | Connecting to TDV Server through JDBC

void updateDouble(String columnName, double x)

void updateFloat(int columnIndex, float x)

void updateFloat(String columnName, float x)

void updateInt(int columnIndex, int x)

void updateInt(String columnName, int x)

void updateLong(int columnIndex, long x)

void updateLong(String columnName, long x)

void updateNull(int columnIndex)

void updateNull(String columnName)

void updateObject(int columnIndex, Object x, int scale)

void updateObject(int columnIndex, Object x)

void updateObject(String columnName, Object x, int scale)

void updateObject(String columnName, Object x)

void updateRef(int columnIndex, Ref x)

void updateRef(String columnName, Ref x)

void updateRow()

void updateShort(int columnIndex, short x)

void updateShort(String columnName, short x)

void updateString(int columnIndex, String x)

void updateString(String columnName, String x)

TIBCO® Data Virtualization Client Interfaces Guide

84 | Connecting to TDV Server through JDBC

void updateTime(int columnIndex, java.sql.Time x)

void updateTime(String columnName, java.sql.Time x)

void updateTimestamp(int columnIndex,
java.sql.Timestamp x)

void updateTimestamp(String columnName,
java.sql.Timestamp x)

Statements (not supported)

void addBatch(String sql)

void clearBatch()

void clearWarnings()

boolean execute(String sql, int autoGeneratedKeys)

boolean execute(String sql, int columnIndexes[])

boolean execute(String sql, String columnNames[])

int[] executeBatch()

int executeUpdate(String sql, int autoGeneratedKeys)

int executeUpdate(String sql, int columnIndexes[])

int executeUpdate(String sql, String columnNames[])

void getWarnings()

 ResultSet getGeneratedKeys()

void setCursorName(String name)

TIBCO® Data Virtualization Client Interfaces Guide

85 | Connecting to TDV Server through JDBC

void setEscapeProcessing(boolean enable)

 setFetchDirection(int direction)

void setMaxFieldSize(int max)

TIBCO® Data Virtualization Client Interfaces Guide

86 | Connecting to TDV Server through ODBC

Connecting to TDV Server through ODBC
Both 32-bit and 64-bit ODBC client applications can connect to the TDV Server to retrieve
published data from services managed, secured, and published by TDV-defined resources.

TDV data services are accessible through industry-standard ODBC driver managers. How
you configure an ODBC data source depends on the driver manager. ODBC access to the
TDV Server requires that an ODBC driver manager for your specific operating system be
installed on the client machine.

The TDV ODBC driver conforms to the ODBC 3.5 specification.

• ODBC Driver Requirements

• Installing the ODBC Driver

• Updating the ODBC Driver

• Preparing TDV Data Services for ODBC Client Connections

• Configuring Each Windows System Data Source Name

• Adding a New System DSN

• Override the Configured Settings

• Defining an ODBC Client using a Connection String

• TDV Supported Encoding Standards

• Connecting Oracle Database Gateway to TDV Using ODBC

• Connecting MicroStrategy to TDV Using ODBC

• Connecting Tableau to TDV Using ODBC

• Connecting PowerBI to TDV Using ODBC

• Examples Using ODBC to Connect to TDV Server

TIBCO® Data Virtualization Client Interfaces Guide

87 | Connecting to TDV Server through ODBC

ODBC Driver Requirements
ODBC client applications require a 32-bit or a 64-bit TDV driver to connect with TDV. The
following ODBC drivers are available:.

Windows ODBC drivers UNIX ODBC drivers

32-bit with ODBC API 3.x 32-bit and 64-bit for AIX and AIX PowerPC

32-bit with ODBC API 2.5

64-bit for Intel/AMD CPU with ODBC 3.5
API

To consume TDV resources through Excel:

• Publish the resources to a catalog.

• Use a bit version of the ODBC driver that matches the bit version of your Excel
software. For example, if you use a 64-bit version of Excel, you must use a 64-bit
version of the ODBC driver.

Installing the ODBC Driver
The TDV ODBC installation executables and dynamically loaded libraries are provided in a
Client Installation Package zip file that can be downloaded from
https://edelivery.tibco.com/storefront/eval/tibco-data-virtualization/prod11801.html. For
example, for TDV 8.0, the file is named TIB_tdv_drivers_8.0.0_all.zip. This zip file contains
installation programs for connecting your ODBC client applications to a TDV Server on all
supported platforms.

To install the ODBC driver, see:

• Installing the ODBC Client Driver on Windows

• Installing the ODBC Client Driver on UNIX

• Updating the ODBC Driver

To remove the ODBC client driver on Windows, see:

TIBCO® Data Virtualization Client Interfaces Guide

88 | Connecting to TDV Server through ODBC

• Uninstalling the ODBC Client Driver on Windows

• Uninstalling the ODBC Client Driver on Unix

Installing the ODBC Client Driver on Windows
The computer that has an ODBC client application must have either a 32-bit or a 64-bit
driver to connect with TDV.

To install the ODBC client driver on a Windows machine
1. If TDV Server is running on a machine that has a firewall, the firewall must be

configured to allow ODBC clients to connect to the server through Studio.

2. Unzip the TDV Client Installation Package file. For example, for TDV 8.0, the file is
named TIB_tdv_drivers_8.0.0_all.zip.

This file is an alternative way to obtain all of the ODBC drivers. It is a separate
download from the main TDV installer.

3. Locate and run the ODBC installer for your machine:

OS Type Platform Installer Application Location

32-bit

ODBC 3.5 API CsOdbcInstall<version>.exe <TDV_install_
dir>\apps\odbc\win\

64-bit Intel/AMD ODBC
3.5 API

CsOdbcInstall<version>_
x64.exe

<TDV_install_
dir>\apps\odbc\win64\

For example, to run the installer from the Windows CMD, type one of these three
commands:

CsOdbcInstall1100.exe -install

CsOdbcInstall1100.exe install

CsOdbcInstall1100.exe start

TIBCO® Data Virtualization Client Interfaces Guide

89 | Connecting to TDV Server through ODBC

To run the installer in silent mode, execute the script from within the folder where it
is saved using the -install or install option.

More information on using ODBC drivers to connect with the TDV Server is available in the
TDV Administration Guide.

Uninstalling the ODBC Client Driver on Windows

To uninstall the ODBC client driver on Windows
1. Rerun the TDV ODBC installer from the command line using the uninstall command

option.

OS Type Platform Installer Application

32-bit ODBC 3.5 API CsOdbcInstall<version>.exe -uninstall

64-bit Intel/AMD ODBC 3.5 API CsOdbcInstall<version>_x64.exe -uninstall

Installing the ODBC Client Driver on UNIX
TDV ODBC drivers are available for 32-bit or 64-bit UNIX operating systems. You must install
the correct version for your environment.

Creating a DSN is done through the configuration utility. The interactive utility is
driverConfig. Use driverConfig to reconfigure the driver files (when the driver file location
has changed), and create, edit, list, or delete DSN entries.

The following describes the tasks for using the ODBC driver on UNIX:

• Setting the ODBC Environment Variables on UNIX

• Creating a DSN with driverConfig on UNIX

TIBCO® Data Virtualization Client Interfaces Guide

90 | Connecting to TDV Server through ODBC

Setting the ODBC Environment Variables on UNIX
For examples and instructions for how to set UNIX environment variables, refer to your
favorite UNIX guidelines. A typical command might be:

setenv PATH "/bin:/usr/bin:/usr/sbin:ucb/bin"

To set the ODBC environment variables
1. Log into the installation machine as the same user that installed the TDV software.

2. Set the following environment variables:

Variable Description and Values

COMPOSITE_
HOME

This optional variable allows you to specify the location where the TDV
ODBC driver is installed. This is the full path to the <TDV_ODBC_install_
dir> for the TDV ODBC driver.

If this configuration is not set, you can run driverConfig with an absolute
or relative path, for example:

./home/release/apps/odbc/linux64/bin/driverConfig

./odbc/linux64/bin/driverConfig

./bin/driverConfig

If this variable is set to /home/release, then when you create a DSN, it
goes to /home/release/apps/odbc/linux64/lib to find the so files.

ODBCINI Full path to the configuration file odbc.ini. It is generated during creation
of DSN configuration with driverConfig. The ODBCINI and ODBCINSTINI
files do not exist yet and will be created during DSN creation in the next
step. It should be: <TDV_install_dir>/odbc.ini

Note: Edit this file, if you want to add any connection properties in
addition to the ones specified while creating the DSN. See ODBC Driver
Connection String Properties for a list of connection properties. For

TIBCO® Data Virtualization Client Interfaces Guide

91 | Connecting to TDV Server through ODBC

Variable Description and Values

example, if you want to enable SSL, edit the odbc.ini file and add an entry
“encrypt=true”.

ODBCINSTINI Full path to the ODBC drivers configuration file odbcinst.ini. It is generated
during DSN configuration with driverConfig. The ODBCINI and
ODBCINSTINI files do not exist yet and will be created during DSN creation
in the next step. It should be: <TDV_install_dir>/odbcinst.ini

LD_LIBRARY_
PATH

This is specific to Linux. This path refers to the location of the iODBC
driver manager files. The default location is:

<TDV_install_dir>\apps\odbc\<platformType>\lib

If you already have this variable, add the additional path to the existing
path definition.

LIBPATH This is specific to AIX. This path refers to the location of the iODBC driver
manager files. The default location is:

<TDV_install_dir>\apps\odbc\<platformType>\lib

SHLIB_PATH This is specific to HP-UX. This path refers to the location of the iODBC
driver manager files. The default location is:

<TDV_install_dir>\apps\odbc\<platformType>\lib

3. Add these variables to the users profile that will be accessing the ODBC driver.

Creating a DSN with driverConfig on UNIX
A DSN is the logical name that is used by ODBC to access data. You can use an ODBC DSN
entry to store the connection string values externally, to minimize the complexity of the
connection string that you must define in your program.

You can create a DSN using the configuration utility driverConfig. This configuration utility
helps you to reconfigure the driver files and create, edit, list, or delete DSN entries. You can
use it when the driver file location has changed or is to be changed after installation.

On UNIX platforms, SysV semaphores are used to synchronize the read and write
operations, and they are never deleted by ODBC drivers. The ODBC driver might run into an

TIBCO® Data Virtualization Client Interfaces Guide

92 | Connecting to TDV Server through ODBC

error if it is unable to create a new one because the maximum SysV count has been
reached.

You can clean up semaphores using the ipcrm command.

To create a DSN using driverConfig
1. Make sure that you have Read and Write permissions on the following files:

odbc.ini

odbcinst.ini

2. Locate driverConfig.

3. Run the utility using the following command:

driverConfig

For example:

./home/release/apps/odbc/linux64/bin/driverConfig

./odbc/linux64/bin/driverConfig

./bin/driverConfig

4. Supply driverConfig with responses to set configurations in the odbc.ini and
odbcinst.ini.

The Usage instructions of driverConfig is given below:

Usage: driverConfig [options]

where options are:

[-help]

TIBCO® Data Virtualization Client Interfaces Guide

93 | Connecting to TDV Server through ODBC

[-view]

[-deleteDSN <name>]

[-uninstallDriver]

[-installDriver <driver path>]

[-configDSN <DSN attributes>]

The table below describes the different options:

Option Description

help Show this information and exit

view View configuration and DSNs on this system and exit

deleteDSN
<name>

Delete the named DSN

uninstallDri
ver

Uninstall ODBC 3.5 64-bit Driver

installDrive
r <driver
path>

Install ODBC 3.5 64-bit Driver

configDSN
<DSN
attributes>

Create a new ODBC 3.5 DSN, where DSN attributes are of the form:

"DSN=test;host=localhost;port=9401;uid=userId;pwd=password;domain=composi
te;datasource=ds;catalog=cat"

Note:

• If this utility is executed without any options then it will run in interactive mode
using Terminal I/O

• All option names are case-insensitive.

TIBCO® Data Virtualization Client Interfaces Guide

94 | Connecting to TDV Server through ODBC

• If -help or -view is one of the options used, then no other options that are included,
will be executed.

• The utility accepts more than one option.

• The order of actions that will be executed is:

-deletedsn

-uninstallDriver

-installDriver

-configDSN

If the environment variable COMPOSITE_HOME is defined, then it is used for evaluating the
default ODBC driver path. COMPOSITE_HOME is used for evaluation only during driver
installation in interactive mode.

Uninstalling the ODBC Client Driver on Unix

To uninstall the ODBC client driver on Unix
Rerun the driverConfig from the command line using the uninstall command option:

driverConfig -uninstallDriver

Updating the ODBC Driver
If you need to upgrade the ODBC driver that you use to connect your client applications to
the TDV Server, follow the steps in this section.

To update the ODBC driver
1. Shut down all local applications that use the ODBC driver.

2. Install the newer version of the driver.

3. Open ODBC Data Source Administrator > Drivers.

4. Check Version and Date to make sure the newer version of the driver is installed.

TIBCO® Data Virtualization Client Interfaces Guide

95 | Connecting to TDV Server through ODBC

5. Review all client applications that access TDV data through this connection.

6. Update all the connection string information.

Preparing TDV Data Services for ODBC Client
Connections
TDV does not require any special configuration for clients to connect with it using 32-bit or
64-bit ODBC drivers.

After you publish a resource, ODBC application clients can use the resources. It is
recommended, though not required, that the data service have a catalog for use with the
ODBC driver.

The TDV ODBC driver supports code pages for the language sets supported by the host
operating system. For Windows server installations, TDV uses multibyte-to-widechar and
widechar-to-multibyte system calls to perform conversions. For UNIX server installations,
TDV uses the iconv library to perform conversions.

By default, TDV Server listens to port 9401 for ODBC connections. The ODBC port number is
always one greater than the server’s web services HTTP base port which by default, is 9400.
So the ODBC default port number is 9401. If SSL is used (encrypt is set to true), the ODBC
driver automatically adds 2 to the port value so that the 9403 port is used. To determine
the actual ODBC port settings, see TDV Port Settings for Client Connections to TDV,
page 17.

To support any client regardless of type
1. Create a Data Service data source and catalog.

2. Configure the ODBC client to use the 32-bit or 64-bit ODBC driver.

3. Use the published data service and catalog as targets.

4. Determine the actual ODBC port setting which is based on the HTTP base port
setting for TDV. See TDV Port Settings for Client Connections to TDV, page 17 for
how to determine this value.

5. For early releases of Oracle 11g, there is an error in DG4ODBC which causes queries
that access a published TDV view to hang indefinitely if the query contains a

import-link:ch_1_introduction_1675903542_12085
import-link:ch_1_introduction_1675903542_12085
import-link:ch_1_introduction_1675903542_12085

TIBCO® Data Virtualization Client Interfaces Guide

96 | Connecting to TDV Server through ODBC

numeric WHERE clause filter. To temporarily work around this issue execute the
following command in you SQL console prior to executing any queries.

ALTER SESSION SET CURSOR_SHARING = EXACT;

Or, upgrade your Oracle 11g instance to release 11.2.0.3 or later. Refer to Oracle bug
11858021 for more information.

Configuring Each Windows System Data Source
Name
ODBC clients can use a configured data source name (DSN) for TDV to communicate with
published TDV data services. A DSN can also be used to configure a 64-bit Windows client
application to use either the TDV 64-bit or the TDV 32-bit ODBC driver.

Both 32-bit and 64-bit client applications can use the same System DSN to connect with
TDV data services. However, if you configure a User DSN, the connection is available to
only a single user on the local machine.

Adding a New System DSN
You can create a new System DSN to point ODBC clients to the appropriate data source
published by TDV data services. If you plan to use Kerberos for integrated authentication,
configure Kerberos following the instructions in the Kerberos topics in the TDV
Administration Guide (in “Managing Security for TDV Resources” and “Configuring Kerberos
Single Sign-On”).

To add a new system DSN
1. From the Windows Start menu, navigate to the ODBC Data Source Administrator

window.

For example, under Windows 10, select Start > Control Panel > Administrative Tools,
and double-click Data Sources (ODBC) from the list on the right. The ODBC Data
Source Administrator window opens.

TIBCO® Data Virtualization Client Interfaces Guide

97 | Connecting to TDV Server through ODBC

2. Select the System DSN tab and click the Add button.

The Create New Data Source window opens.

3. In that window, highlight the TDV driver you previously installed and click Finish.

The TDV <version> ODBC Driver Configuration window opens.

4. Configure the TDV Software ODBC driver by typing and selecting values as explained
below.

Field Description

DSN Name A string for the client to use to address the data source.

Host A DSN-designated name, or an IP octet, or localhost for a test client
installed on the same computer as TDV.

Port Number of the ODBC HTTP port (default 9401).

Encrypt Check if you are using SSL authentication. If this is checked, the client
will connect to the TDV server using the ODBC driver SSL port,
(default 9403; the ODBC driver automatically uses base port + 2 for
SSL client connections).

Integrated
Authentication

Method for authenticating the ODBC connection: disabled (default),
Kerberos, or NTLM.

TIBCO® Data Virtualization Client Interfaces Guide

98 | Connecting to TDV Server through ODBC

Field Description

Kerberos SPN SPN for Kerberos to use to authenticate the ODBC connection. The
text box is grayed out unless Kerberos is selected for Integrated
Authentication.

User Name TDV profile of the user connecting from the client. This should match
a profile in either the Composite domain or a configured LDAP
domain, unless anonymous or dynamic domain login is enabled.

Custom Java Procedures (CJP) can use Windows ODBC client user
names in the TDV runtime. When a client running on Windows makes
an ODBC connection to TDV, the TDV ODBC driver uses a Windows API
to report the Windows user name from the current session on the
client.

To retrieve the client user name within the CJP execution context
/HOOK running on TDV, call ExecutionEnvironment.getProperty
(loggedInUser).

TDV does not use the client’s Windows log-in user name for
authentication.

Password Password corresponding to user name.

Domain Domain to which the user belongs.

Datasource The TDV database name (the name of the database as it appears
under Databases; no slashes) as published in the Databases node in
the Studio resource tree.

For example, if you have published resources under test (shown as
/services/databases/test in the tool tip), type just “test” in this field.

Catalog Each data source can publish one or more catalogs. Use the Refresh
button when all other fields are specified, and select a catalog.

Locale/Code Page The locale/code page used by this ODBC client. Leave this blank if the
ODBC driver should use the system default locale. Otherwise, choose
a different locale/code page. Refer to the section TDV Supported
Encoding Standards for a list of supported encoding standards by

TIBCO® Data Virtualization Client Interfaces Guide

99 | Connecting to TDV Server through ODBC

Field Description

TDV.

Authentication Type Indicates whether the authentication type is BASIC (using the user
name/password) or OAUTH2 authentication (using access tokens).
Choose OAuth2 if you will be using the authorization tokens.

AccessToken The authorization tokens used for OAuth2 authentication. The access
token is used in place of id/password credentials, with a limited
lifetime & privileges.

AccessTokenType Indicates the type of AccessToken.

EnableKeepAlive This is Disabled by default. When Selected, the driver enables TCP-
KeepAlive for the connection.

5. Click the Test button to try the connection.

If you do not get a message saying the connection test completed successfully,
check the firewall and port setting to make sure the port is open for sending and
retrieving messages.

6. Optionally, if you are using SSL security (you checked the Encrypt check box on the
Basic tab), configure the Security tab for your Windows platform:

Field Description

SSL Key ID The subject (CN) of Windows private certificate. You can locate it using
this procedure:

1. Run the certmgr.msc program to open the Windows Certificate
Manager.

2. Under Personal/Certificates, double-click the private certificate to
open the Certificate dialog.

3. Click the Details tab, then select the Subject field.

Enter the Subject CN value in the SSL Key ID field. This is the only
parameter you need to specify for Windows.

TIBCO® Data Virtualization Client Interfaces Guide

100 | Connecting to TDV Server through ODBC

Field Description

SSL Key Cert The absolute path of a PEM file that contains the public key certificate
for an SSL connection. (Optional)

SSL Key File The absolute path of a PEM file that contains private key certificate for
an SSL connection. This private key should match public key in SSL
Key Cert. (Optional)

SSL CA Cert The PEM file that contains the trusted CA certificates in PEM format.
(Optional)

SSL CA Path The absolute path of the directory that contains the trusted CA files in
PEM format. On the Linux platform, the default value is “/etc/ssl/certs”.
The CA PEM file name in the CA path directory must equal the hash
value for the CA PEM file name. (Optional)

Note that on the Windows platform, the ODBC driver loads all CA
certificates from the system store ROOT/CA/TRUST, so this parameter
is not used.

Validate Remote
Certification

Check to validate the remote certifications.

Validate Remote
Hostname

Check to validate the remote hostname.

7. Click OK back through the windows to save the new System DSN.

With these configurations, both the TDV Server and the 32-bit or 64-bit ODBC client should
be ready for use.

Note: SQL statements generated by ODBC clients must enclose reserved keywords in
double-quotes when they are used as column aliases. For a consolidated list of reserved
keywords, see the TDV Reference Guide. Edit an auto-generated MS-Query by renaming a
column name with an alias.

TIBCO® Data Virtualization Client Interfaces Guide

101 | Connecting to TDV Server through ODBC

Override the Configured Settings
A client connecting to a TDV Server through the ODBC driver can override the configured
settings on a data source by adding parameters in the connection string. For example, the
following connection string is valid with TDV Server:

DSN=<value>;UID=<value>;PWD=<value>;DOMAIN=<value>;HOST=<value>;PORT=<va
lue>;DATASOURCE=<value>; CATALOG=<value>;

For these parameters:

• The original DSN value cannot be overridden.

• During creation of a DSN, you are prompted for a PWD entry.

• HOST is the host name where TDV Server is running.

• CATALOG is optional.

Defining an ODBC Client using a Connection
String
It is possible to create client program and establish a connection to your data through TDV
without having to define a DSN.

Note: The following instruction are guidelines only.

This topic also includes the following:

• ODBC Driver Connection String Properties

• C++ Example using the Connection String (DSN-less connection)

To create a client program without defining a DSN connection
1. Create and declare your connection string, using the following syntax:

{Driver=<driver name>;Server=<fully qualified
hostname>;Port=<port>;User=<username>;Password=<password>;domain=
<domain name>;dataSource=<datasource name>

TIBCO® Data Virtualization Client Interfaces Guide

102 | Connecting to TDV Server through ODBC

The following examples show how the syntax might be implemented in a C++
program.

Pl
atf
or
m

Example

Wi
nd
ow
s

SQLCHAR dsn[] =

"Driver=
{TDV8.0};Server=localhost;Port=9401;User=admin;Password=admin;Domain=
composite;dataSource=redwood;user=admin;password=admin;validateRemote
Hostname=false;connectTimeout=3000;enableFastExec=false";

Lin
ux/
UN
IX

SQLCHAR dsn[] =

“Driver=composite70;Server=localhost;Port=9401;User=admin;Password=ad
min;domain=composite;dataSource=redwood;validateRemoteHostname=false;
connectTimeout=3000;enableFastExec=false”;

For other connection properties, see ODBC Driver Connection String Properties.

2. Declare the user name and password variables for the connection statement.

3. (Optional) Determine the ODBC driver name using one of the following methods.

Platform Location of Name

Windows The driver name can be found from the Drivers tab of the ODBC Data Source
Administrator.

UNIX Locate the driver name in the section name of the odbcinst.ini file; for
example: composite70.

4. (Optional) Write a small sample program to test the connection string.

TIBCO® Data Virtualization Client Interfaces Guide

103 | Connecting to TDV Server through ODBC

5. Create or modify your client program so that it includes the connection syntax. For
example, you must include a statement similar to the following to establish the
connection:

conn = DriverManager.getConnection(connection string, userName,
password);

ODBC Driver Connection String Properties
This table lists the names of properties that you can specify in the ODBC connection string.

ODBC Property Description

alternatesecuritycredentials Specifies an alternate security property value to the identity
within the current session. This is used to allow the user
passing security property to the data source.

Note: You may get unexpected results when multiple
requests are made on the same session or when multiple
identities access the same session.

caseSensitive Specifies case sensitivity in the request values. Values can
be:

• <EMPTY>(default) - the server settings will manage
the case sensitivity

• TRUE - requests are case-sensitive

• FALSE - requests are not case-sensitive

commitFailure Specifies the behavior if commit failed. Possible values are:
rollback or bestEffort.

commitInterrupt Specifies behavior if commit is interrupted.Possible values
are: ignore, log, fail.

compensate Specifies correcting behavior. If enabled, compensation
blocks will be run if the transaction rolls back. Possible
values: disabled or enabled. Default value is disabled.

TIBCO® Data Virtualization Client Interfaces Guide

104 | Connecting to TDV Server through ODBC

ODBC Property Description

connectTimeout Time-out for initial connection, in seconds. Use 0 (zero) for
infinite time-out.

currentLoggedInUserName Current login user name.

dataSizeLimit Specifies the maximum text column data size.

dataSource Specifies the data source that is used for all connections.

domain Specifies an identification string that defines a realm of
administrative autonomy, authority, or control.

driver The ODBC driver absolute path name.

dsn ODBC DSN name.

enableFastExec Valid values are true and false. The default value is false.

Results are processed and returned immediately (instead of
a round trip) when a query is submitted, potentially
improving performance of low latency queries.

enableFlood Values are true or false. Default value is True.

If true, the server will constantly send data, filling the
network buffer.Useful for larger result sets.

enableReconnectOnError Specifies cluster reconnection behavior.

encrypt If True, the client will connect to the TDV server using the
ODBC driver SSL port.

fetchBytes Maximum number of rows to fetch for a batch based on
batch size, in bytes. Setting fetchBytes to a very large
number can cause an Out Of Memory error in the server.
The value set for fetchBytes affects the memory used on the
client and the TDV server, so the value should be set based
on the heap size configured. The default value is used if this

TIBCO® Data Virtualization Client Interfaces Guide

105 | Connecting to TDV Server through ODBC

ODBC Property Description

property is set to zero.

fetchRows Maximum number of rows to fetch for a batch. The default
value is used if this property is set to zero.

host/server TDV Server host name.

ignoreTrailingSpace Ignore trailing spaces at the end of values. Values can be:

• <EMPTY>(default) - the server settings will be used

• TRUE - trailing spaces will not be ignored

• FALSE - trailing spaces will not be ignored

locale Value that defines the user’s language and country. Refer to
the section TDV Supported Encoding Standards for a list of
supported encoding standards by TDV.

nometadata Blocks return of result-set metadata during query execution.

paramMode Controls the behavior of OUT parameters for stored
procedures:

• normal—Report OUT parameters in procedure
metadata as OUT parameters.

• return—Report OUT parameters as return values.

• omit—Omit OUT parameters from metadata.

• omitCursors—Omit output cursors from metadata.

password/pwd Specifies the password for the user name that you specify in
the Username property. These values are used for your data
source connection.

pingInterval Maximum time to wait before sending a ping request while
waiting for a result from TDV, in seconds.

pingTimeoutWindow The length of time the JDBC or ODBC client waits before

TIBCO® Data Virtualization Client Interfaces Guide

106 | Connecting to TDV Server through ODBC

ODBC Property Description

closing a connection to the TDV server, after a ping to the
TDV server has failed.

The value of this parameter should be greater than or equal
to the "PingInterval" parameter. If a ping sent to the TDV
server fails, the ODBC or JDBC client continues to send
pings to TDV to check status. If these client pings continue
to fail after the TimeoutWindow has expired, the ODBC or
JDBC client closes the connection to the TDV server and
sends a message. While the TimeoutWindow has not
expired, the ODBC or JDBC client connection stays open
and continues to send pings to the TDV server waiting for a
response. The default for this property is 0, which means
the setting is not being used.

port TDV Server listening port.

registerOutputCursors • true—Bind or register output cursors as output
parameters.

• false—Do not bind or register output cursors as
output parameters; instead, use SQLMoreResults to
access the cursors.

requestTimeout Time-out for query commands and other requests

sessionTimeout Session inactivity timeout, in seconds. Set to zero for
infinite timeout.

singleLogSize Maximum log file size to saving to next log file, in M bytes.

spn Valid on Windows platform only, not useful on UNIX
platforms.

Kerberos SPN value, only useful if the SSO value equals
Kerberos.

sso Valid on Windows platform only, not useful on UNIX

TIBCO® Data Virtualization Client Interfaces Guide

107 | Connecting to TDV Server through ODBC

ODBC Property Description

platforms. Single-sign-on type: ""/(Disabled), Kerberos or
NTLM.

The default value is "", which forces the ODBC client
application to provide user and password information to
connect.

sslKeyID The subject (CN) of the Windows private certificate. You can
locate this using this procedure:

1. Run the certmgr.msc program to open the Windows
Certificate Manager.

2. Under Personal/Certificates, double-click the private
certificate to open the Certificate dialog.

3. Click the Details tab, then select the Subject field.

Enter the Subject CN value in the sslKeyID field. This is the
only parameter you need to specify for Windows.

sslKeyCert The absolute path of a PEM file that contains the public key
certificate for an SSL connection. (Optional)

sslKeyFile The absolute path of a PEM file that contains private key
certificate for an SSL connection. This private key should
match public key in SSL Key Cert. (Optional)

sslCACert The PEM file that contains the trusted CA certificates in PEM
format. (Optional)

The properties sslCACert and sslCAPath should not be used
on windows. This is because Windows has its own Trust
Store in the operating system. Customers are advised to
add non-standard CA certificates(example self-signed
certificate(s)) in Windows TrustStore.

sslCAPath The absolute path of the directory that contains the trusted
CA files in PEM format. On the Linux platform, the default
value is “/etc/ssl/certs”. The CA PEM file name in the CA

TIBCO® Data Virtualization Client Interfaces Guide

108 | Connecting to TDV Server through ODBC

ODBC Property Description

path directory must equal the hash value for the CA PEM
file name. (Optional)

Note that on the Windows platform, the ODBC driver loads
all CA certificates from the system Truststore, so this
parameter is not used.

stripDuplicates Values are true or false. Default value is false.

If true, the server will detect for duplicate CHAR/VARCHAR
columns in subsequent rows, and will not re-transmit the
data across the wire.

This would potentially lead to data savings across the wire.

stripTrailingZeros Determines whether decimal result values are to be
returned with trailing zeros removed.

traceFile Absolute path to the trace file.

traceFolder Absolute directory to save trace file, the trace file name is
"CsOdbcDebug_"+<DSN Name>+".log". the default folder is
C:\ or $COMPOSITE_HOME

traceLevel Valid values are off, fatal, error (this is the default), debug,
warn, info, debug2, and all.

The valid values for client-side log settings are off, fatal,
error (default), warn, info, debug, all, debug2, stdout.

On UNIX-based platforms, the log file CsOdbcDebug.log is
created in the directory specified by the environment
variable COMPOSITE_HOME.

unsupportedMode Valid values are silent, warn, or fail. The default value is fail.

When set to silent, unsupported methods do nothing and
return. When set to warn, the JDBC driver logs a warning
message in the log file, Otherwise, the JDBC driver returns a
SQL_ERROR when it encounters unsupported methods.

TIBCO® Data Virtualization Client Interfaces Guide

109 | Connecting to TDV Server through ODBC

ODBC Property Description

user_tokens Authentication values that can be packaged for delivery.

user/uid Specifies the user name for connections to the data source.

validateRemoteCert When true, the TDV client initiates handshake validation,
validating the TDV certificate and using it for password
encryption. If validation fails, no connection is established.

When false (default), no certificate validation is performed
prior to the establishment of a connection.

The TDV Server certificate is loaded from the Truststore File
Location set in the Studio Configuration panel. The Keystore
Key Alias is used when it is configured for use. For more
information, refer to “TDV Configuration Parameters” in the
TDV Administration Guide.

The TDV ODBC driver uses the system certification store to
validate the certificate. The TDV Server certificate must be
added to this client trust store or validation fails.

validateRemoteHostname When true, the ODBC driver compares the value of host in
the connection string with the subject CN (common name)
value in the certificate received from the targeted TDV
Server.

If the host name validation fails, the connection is not
established. When false (default), the host name validation
is not performed.

authenticationType Indicates whether the authentication type is BASIC (using
the user name/password) or OAUTH2 authentication (using
access tokens). Choose OAuth2 if you will be using the
authorization tokens.

accessToken The authorization tokens used for OAuth2 authentication.
The tokens are represented in a specific format -

<header>.<payload>.<signature>.

TIBCO® Data Virtualization Client Interfaces Guide

110 | Connecting to TDV Server through ODBC

ODBC Property Description

Each of the parts of the token is in a JSON format.

The access token is used in place of id/password
credentials, with a limited lifetime & privileges.

accessTokenType The type of the Access Token. JWT (JSON Web Token) is the
default supported format. JWT token is a self-contained
JSON form and ideal for federation.

enableKeepAlive Property Type: Boolean

Default Value: false

When set to true, the driver enables TCP-KeepAlive for the
connection.

delegateOauth2flowToServer This is a flag used to indicate whether the OAUTH2 ROPC
flow delegation is used for ODBC driver.

Setting this to True will

 1. Delegate OAUTH2 ROPC flow to TDV Server from the
ODBC driver.

 2. Invoke a call to the OAUTH ID Provider and get token
from it.

Setting this to False indicates not to delegate OAUTH2
ROPC flow to TDV Server from the ODBC driver.

TDV Supported Encoding Standards
This section lists the supported encoding standards for the ODBC Client Driver.

Windows
Use the encoding that is appropriate for your locale using the Locale option while
configuring your DSN. The default value, if not specified, is the System default for the

TIBCO® Data Virtualization Client Interfaces Guide

111 | Connecting to TDV Server through ODBC

Windows OS.

windows874 shift_jis gb2312 ks_c_56011987

big5 ibm1026 ibm01047 ibm01140

ibm01141 ibm01142 ibm01143 ibm01144

ibm01145 ibm01146 ibm01147 ibm01148

ibm01149 utf16 utf16le utf16fffe

utf16be windows1250 windows125
1

windows1252

windows1253 windows1254 windows125
5

windows1256

windows1257 windows1258 johab macintosh

xmacjapanese xmacchinesetr
ad

xmackorean xmacarabic

xmachebrew xmacgreek xmaccyrillic xmacchinesesi
mp

xmacromanian xmacukrainian xmacthai xmacce

xmacicelandic xmacturkish xmaccroatia
n

utf32

utf32le utf32be xchinese_
cns

xchinesecns

xcp20001 xchineseeten xchinese_
eten

xcp20003

xcp20004 xcp20005 xia5 xia5german

xia5swedish xia5norwegian usascii xcp20261

TIBCO® Data Virtualization Client Interfaces Guide

112 | Connecting to TDV Server through ODBC

xcp20269 ibm273 ibm277 ibm278

ibm280 ibm284 ibm285 ibm290

ibm297 ibm420 ibm423 ibm424

xebcdickoreanexten
ded

ibmthai koi8r ibm871

ibm880 ibm905 ibm00924 eucjp

xcp20936 xcp20949 cp1025 koi8u

iso88591 iso88592 iso88593 iso88594

iso88595 iso88596 iso88597 iso88598

iso88599 iso885913 iso885915 xeuropa

iso88598i iso2022jp csiso2022jp iso2022jpx

iso2022kr xcp50227 eucjp euccn

euckr hzgb2312 gb18030 gbk

xisciide xisciibe xisciita xisciite

xisciias xisciior xisciika xisciima

xisciigu xisciipa utf7 utf8

Unix
Use the encoding that is appropriate for your locale using the Locale option while
configuring your DSN. The default value, if not specified, is “iso88591” for the Unix OS.

ascii iso88591 iso88592 iso88593

TIBCO® Data Virtualization Client Interfaces Guide

113 | Connecting to TDV Server through ODBC

iso88594 iso88595 iso88597 iso88599

iso885910 iso885913 iso885914 885915

iso885915 iso885916 koi8r koi8u

koi8ru cp1250 cp1251 cp1252

ibm1252 cp1253 cp1254 cp1257

cp850 cp866 macroman maccentraleurope

maciceland maccroatian macromania maccyrillic

macukraine macgreek macturkish macintosh

iso88596 iso88598 cp1255 cp1256

cp862 machebrew macarabic eucjp

ibmeucjp shift_jis cp932 iso2022jp

iso2022jp2 iso2022jp1 euccn ibmeuccn

hz gbk gb18030 euctw

ibmeuctw big5 cp950 big5hkscs

iso2022cn iso2022cnext euckr ibmeuckr

cp949 iso2022kr johab armscii8

georgianacademy georgianps koi8t tis620

cp874 macthai mulelao1 cp1133

viscii tcvn cp1258 hproman8

nextstep utf8 ucs2 ucs2be

TIBCO® Data Virtualization Client Interfaces Guide

114 | Connecting to TDV Server through ODBC

ucs2le ucs4 ucs4be ucs4le

utf16 utf16be utf16le utf32

utf32be utf32le utf7 c99

java ucs2internal ucs4internal char

wchar_t cp437 cp737 cp775

cp852 cp853 cp855 cp857

cp858 cp860 cp861 cp863

cp865 cp869 cp1125 cp864

eucjisx0213 shift_jisx0213 iso2022jp3 tds565

riscoslatin1

Connecting Cognos to TDV Using ODBC
Cognos is a third-party tool. These instructions are included only as a guideline; your
system and the steps necessary to configure it might vary from the test system that was
used in this sample. You will need to refer to Cognos documentation and perform thorough
testing of your system after completing the install and configuration.

If you are using Cognos Dynamic Query Mode (DQM), you need to set up the JDBC driver to
manage the connection between TDV and Cognos. Refer to you Cognos documentation for
instructions on connecting to TDV.

To connect to TDV Server through Cognos on UNIX
1. Install the TDV ODBC driver on the:

— Cognos Framework Manager Server

— Cognos Studio clients

TIBCO® Data Virtualization Client Interfaces Guide

115 | Connecting to TDV Server through ODBC

The 32-bit driver is required even if running the 64-bit version of Cognos.

2. Setup ODBC drivers and define necessary environment variables. For more
information, see the TDV Administration Guide information about using ODBC drivers
with UNIX. For example, the following environment variables might need to be
defined:

— COMPOSITE_HOME

— ODBCINI

— ODBCINSTINI

— LD_LIBRARY_PATH

3. Make a backup copy of existing odbc.ini and odbcinst.ini files.

4. Run the TDV driverConfig utility to generate the odbc.ini, odbcinst.ini files.

5. Change the Cognos environment to include the odbc.ini, odbcinst.ini files.

6. Add the path to the TDV ODBC driver for the following environment variable
depending on your system type:

System Type Environment Variable

Linux LD_LIBRARY_PATH

AIX LIBPATH

7. Configure a connection to the TDV Server on the Cognos Server.

8. Test the connectivity between TDV and Cognos.

9. Repeat the install and configuration of the TDV ODBC driver on any other machines
running the Cognos Framework Manager component.

10. After publishing a view in TDV, it is not immediately available to the Cognos clients.
A Cognos Framework admin needs to import the new view, create a Cognos package
and publish it to the Cognos Clients.

To connect to TDV Server through Cognos on Windows

 1. Install the 32-bit TDV ODBC driver on the:

— Cognos Framework Manager Server

TIBCO® Data Virtualization Client Interfaces Guide

116 | Connecting to TDV Server through ODBC

— Cognos Studio clients

The 32-bit driver is required even if running the 64-bit version of Cognos. The 32 bit
ODBC manager is typically located in the C:\Windows\sysWOW64 folder and named
odbcad32.exe.

 2. Configure a connection to the TDV Server on the Cognos Server.

 3. Test the connectivity between TDV and Cognos.

 4. Repeat the install and configuration of the TDV ODBC driver on any other machines
running the Cognos Framework Manager component.

 5. After publishing a view in TDV, it is not immediately available to the Cognos clients. A
Cognos Framework admin needs to import the new view, create a Cognos package
and publish it to the Cognos Clients.

Connecting Oracle Database Gateway to TDV
Using ODBC
Oracle and the Oracle heterogeneous services are a third-party tools. These instructions are
included only as a guideline; your system and the steps necessary to configure it might
vary from the test system that was used in this sample. You will need to refer to Oracle
documentation and perform thorough testing of your system after completing the install
and configuration.

To connect to TDV Server through Oracle on UNIX
1. Obtain DG4ODBC.

DG4ODBC interacts with Oracle Heterogeneous Services to provide transparent
connectivity between Oracle and non-Oracle systems. DG4ODBC is shipped with
Oracle 11g. You can also download DG4ODBC from the Oracle Technology (OTN)
Software Downloads Page.

2. Setup ODBC drivers and define necessary environment variables. For more
information, see the TDV Administration Guide information about using ODBC drivers
with UNIX. For example, the following environment variables might need to be
defined:

— COMPOSITE_HOME

TIBCO® Data Virtualization Client Interfaces Guide

117 | Connecting to TDV Server through ODBC

— ODBCINI

— ODBCINSTINI

— LD_LIBRARY_PATH

3. Make a backup copy of existing odbc.ini and odbcinst.ini files.

4. Run the TDV driverConfig utility to generate the odbc.ini, odbcinst.ini files.

5. Change the Oracle environment to include the odbc.ini, odbcinst.ini files.

6. Add the path to the TDV ODBC driver for the following environment variable
depending on your system type:

System Type Environment Variable

Linux LD_LIBRARY_PATH

AIX LIBPATH

7. Configure a connection to the TDV Server on the Oracle Server.

8. Test the connectivity between TDV and Oracle.

Connecting MicroStrategy to TDV Using ODBC
Connecting to TDV Server through MicroStrategy varies depending on the development tool
used to develop your client application. Typically, all you need to do is install and use
ODBC to establish the connection.

These instructions are included as a guideline; your system and the necessary steps might
vary. Refer to your development tool documentation and perform thorough testing of your
system after establishing the connection between TDV Server and MicroStrategy.

MicroStrategy issues DDL statements and connects to TDV through the TDV ODBC driver.
TDV creates temp tables using DDL statements in the container path that was specified.

TDV frequently adds new data sources. For updates to the supported list of data sources,
see the TDV Installation and Upgrade Guide.

For more information for how to configure the TDV DDL feature for MicroStrategy, see
“Preparing a Data Source for DDL CREATE/DROP through TDV” in the TDV User Guide.

TIBCO® Data Virtualization Client Interfaces Guide

118 | Connecting to TDV Server through ODBC

You can also use ADO.Net and JDBC to connect TDV to MicroStrategy.

To connect TDV to MicroStrategy using an ODBC driver
1. Configure and publish TDV resources to the TDV DDL feature. Temporary tables are

manipulated in the container path specified on the TDV DDL tab when publishing
resources in TDV. For more information, see the “Publishing Resources” section of
the TDV User Guide.

2. Install the ODBC driver on the client machines that have MicroStrategy and want to
connect to the TDV Server. For example, install the ODBC driver using the <TDV_
version>_odbc_<platform>.tar file. Or, contact MicroStrategy Technical Support to
obtain the Composite<version>.PDS file.

3. Stop the MicroStrategy Intelligence Server, including all nodes of MicroStrategy
Intelligence Server cluster, and disconnect all connections to the metadata from
other MicroStrategy sources (such as MicroStrategy Desktop and MicroStrategy
Object Manager).

4. Launch the MicroStrategy Desktop and login. Go to Database Instance Manager and
edit the warehouse database instance or create a new warehouse database instance.

5. Click Upgrade.

6. Specify the driver file in the DB types script file field.

7. Click Load.

8. Move the TDV Server <version> object from the list of available databases to the list
of existing databases.

9. Click OK.

10. Select the TDV Server <version> from the list of existing databases.

11. Navigate to Configuration Managers > Database Instance Manager > Database
Instance > Database Connection > Advanced.

12. (Optionally) Set the Character set encoding for UNIX drivers to Non UTF-8 to fetch
characters correctly for UTF-16 drivers.

13. Click OK and save the Database Connection.

14. Click OK and save the Database Instance.

15. Set up the ODBC drivers and define the necessary environment variables. For more
information, see the TDV Administration Guide information about using ODBC drivers

TIBCO® Data Virtualization Client Interfaces Guide

119 | Connecting to TDV Server through ODBC

with UNIX. For example, the following environment variables might need to be
defined:

— COMPOSITE_HOME

— COMPOSITE_PATH

— ODBCINI

— ODBCINSTINI

— LD_LIBRARY_PATH

16. Other possible steps might include:

— Make a backup copy of existing odbc.ini and odbcinst.ini files.

— Run the TDV driverConfig utility to generate the odbc.ini, odbcinst.ini files.

— Change the MicroStrategy environment to include the odbc.ini, odbcinst.ini files.

— Add the path to the TDV ODBC driver for the following environment variable
depending on your system type:\

System Type Environment Variable

Linux LD_LIBRARY_PATH

AIX LIBPATH

17. (Optionally) For each MicroStrategy Intelligence Server, update the MicroStrategy
DTMAPPING.PDS file with the following:

— database name

— MSI type

18. (Optionally) Update the ODBC.sh file.

19. Define ODBC connections using DSN or Connection String methods between TDV
and MicroStrategy.

20. Reload the project so that the new settings take effect. You might need to:

— Restart the MicroStrategy Intelligence Server if using 3-tier or 4-tier modes.

— Disconnect and re-connect the project source if using 2-tier mode.

TIBCO® Data Virtualization Client Interfaces Guide

120 | Connecting to TDV Server through ODBC

Connecting Tableau to TDV Using ODBC
Connecting to TDV Server through Tableau varies depending on the development tool used
to develop your client application. Typically, all you need to do is install and use ODBC to
establish the connection.

These instructions are included as a guideline; your system and the necessary steps might
vary. Refer to your development tool documentation and perform thorough testing of your
system after establishing the connection between TDV Server and Tableau.

Tableau connects to TDV through the TDV ODBC driver.

Limitations

For the greatest amount of flexibility, TDV supports the standard SQL functions. Because
Tableau supports several custom non-standard SQL functions, you might not be able to run
certain functions against your TDV data that is displayed in Tableau.

TDV supports using CAST(TIME as TIMESTAMP). The date 1900-01-01 will be added to the
TIME so that the TIME value can qualify as a TIMSTAMP data type. For example, if your time
value is 12:05, your converted TIMSTAMP will be 1900-01-01 12:05.

For example, you can design a Composite view to use CAST functions to get the following
conversion functions to provide the results you want in Tableau:

• DATE • DATETIME • FLOAT

• INT • STR •

To connect TDV to Tableau using an ODBC 32-bit driver
1. Install the 32-bit TDV ODBC driver on the same system that Tableau machine.

The 32 bit ODBC manager is typically located in the %WINDIR%\sysWOW64 folder
and named odbcad32.exe. For more information, see Installing the ODBC Driver .

Tableau allows for the customization of the ODBC connection. Those instructions are
at: http://kb.tableau.com/articles/knowledgebase/customizing-odbc-connections.
There are two TDC files that install with TDV, their default location is <TDV_install_
dir>\docs\tableau.

TIBCO® Data Virtualization Client Interfaces Guide

121 | Connecting to TDV Server through ODBC

2. Make sure you have a DSN defined for TDV. For more information, see Adding a New
System DSN.

3. Launch Tableau and login.

4. Click Data > Connect to Data.

5. Click Other Databases (ODBC).

6. Select or type the DSN that was defined for TDV. For example, select for_tableau_
system.

7. Click Connect.

Resources and data published through TDV should be viewable through your
Tableau client.

For example, using the Tableau client, you can select a TDV published table and
click View data to see the data displayed in Tableau.

Connecting PowerBI to TDV Using ODBC
Connecting to TDV Server through PowerBI varies depending on the development tool used
to develop your client application. Typically, all you need to do is install and use ODBC to
establish the connection.

These instructions are included as a guideline; your system and the necessary steps might
vary. Refer to your development tool documentation and perform thorough testing of your
system after establishing the connection between TDV Server and PowerBI.

PowerBI connects to TDV through the TDV ODBC driver.

For example, you can design a Composite view to use CAST functions to get the following
conversion functions to provide the results you want in Tableau:

• DATE • DATETIME • FLOAT

• INT • STR •

To connect PowerBI to TDV using an ODBC driver
1. Install the TDV ODBC driver on the same system as the PowerBI machine.

TIBCO® Data Virtualization Client Interfaces Guide

122 | Connecting to TDV Server through ODBC

2. Make sure you have a DSN defined for TDV. For more information, see Adding a New
System DSN.

3. Launch PowerBI and login.

4. Click Get Data > Type “ODBC” in filter box.

5. Select ODBC.

6. From the ODBC DSN drop-down list, select the DSN created in Step 2.

7. Provide credentials to log in to TDV.

Resources and data published through TDV should be viewable through your
PowerBI client.

For example, using the PowerBI client, you can select a TDV published table and
click on Load to view data.

Examples Using ODBC to Connect to TDV
Server
This section contains examples of client applications written to access data through the
TDV Server.

• PERL Code Sample for Connecting to TDV Server

• C++ Example using the Connection String (DSN-less connection)

• C++ UNIX Code Sample for Connecting to TDV Server

• VBA Code Sample for Connecting to TDV Server

PERL Code Sample for Connecting to TDV Server
The following is a sample PERL script for connecting a PERL client to the TDV Server. The
DSN must be configured on each client using the driverConfig utility to set the values in the
odbc.ini.

#!/usr/bin/perl

TIBCO® Data Virtualization Client Interfaces Guide

123 | Connecting to TDV Server through ODBC

use DBI;

use DBD::ODBC;

my $dsn="dbi:ODBC:DSN=test;";

my $dbc=DBI->connect($dsn,'admin','admin');

my $query = "select * from all_domains";

my $query_handle = $dbc->prepare($query);

$query_handle->execute();

$query_handle->bind_columns(undef, \$domain_id, \$domain_type_name,
\$domain_name, \$domain_desc);

while ($query_handle->fetch()) {

 print "$domain_id, $domain_type_name, $domain_name, $domain_desc\n";

C++ Example using the Connection String (DSN-less
connection)
The following example shows a small test program written in C++ for Windows that uses
this connection string method. The string “dsn” uses the connection string format rather
than DSN format. It is used in SQLDriverConnect call to connect to the database.

//

#include "stdafx.h"

TIBCO® Data Virtualization Client Interfaces Guide

124 | Connecting to TDV Server through ODBC

int SQLSuccess(SQLRETURN rc) {

 return (rc == SQL_SUCCESS || rc == SQL_SUCCESS_WITH_INFO);

}

void extract_error(const char* sqlFunc, SQLHANDLE handle, SQLSMALLINT
type) {

 SQLINTEGER i = 0;

 SQLINTEGER native;

 SQLCHAR state[7];

 SQLCHAR text[256];

 SQLSMALLINT len;

 SQLRETURN ret;

 memset(state, 0, sizeof(state));

 memset(text, 0, sizeof(text));

 do {

 ret = SQLGetDiagRec(type, handle, ++i, state, &native, text,
sizeof(text), &len);

 if (SQL_SUCCEEDED(ret)) {

TIBCO® Data Virtualization Client Interfaces Guide

125 | Connecting to TDV Server through ODBC

 printf("%s:%ld:%ld:%s\n", state, i, native, text);

 }

 } while (ret == SQL_SUCCESS);

 exit(0);

}

int fetchResultSet(SQLHSTMT stmt)

{

 SQLLEN indicator;

 SQLRETURN ret;

 char buf[512];

 SQLSMALLINT columns;

 int i=0,rows=0;

 SQLNumResultCols(stmt, &columns);

 //Fetch all data

 while(1){

TIBCO® Data Virtualization Client Interfaces Guide

126 | Connecting to TDV Server through ODBC

 ret = SQLFetch(stmt);

 if (SQL_NO_DATA == ret){

 break;

 }else if (!SQLSuccess(ret)) {

 extract_error("SQLFetch", stmt, SQL_HANDLE_STMT);

 }

 rows++;

 for(i=1;i<columns;i++){

 ret = SQLGetData(stmt, i, SQL_C_CHAR, buf, sizeof(buf),
&indicator);

 if (!SQLSuccess(ret)) {

 extract_error("SQLGetData", stmt, SQL_HANDLE_STMT);

 }

 }

 }

 return rows;

TIBCO® Data Virtualization Client Interfaces Guide

127 | Connecting to TDV Server through ODBC

}

int _tmain(int argc, _TCHAR* argv[])

{

 printf("sizeof(SQLULEN)=%d\n",sizeof(SQLULEN));

 printf("sizeof(SQLUINTEGER)=%d\n",sizeof(SQLUINTEGER));

 printf("sizeof(SQLUSMALLINT)=%d\n",sizeof(SQLUSMALLINT));

 SQLRETURN ret;

 SQLCHAR tableCat[64];

 SQLCHAR tableSchem[64];

 SQLCHAR tableName[64];

 SQLCHAR tableType[64];

 SQLCHAR remarks[64];

 SQLLEN Str_Len;

 SQLSMALLINT colCount=0;

 SQLCHAR dsn[] = "Driver={TDV
8.0};Server=localhost;Port=9401;Domain=composite;dataSource=system;user=

TIBCO® Data Virtualization Client Interfaces Guide

128 | Connecting to TDV Server through ODBC

admin;password=admin;validateRemoteHostname=false;connectTimeout=3000;en
ableFastExec=false";

 //SQLCHAR query[] ="select pa11.YEAR_ID YEAR_ID,a12.region_id region_
id,pa11.call_ctr_id call_ctr_id,pa11.WJXBFS1 WJXBFS1 from ZZMD00 pa11
join LU_CALL_CTR a12 on (pa11.call_ctr_id = a12.call_ctr_id)";

 SQLCHAR query[] ="select * from ALL_TABLES";

 SQLHENV env;

 SQLHDBC dbc;

 SQLHSTMT stmt;

 SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env);

 SQLSetEnvAttr(env, SQL_ATTR_ODBC_VERSION, (void *) SQL_OV_ODBC3, 0);

 SQLAllocHandle(SQL_HANDLE_DBC, env, &dbc);

 ret = SQLDriverConnect(dbc, NULL, (SQLCHAR*) dsn, SQL_NTS, NULL, 0,
NULL, SQL_DRIVER_NOPROMPT);

 if (!SQLSuccess(ret)) {

 extract_error("SQLDriverConnect", dbc, SQL_HANDLE_DBC);

 }

 SQLCHAR ver[512];

TIBCO® Data Virtualization Client Interfaces Guide

129 | Connecting to TDV Server through ODBC

 SQLGetInfo(dbc,

 SQL_DRIVER_NAME,

 ver,

 512,

 NULL);

 printf("%s\n",ver);

 SQLGetInfo(dbc,

 SQL_DRIVER_VER,

 ver,

 512,

 NULL);

 printf("%s\n",ver);

 SQLGetInfo(dbc,

 SQL_DBMS_NAME,

 ver,

TIBCO® Data Virtualization Client Interfaces Guide

130 | Connecting to TDV Server through ODBC

 512,

 NULL);

 printf("%s\n",ver);

 SQLGetInfo(dbc,

 SQL_DBMS_VER,

 ver,

 512,

 NULL);

 printf("%s\n",ver);

 ret = SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);

 if (!SQLSuccess(ret)) {

 extract_error("SQLAllocHandle", dbc, SQL_HANDLE_DBC);

 }

 ret = SQLTables(stmt,(SQLCHAR*)"",0,(SQLCHAR*)"",0,(SQLCHAR*)"",0,
(SQLCHAR*)"TABLE",SQL_NTS);

 ret= SQLNumResultCols(stmt,&colCount);

TIBCO® Data Virtualization Client Interfaces Guide

131 | Connecting to TDV Server through ODBC

 ret = SQLBindCol(stmt, 1, SQL_C_CHAR, tableCat, sizeof(tableName),
&Str_Len);

 ret = SQLBindCol(stmt, 2, SQL_C_CHAR, tableSchem, sizeof(tableName),
&Str_Len);

 ret = SQLBindCol(stmt, 3, SQL_C_CHAR, tableName, sizeof(tableName),
&Str_Len);

 ret = SQLBindCol(stmt, 4, SQL_C_CHAR, tableType, sizeof(tableName),
&Str_Len);

 ret = SQLBindCol(stmt, 5, SQL_C_CHAR, remarks, sizeof(tableName),
&Str_Len);

 while((ret=SQLFetch(stmt))==SQL_SUCCESS){

 printf("%s\n",tableName);

 }

 ret = SQLExecDirect(stmt, (SQLCHAR*) query, SQL_NTS);

 //ret= SQLPrepareW(stmt,(SQLWCHAR*)query,10);

 ret= SQLNumResultCols(stmt,&colCount);

 if (!SQLSuccess(ret)) {

 extract_error("SQLExecDirect", stmt, SQL_HANDLE_STMT);

 }

TIBCO® Data Virtualization Client Interfaces Guide

132 | Connecting to TDV Server through ODBC

 int totalRows = fetchResultSet(stmt);

 SQLFreeHandle(SQL_HANDLE_STMT, stmt);

 SQLDisconnect(dbc);

 ret = SQLFreeHandle(SQL_HANDLE_DBC, dbc);

 ret = SQLFreeHandle(SQL_HANDLE_ENV, env);

 printf("Execute query completed, total rows %d.\n",totalRows);

 fgetc(stdin);

 return 0;

}

C++ UNIX Code Sample for Connecting to TDV
Server
The following example shows a small test program written in C++ for UNIX. The string
“dsn” uses the connection string format rather than DSN format. It is used in
SQLDriverConnect call to connect to the database.

{code}

#include <sql.h>

#include <sqlext.h>

TIBCO® Data Virtualization Client Interfaces Guide

133 | Connecting to TDV Server through ODBC

#include <stdio.h>

#include <string.h>

int SQLSuccess(SQLRETURN rc) {

 return (rc == SQL_SUCCESS || rc == SQL_SUCCESS_WITH_INFO);

}

void extract_error(const char* sqlFunc, SQLHANDLE handle, SQLSMALLINT
type) {

 SQLINTEGER i = 0;

 SQLINTEGER native;

 SQLCHAR state[7];

 SQLCHAR text[256];

 SQLSMALLINT len;

 SQLRETURN ret;

 memset(state, 0, sizeof(state));

 memset(text, 0, sizeof(text));

 do {

TIBCO® Data Virtualization Client Interfaces Guide

134 | Connecting to TDV Server through ODBC

 ret = SQLGetDiagRec(type, handle, ++i, state, &native, text, sizeof
(text), &len);

 if (SQL_SUCCEEDED(ret)) {

 printf("%s:%ld:%ld:%s\n", state, i, native, text);

 }

 } while (ret == SQL_SUCCESS);

 exit(0);

}

int fetchResultSet(SQLHSTMT stmt)

{

 SQLLEN indicator;

 SQLRETURN ret;

 char buf[512];

 SQLSMALLINT columns;

 int i=0,rows=0;

 SQLNumResultCols(stmt, &columns);

TIBCO® Data Virtualization Client Interfaces Guide

135 | Connecting to TDV Server through ODBC

 //Fetch all data

 while(1){

 ret = SQLFetch(stmt);

 if (SQL_NO_DATA == ret){

 break;

 }else if (!SQLSuccess(ret)) {

 extract_error("SQLFetch", stmt, SQL_HANDLE_STMT);

 }

 rows++;

 for(i=1;i<columns;i++){

 ret = SQLGetData(stmt, i, SQL_C_CHAR, buf, sizeof(buf), &indicator);

 if (!SQLSuccess(ret)) {

 extract_error("SQLGetData", stmt, SQL_HANDLE_STMT);

 }

 }

TIBCO® Data Virtualization Client Interfaces Guide

136 | Connecting to TDV Server through ODBC

 }

 return rows;

}

int main(int argc, char * argv[])

{

 printf("sizeof(SQLULEN)=%d\n",sizeof(SQLULEN));

 printf("sizeof(SQLUINTEGER)=%d\n",sizeof(SQLUINTEGER));

 printf("sizeof(SQLUSMALLINT)=%d\n",sizeof(SQLUSMALLINT));

 SQLRETURN ret;

 SQLCHAR tableCat[64];

 SQLCHAR tableSchem[64];

 SQLCHAR tableName[64];

 SQLCHAR tableType[64];

 SQLCHAR remarks[64];

 SQLLEN Str_Len;

TIBCO® Data Virtualization Client Interfaces Guide

137 | Connecting to TDV Server through ODBC

 SQLSMALLINT colCount=0;

 SQLCHAR dsn[] = "Driver={TDV
8.0};Server=localhost;Port=9401;Domain=composite;dataSource=system;user=
admin;password=admin;validateRemoteHostname=false;connectTimeout=3000;en
ableFastExec=false";

 SQLCHAR query[] ="select * from ALL_TABLES";

 SQLHENV env;

 SQLHDBC dbc;

 SQLHSTMT stmt;

 SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env);

 SQLSetEnvAttr(env, SQL_ATTR_ODBC_VERSION, (void *) SQL_OV_ODBC3, 0);

 SQLAllocHandle(SQL_HANDLE_DBC, env, &dbc);

 ret = SQLDriverConnect(dbc, NULL, (SQLCHAR*) dsn, SQL_NTS, NULL, 0,
NULL, SQL_DRIVER_NOPROMPT);

 if (!SQLSuccess(ret)) {

 extract_error("SQLDriverConnect", dbc, SQL_HANDLE_DBC);

 }

 SQLCHAR ver[512];

TIBCO® Data Virtualization Client Interfaces Guide

138 | Connecting to TDV Server through ODBC

 SQLGetInfo(dbc,

 SQL_DRIVER_NAME,

 ver,

 512,

 NULL);

 printf("%s\n",ver);

 SQLGetInfo(dbc,

 SQL_DRIVER_VER,

 ver,

 512,

 NULL);

 printf("%s\n",ver);

 SQLGetInfo(dbc,

 SQL_DBMS_NAME,

 ver,

TIBCO® Data Virtualization Client Interfaces Guide

139 | Connecting to TDV Server through ODBC

 512,

 NULL);

 printf("%s\n",ver);

 SQLGetInfo(dbc,

 SQL_DBMS_VER,

 ver,

 512,

 NULL);

 printf("%s\n",ver);

 ret = SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);

 if (!SQLSuccess(ret)) {

 extract_error("SQLAllocHandle", dbc, SQL_HANDLE_DBC);

 }

 ret = SQLTables(stmt,(SQLCHAR*)"",0,(SQLCHAR*)"",0,(SQLCHAR*)"",0,
(SQLCHAR*)"TABLE",SQL_NTS);

 ret= SQLNumResultCols(stmt,&colCount);

TIBCO® Data Virtualization Client Interfaces Guide

140 | Connecting to TDV Server through ODBC

 ret = SQLBindCol(stmt, 1, SQL_C_CHAR, tableCat, sizeof(tableName),
&Str_Len);

 ret = SQLBindCol(stmt, 2, SQL_C_CHAR, tableSchem, sizeof(tableName),
&Str_Len);

 ret = SQLBindCol(stmt, 3, SQL_C_CHAR, tableName, sizeof(tableName),
&Str_Len);

 ret = SQLBindCol(stmt, 4, SQL_C_CHAR, tableType, sizeof(tableName),
&Str_Len);

 ret = SQLBindCol(stmt, 5, SQL_C_CHAR, remarks, sizeof(tableName), &Str_
Len);

 while((ret=SQLFetch(stmt))==SQL_SUCCESS){

 printf("%s\n",tableName);

 }

 ret = SQLExecDirect(stmt, (SQLCHAR*) query, SQL_NTS);

 //ret= SQLPrepareW(stmt,(SQLWCHAR*)query,10);

 ret= SQLNumResultCols(stmt,&colCount);

 if (!SQLSuccess(ret)) {

 extract_error("SQLExecDirect", stmt, SQL_HANDLE_STMT);

 }

TIBCO® Data Virtualization Client Interfaces Guide

141 | Connecting to TDV Server through ODBC

 int totalRows = fetchResultSet(stmt);

 SQLFreeHandle(SQL_HANDLE_STMT, stmt);

 SQLDisconnect(dbc);

 ret = SQLFreeHandle(SQL_HANDLE_DBC, dbc);

 ret = SQLFreeHandle(SQL_HANDLE_ENV, env);

 printf("Execute query completed, total rows %d.\n",totalRows);

 return 0;

}

{code}

VBA Code Sample for Connecting to TDV Server
The following is a sample Visual Basic for Applications (VBA) Script for connecting to TDV
Server from a Microsoft client (such as Excel) through ADO.

Sub demo()

 On Error Resume Next

 Err.Clear

TIBCO® Data Virtualization Client Interfaces Guide

142 | Connecting to TDV Server through ODBC

 dsn = "DS-Composite"

 Set conn = CreateObject("ADODB.Connection")

conn.Open

Driver={TDV <ver>};host=localhost;port=9451;sso=
(Disabled);uid=admin;pwd=admin;datasource=examples;domain=composite;

If Err.Number <> 0 Then

‘process error

 Exit Sub

 End If

 Err.Clear

 Set rs = CreateObject("ADODB.Recordset")

 rs.Open "SELECT * FROM CUSTOMER", conn

 If Err.Number <> 0 Then

 ' process error

 Exit Sub

 End If

TIBCO® Data Virtualization Client Interfaces Guide

143 | Connecting to TDV Server through ODBC

 ' get column names

 For Each Column In rs.fields

 colname = Column.Name

 Next

 ' get first 100 rows

 Count = 0

 maxcount = 100

 Err.Clear

 Do While Not rs.EOF And Err.Number = 0 And Count < maxcount

 Count = Count + 1

 For Each Record In rs.fields

 colvalue = Record.Value

 Next

 rs.movenext

 Loop

TIBCO® Data Virtualization Client Interfaces Guide

144 | Connecting to TDV Server through ODBC

End Sub

TIBCO® Data Virtualization Client Interfaces Guide

145 | Power BI Connector for TIBCO(R) Data Virtualization

Power BI Connector for TIBCO(R) Data
Virtualization

Overview

The Power BI Connector for TIBCO(R) Data Virtualization offers self-service integration with
Microsoft Power BI. The connector facilitates live access to TDV data in Power BI from the
Get Data window. The connector also provides direct querying to visualize and analyze TDV
data.

Getting Started

The Getting Started section covers all you need to know about installing, configuring,
authenticating, and establishing a connection.

Using the Data Connector

This section provides a walk-through of how to query data through Direct Query and
Import data access methods. Once the data is queried, Data Visualization can be used to
create and shape data.

Advanced Features

Advanced Features details additional features supported by the connector, such as , ssl
configuration, firewall/proxy settings, and advanced logging.

Connection Properties

The Connection properties describe the various options that can be used to establish a
connection.

TIBCO® Data Virtualization Client Interfaces Guide

146 | Power BI Connector for TIBCO(R) Data Virtualization

Getting Started
The Power BI Connector for TIBCO(R) Data Virtualization is built on top of an ODBC driver.
This section discusses how to install the connector, create a DSN, and connect from Power
BI.

Installing the Connector
The Power BI Connector for TIBCO(R) Data Virtualization includes comprehensive high-
performance data access, real-time integration, extensive metadata discovery, and robust
SQL-92 support.

Install the Connector

Complete the following steps to install the connector:

1. Download and run the TIBCO® Data Virtualization setup. Refer to the Installation
Guide for instructions on installing TDV.

2. Setup prompts you to install Microsoft Visual C++ Redistributable for Visual Studio
2017, if it is not already installed. Proceed with the installation.

3. Once the installation is complete, click Finish.

The installation process creates a data source name (DSN) called Power BI TDV. A DSN is
the name that applications use to request a connection to a data source.

Note: The Microsoft C++ Redistributable package only needs to be installed once.
Subsequent installs of newer Power BI drivers will identify that the C++ Redistributable
package is already installed on the machine and will not launch the installer for it again.

Creating the Data Source Name
This section describes how to edit the DSN configuration and then authenticate and
connect to TDV APIs.

TIBCO® Data Virtualization Client Interfaces Guide

147 | Power BI Connector for TIBCO(R) Data Virtualization

Editing the DSN Configuration

You can use the Microsoft ODBC Data Source Administrator to edit the DSN configuration.
Note that the DSN is created during the installation process, as described in Installing the
Connector.

Complete the following steps to edit the DSN configuration:

1. Select Start > Search, and enter ODBC Data Sources in the Search box.

2. Choose the version of the ODBC Administrator that corresponds to the bitness of
your Power BI Desktop installation (32-bit or 64-bit).

3. Click the System DSN tab.

4. Select the system data source and click Configure.

5. Edit the information on the Connection tab and click OK.

Set the Host, Domain, User, Password, and DataSource connection properties to connect to
the TDV Server.

Advanced Settings
The following sections detail connector settings that may be needed in advanced
integrations.

Using the Power BI Connector in Multi-User Environments

Power BI loads connectors via PQX files from the [Documents]\Power BI Desktop\Custom
Connectors directory (e.g. C:\Users\[User]\Documents\Power BI Desktop\Custom
Connectors).

During the setup process, the PQX file will be installed to this directory for the current user.
In multi-user environments, the PQX file will need to be copied to the [Documents]\Power
BI Desktop\Custom Connectors folder for any user who will be using the connector.

Using the Connector
Power BI enables both direct and imported data sources, and you can use several methods
for querying, connecting, and shaping data. After connecting to the data, you can edit or

TIBCO® Data Virtualization Client Interfaces Guide

148 | Power BI Connector for TIBCO(R) Data Virtualization

load the data to start building reports.

Using the Data Connector

After connecting to the data, Connecting to Data describes how to edit or load the data to
start building reports. Querying Data outlines how to query data by connecting directly to
the data at its source, and walks through the process of creating reports that query TDV.

Querying Data

The Power BI Connector for TIBCO(R) Data Virtualization utilizes Power BI's Query types:

 l Direct Query: Visualizing data in real time by connecting directly to the data at the
source.

 l Data Import: Embedding data in a report, which can be refreshed on demand. This is
the most common way to get data. Importing data takes advantage of the Power BI
robust query engine.

Visualizing Data

Once you have connected and gained access to the data, you can begin visualizing data.
Create and refine visualizations by defining filters, aggregating data, and joining tables
when working with remote data.

Connecting to Data
After Installing the Connector and Creating the Data Source Name, you can connect to the
data that you want to work with. After connecting to the data, you can edit or load the
data to start building reports.

Connect to the Data

Complete the following steps to connect to the data:

 1. Click Get Data.

 2. Accept the warning to connect to a third-party service.

 3. Select All > TIBCO(R) Data Virtualization in the Data Source Name menu.

TIBCO® Data Virtualization Client Interfaces Guide

149 | Power BI Connector for TIBCO(R) Data Virtualization

 4. Select Connect.

 5. Enter the Data Source Name, Advanced Connection Properties (optional), and
Advanced Options (optional).

— Note that the default Data Source Name is Power BI TDV, but you can
change this name by editing the DSN configuration. See Creating the Data
Source Name for more information.

— See Direct Query for more information on the optional fields.

 6. Select a data connectivity mode and click OK. See Direct Query for more information
on each mode.

— Select Import to import a copy of the data into your project. You can
refresh this data on demand.

— Select DirectQuery to work with the remote data.

 7. In the Navigator window, expand the Power BI TDV folder, then expand the
associated schema folder to see a list of available data (tables, stored procedures, or
views).

 8. Select the box next to the data that you want to work with.

 9. Select Load or Edit. See the next section for more information on these options.

Load or Edit the Data

After connecting to the data, load or edit the data, as described below.

 l When you click Load, the connector executes the underlying query to TDV.

 l When you click Edit, the Query Editor launches and a representative view of the table
is presented. You can use the Query Editor to adjust the query and query results
before you load the data. Right-click a column header to perform actions like the
following:

— Rename columns or tables

— Change text to numbers

— Remove rows

— Set the first row as headers

TIBCO® Data Virtualization Client Interfaces Guide

150 | Power BI Connector for TIBCO(R) Data Virtualization

Advanced Connection Properties (optional)

This field allows you to specify properties for the connection. For example,
PropertyA=Value1;PropertyB=Value2;

Querying Data
Select a data connectivity mode when you create the connection to TDV in the Get Data
window. The connector fully integrates TDV connectivity into the two data connectivity
modes in Power BI: DirectQuery and data import.

Querying Data in Microsoft Power BI

Power BI enables easy connection to data sources, customization and merging of data
points, and data visualization tools. Power BI has many methods for querying, connecting,
and shaping data. Commonly used data query tasks include:

 l Connecting to data

 l Shaping and combining data

 l Grouping rows

 l Creating pivot columns

 l Creating custom columns

 l Creating query formulas

Querying Data Options

The Querying Data Options section explains how to connect, load, and edit data. Direct
Query or Import methods are used depending on how large the data set is and how up-to-
date the data is required to be. Importing is the most commonly used method to get data
and uses the Power BI query engine. This method is most useful for static data sets. For
more actively changing data and large data sets, the Direct Query method is most useful to
query remote data in real time, rather than querying a local copy. You can use this method
when the data set is too large and may slow TDV.

Import

Direct Query

TIBCO® Data Virtualization Client Interfaces Guide

151 | Power BI Connector for TIBCO(R) Data Virtualization

Visualizing Data

Import

Using Data Import

Importing is the most commonly used method to get data and uses the Power BI query
engine. This method is most useful for static data sets. Use data import mode to save a
copy of the data in your report. As you make changes to your report, Power BI executes the
underlying queries to the local cache, independent of the connector.

To synchronize your report with any changes in the remote data, click Refresh from the
Home menu on the ribbon.

Advanced Options

This field allows you to provide a SQL statement that specifies what data to return. To
configure this option, expand the Advanced Options area and then, in the SQL statement
field, type or paste the SQL statement. Note that SQL statements are not supported in
DirectQuery mode. See also DirectQueryLimit to limit returned records as long as there is
no aggregation.

You can use the following types of SQL statements:

SELECT Statements extract data from a database. For example:

SELECT * FROM Account

EXECUTE Statements call procedures that are stored in a database. For example:

EXECUTE my_proc @second = 2, @first = 1, @third = 3;

TIBCO® Data Virtualization Client Interfaces Guide

152 | Power BI Connector for TIBCO(R) Data Virtualization

Direct Query

Using the Direct Query Method

Use the Direct Query method to work with remote data in real time, rather than importing
a local copy. As you define filters, aggregate fields, or join tables, the connector executes
the underlying queries to TDV. Direct Query can be used when you cannot import data due
to a large data set that may slow TDV, or in the event the data is actively changing and
needs real-time updates.

Direct Query Limit

The Direct Query method is limited by the DirectQueryLimit connection property. If all of
the following are true, the limit is replaced from the query to the settings in
DirectQueryLimit.

 l The QueryPassthrough=false

 l The query is a SELECT

 l There is a LIMIT clause or equivalent (like TOP)

 l The value of the LIMIT is greater than allowed by DirectQueryLimit settings

Visualizing Data
After Connecting to Data, you can create data visualizations in the Report view by dragging
fields from the Fields pane onto the canvas. This section describes how to use
visualizations to display insights that have been discovered in the data.

Creating and Working with Data Visualizations

The following example shows how to create and work with data visualizations, using a pie
chart as an example.

 1. Select a pie chart icon in the Visualizations pane.

 2. Select a dimension in the Fields pane.

 3. Select a measure in the Fields pane.

TIBCO® Data Virtualization Client Interfaces Guide

153 | Power BI Connector for TIBCO(R) Data Virtualization

You can change sort options by clicking the ellipsis (...) button for the chart. Options to
select the sort column and change the sort order are displayed.

Highlighting and Filtering Data

Highlighting and filtering change the focus on the data. Filtering removes unfocused data
from visualizations; highlighting does not remove data, but instead highlights a subset of
the visible data; the unhighlighted data remains visible but dimmed.

Highlight fields by clicking them. You can apply filters at the page level or at the report
level. To create a filter, drag fields onto the Filters pane. Select the filter type and filter
options in the Filters pane.

Creating Real-Time Visualizations

If you selected DirectQuery data connectivity mode when you created the connection, the
connector builds a new SELECT WHERE clause as you change the filter.

Advanced Features
This section details a selection of advanced features of the TDV provider.

SSL Configuration

Use SSL Configuration to adjust how provider handles TLS/SSL certificate negotiations. You
can choose from various certificate formats; see the SSLClientCert property under
Connection String Options for more information.

Firewall and Proxy

Configure the provider for compliance with Firewall and Proxy, including Windows proxies.
You can also set up tunnel connections.

Logging

See Logging for an overview of configuration settings that can be used to refine TIBCO
logging. For basic logging, you only need to set two connection properties, but there are

../../../../../Content/ClientInterfaces/SSL.htm#ado.net_provider_4165405763_1024304

TIBCO® Data Virtualization Client Interfaces Guide

154 | Power BI Connector for TIBCO(R) Data Virtualization

numerous features that support more refined logging, where you can select subsets of
information to be logged using the LogModules connection property.

SSL Configuration

Customizing the SSL Configuration

By default, the provider attempts to negotiate SSL/TLS by checking the server's certificate
against the system's trusted certificate store.

To specify another certificate, see the SSLServerCert property for the available formats to
do so.

Client SSL Certificates

The TDV provider also supports setting client certificates. Set the following to connect
using a client certificate.

• SSLClientCert: The name of the certificate store for the client certificate.

• SSLClientCertType: The type of key store containing the TLS/SSL client certificate.

• SSLClientCertPassword: The password for the TLS/SSL client certificate.

• SSLClientCertSubject: The subject of the TLS/SSL client certificate.

Firewall and Proxy

Connecting Through a Firewall or Proxy

Set the following properties:

• To use a proxy-based firewall, set FirewallType, FirewallServer, and FirewallPort.

• To tunnel the connection, set FirewallType to TUNNEL.

• To authenticate, specify FirewallUser and FirewallPassword.

• To authenticate to a SOCKS proxy, additionally set FirewallType to SOCKS5.

../../../../../Content/ClientInterfaces/Logging_1.htm#ado.net_provider_4165405763_1024471
../../../../../Content/ClientInterfaces/SSL.htm#ado.net_provider_4165405763_1024402

TIBCO® Data Virtualization Client Interfaces Guide

155 | Power BI Connector for TIBCO(R) Data Virtualization

Logging
Capturing provider logging can be very helpful when diagnosing error messages or other
unexpected behavior.

Basic Logging

You will simply need to set two connection properties to begin capturing provider logging.

• Logfile: A filepath which designates the name and location of the log file.

• Verbosity: This is a numerical value (1-5) that determines the amount of detail in the
log. See the page in the Connection Properties section for a breakdown of the five
levels.

• MaxLogFileSize: When the limit is hit, a new log is created in the same folder with
the date and time appended to the end. The default limit is 100 MB. Values lower
than 100 kB will use 100 kB as the value instead.

• MaxLogFileCount: A string specifying the maximum file count of log files. When the
limit is hit, a new log is created in the same folder with the date and time appended
to the end and the oldest log file will be deleted. Minimum supported value is 2. A
value of 0 or a negative value indicates no limit on the count.

Once this property is set, the provider will populate the log file as it carries out various
tasks, such as when authentication is performed or queries are executed. If the specified
file doesn't already exist, it will be created.

Log Verbosity

The verbosity level determines the amount of detail that the provider reports to the Logfile.
Verbosity levels from 1 to 5 are supported. These are described in the following list:

1 Setting Verbosity to 1 will log the query, the number of rows returned by it, the
start of execution and the time taken, and any errors.

2 Setting Verbosity to 2 will log everything included in Verbosity 1 and additional
information about the request.

3 Setting Verbosity to 3 will additionally log the body of the request and the

TIBCO® Data Virtualization Client Interfaces Guide

156 | Power BI Connector for TIBCO(R) Data Virtualization

response.

4 Setting Verbosity to 4 will additionally log transport-level communication with
the data source. This includes SSL negotiation.

5 Setting Verbosity to 5 will additionally log communication with the data source
and additional details that may be helpful in troubleshooting problems. This
includes interface commands.

The Verbosity should not be set to greater than 1 for normal operation. Substantial
amounts of data can be logged at higher verbosities, which can delay execution times.

To refine the logged content further by showing/hiding specific categories of information,
see LogModules.

Sensitive Data

Verbosity levels 3 and higher may capture information that you do not want shared outside
of your organization. The following lists information of concern for each level:

 l Verbosity 3: The full body of the request and the response, which includes all the
data returned by the provider

 l Verbosity 4: SSL certificates

 l Verbosity 5: Any extra transfer data not included at Verbosity 3, such as non human-
readable binary transfer data

Best Practices for Data Security

Although we mask sensitive values, such as passwords, in the connection string and any
request in the log, it is always best practice to review the logs for any sensitive information
before sharing outside your organization.

Advanced Logging

You may want to refine the exact information that is recorded to the log file. This can be
accomplished using the LogModules property.

This property allows you to filter the logging using a semicolon-separated list of logging
modules.

../../../../../Content/ClientInterfaces/Logging_1.htm#ado.net_provider_4165405763_1024471
../../../../../Content/ClientInterfaces/Logging_1.htm#ado.net_provider_4165405763_1024471

TIBCO® Data Virtualization Client Interfaces Guide

157 | Power BI Connector for TIBCO(R) Data Virtualization

All modules are four characters long. Please note that modules containing three letters
have a required trailing blank space. The available modules are:

• EXEC: Query Execution. Includes execution messages for original SQL queries, parsed
SQL queries, and normalized SQL queries. Query and page success/failure messages
appear here as well.

• INFO: General Information. Includes the connection string, driver version (build
number), and initial connection messages.

• HTTP: HTTP Protocol messages. Includes HTTP requests/responses (including POST
messages), as well as Kerberos related messages.

• SSL : SSL certificate messages.

• OAUT: OAuth related failure/success messages.

• SQL : Includes SQL transactions, SQL bulk transfer messages, and SQL result set
messages.

• META: Metadata cache and schema messages.

• TCP : Incoming and Ongoing raw bytes on TCP transport layer messages.

An example value for this property would be.

LogModules=INFO;EXEC;SSL ;SQL ;META;

Note that these modules refine the information as it is pulled after taking the Verbosity
into account.

Connection String Options
The connection string properties are the various options that can be used to establish a
connection. This section provides a complete list of the options you can configure in the
connection string for this provider. Click the links for further details.

For more information on connecting, see Establishing a Connection.

TIBCO® Data Virtualization Client Interfaces Guide

158 | Power BI Connector for TIBCO(R) Data Virtualization

Authentication

Property Description

Host The name of the server running TDV Server.

Port The port of the TDV server.

Domain The TDV domain to which the DataSource belongs.

DataSource The name of the TDV data source.

User The username provided for authentication with TDV Server.

Password The user's password.

Encrypt Specifies whether to encrypt the connection using SSL.

SSO The single-sign-on (SSO) type to use to authenticate.

UserTokens Authentication values that can be packaged for delivery.

Kerberos

Property Description

KerberosKDC The Kerberos Key Distribution Center (KDC) service used to
authenticate the user.

KerberosRealm The Kerberos Realm used to authenticate the user with.

KerberosSPN The Service Principal Name for the Kerberos Domain
Controller.

UsePlatformKerberosAPI This setting determines if the platform's Kerberos API is used.

TIBCO® Data Virtualization Client Interfaces Guide

159 | Power BI Connector for TIBCO(R) Data Virtualization

SSL

Property Description

SSLClientCert The TLS/SSL client certificate store for SSL Client Authentication
(2-way SSL).

SSLClientCertPassword The type of key store containing the TLS/SSL client certificate.

SSLClientCertPassword The password for the TLS/SSL client certificate.

SSLClientCertType The subject of the TLS/SSL client certificate.

SSLServerCert The certificate to be accepted from the server when connecting
using TLS/SSL.

Logging

Property Description

Logfile A filepath which designates the name and location of the log file.

Verbosity The verbosity level that determines the amount of detail included in
the log file.

LogModules Core modules to be included in the log file.

Connection String
Options

A string specifying the maximum size in bytes for a log file (for
example, 10 MB).

MaxLogFileCount A string specifying the maximum file count of log files.

TIBCO® Data Virtualization Client Interfaces Guide

160 | Power BI Connector for TIBCO(R) Data Virtualization

Schema

Property Description

Location A path to the directory that contains the schema files defining
tables, views, and stored procedures.

BrowsableSchemas This property restricts the schemas reported to a subset of the
available schemas. For example,
BrowsableSchemas=SchemaA,SchemaB,SchemaC.

Tables This property restricts the tables reported to a subset of the
available tables. For example, Tables=TableA,TableB,TableC.

Views Restricts the views reported to a subset of the available tables. For
example, Views=ViewA,ViewB,ViewC.

Miscellaneous

Property Description

Alternate Security Credentials Uses the URL to set an alternate security credentials
value for client authorization when using TDV with a
client restricted license.

BatchSize The maximum size of each batch operation to submit.

CaseSensitive Specifies case sensitivity in the request values.

Catalog The name of the catalog to use.

CommitFailure Specifies the behavior if a commit fails.

CommitInterrupt Specifies the behavior if a commit is interrupted.

Compensate The correcting behavior.

TIBCO® Data Virtualization Client Interfaces Guide

161 | Power BI Connector for TIBCO(R) Data Virtualization

Property Description

ConnectionLifeTime The maximum lifetime of a connection in seconds.
Once the time has elapsed, the connection object is
disposed.

ConnectTimeout The time-out for initial connection, in seconds.

DefaultCatalog The default catalog for a specified connection.

DefaultSchema The default schema for a specified connection.

DelegateOauth2flowToServer Specify whether to delegate the OAuth flow to the TDV
server.

EnableFlood Values are true or false. Default value is true. If true,
the server will constantly send data, filling the network
buffer.Useful for larger result sets.

EnableReconnectOnError Attempt to reconnect to TDV if the connection was lost
during the lifetime of the provider.

FetchBytes The maximum number of rows to fetch for a batch
based on batch size, in bytes.

FetchRows Maximum number of rows to fetch for a batch.

IgnoreTrailingSpaces Specifies whether to ignore trailing spaces at the end
of values.

Locale Value that defines the user's language and country.

MaxRows Limits the number of rows returned rows when no
aggregation or group by is used in the query. This
helps avoid performance issues at design time.

NoMetadata Blocks return of result-set metadata during query
execution.

TIBCO® Data Virtualization Client Interfaces Guide

162 | Power BI Connector for TIBCO(R) Data Virtualization

Property Description

OptimizationPrepare Specifies whether to optimize prepare requests sent to
TDV.

Other These hidden properties are used only in specific use
cases.

ParamMode Controls the behavior of OUT parameters for stored
procedures.

PoolIdleTimeout The allowed idle time for a connection before it is
closed.

PoolMaxSize The maximum connections in the pool.

PoolMinSize The minimum number of connections in the pool.

PoolWaitTime The max seconds to wait for an available connection.

QueryPassthrough This option passes the query to the TDV server as is.

Readonly You can use this property to enforce read-only access
to TDV from the provider.

RegisterOutputCursors Specifies how to handle output cursors.

RequestTimeout The time-out for query commands and other requests,
in seconds.

SessionTimeout Server session inactivity timeout, in seconds.

SessionToken Uses the URL to set a session token value for client
authorization when using TDV with a client restricted
license.

StripDuplicates Values are true or false. Default value is true. If true,
the server will detect duplicate CHAR/VARCHAR
columns in subsequent rows, and will not re-transmit

TIBCO® Data Virtualization Client Interfaces Guide

163 | Power BI Connector for TIBCO(R) Data Virtualization

Property Description

the data across the wire.

StripTrailingZeros Determines whether decimal result values are to be
returned with trailing zeroes removed.

TraceFolder The absolute directory to save the trace file.

TraceLevel The level of information to log.

UseConnectionPooling This property enables connection pooling.

ValidateRemoteCert Values are true or false. Default value is false. If true,
the client will validate the server's cert.

ValidateRemoteHostname Values are true or false. Default value is false. If true,
the client will validate the server's hostname.

Other

Property Description

EnableFastExec Specifies whether to enable fast execution of queries.

Host

The name of the server running TDV Server.

Data Type

string

Default Value

""

Remarks

TIBCO® Data Virtualization Client Interfaces Guide

164 | Power BI Connector for TIBCO(R) Data Virtualization

This property should be set to the name or network address of the computer running TDV
Server.

Port

The port of the TDV server.

Data Type

int

Default Value

9401

Remarks

Set this to the base (plaintext) client port configured on the server.

When Encrypt is enabled, the provider will adjust the port accordingly.

Domain

The TDV domain to which the DataSource belongs.

Data Type

string

Default Value

""

Remarks

The TDV domain to which the DataSource belongs.

Typically the domain is 'composite' for installations with locally defined users.

DataSource

The name of the TDV data source.

Data Type

string

Default Value

TIBCO® Data Virtualization Client Interfaces Guide

165 | Power BI Connector for TIBCO(R) Data Virtualization

""

Remarks

Data source refers to the TDV database name published in the Data Services node.

User

The username provided for authentication with TDV Server.

Data Type

string

Default Value

""

Remarks

The username provided for authentication with TDV Server.

Password

The user's password.

Data Type

string

Default Value

""

Remarks

The password provided for authentication with the TDV Server.

Encrypt

Specifies whether to encrypt the connection using SSL.

Data Type

bool

Default Value

TIBCO® Data Virtualization Client Interfaces Guide

166 | Power BI Connector for TIBCO(R) Data Virtualization

false

Remarks

When set to true, automatically passes messages to the SSL port for processing with the
TDV SSL Certificate.

SSO

The single-sign-on (SSO) type to use to authenticate.

Possible Values

Disable, Kerberos, NTLM

Data Type

string

Default Value

"Disable"

Remarks

The single-sign-on (SSO) type to use to authenticate. Valid values are: Disable, Kerberos,
and NTLM.

Valid on Windows platform only.

Default is "Disable" which forces the client to provide a user and password to authenticate.

UserTokens

Authentication values that can be packaged for delivery.

Data Type

string

Default Value

""

Remarks

Authentication values that can be packaged for delivery.

TIBCO® Data Virtualization Client Interfaces Guide

167 | Power BI Connector for TIBCO(R) Data Virtualization

The URL can pass the user_tokens property to the server at the init command, in the form:
" user_tokens=(" NAME "=" VALUE ("," NAME "=" VALUE)* ")"

KerberosKDC

The Kerberos Key Distribution Center (KDC) service used to authenticate the user.

Data Type

string

Default Value

""

Remarks

The Kerberos properties are used when using Windows Authentication. The provider will
request session tickets and temporary session keys from the Kerberos Key Distribution
Center (KDC) service. The Kerberos Key Distribution Center (KDC) service is conventionally
colocated with the domain controller. If Kerberos KDC is not specified the provider will
attempt to detect these properties automatically from the following locations:

 l Java System Properties: Kerberos settings can be configured in Java using the
config file krb5.conf, or using the system properties java.security.krb5.realm and
java.security.krb5.kdc. The provider will use the system settings if KerberosRealm and
KerberosKDC are not explicitly set.

 l Domain Name and Host: The provider will infer the Kerberos Realm and Kerberos
KDC from the configured domain name and host as a last resort.

Note: Windows authentication is supported in JRE 1.6 and above only.

KerberosRealm

The Kerberos Realm used to authenticate the user with.

Data Type

string

Default Value

""

Remarks

TIBCO® Data Virtualization Client Interfaces Guide

168 | Power BI Connector for TIBCO(R) Data Virtualization

The Kerberos properties are used when using SPNEGO or Windows Authentication. The
Kerberos Realm is used to authenticate the user with the Kerberos Key Distribution Service
(KDC). The Kerberos Realm can be configured by an administrator to be any string, but
conventionally it is based on the domain name. If Kerberos Realm is not specified the
provider will attempt to detect these properties automatically from the following locations:

 l Java System Properties: Kerberos settings can be configured in Java using a config
file (krb5.conf) or using the system properties java.security.krb5.realm and
java.security.krb5.kdc. The provider will use the system settings if KerberosRealm and
KerberosKDC are not explicitly set.

 l Domain Name and Host: The provider will infer the Kerberos Realm and Kerberos
KDC from the user-configured domain name and host as a last resort. This might
work in some Windows environments.

Note: Kerberos-based authentication is supported in JRE 1.6 and above only.

KerberosSPN

The Service Principal Name for the Kerberos Domain Controller.

Data Type

string

Default Value

""

Remarks

If the Service Principal Name on the Kerberos Domain Controller is not the same as the
URL that you are authenticating to, set the Service Principal Name here.

UsePlatformKerberosAPI

This setting determines if the platform's Kerberos API is used.

Data Type

bool

Default Value

false

TIBCO® Data Virtualization Client Interfaces Guide

169 | Power BI Connector for TIBCO(R) Data Virtualization

Remarks

This setting determines if the platform's Kerberos API is used. By default no platform APIs
are relied on to perform Kerberos authentication. Use of the platform API may be enabled
by setting this to True. The default value is False.

Note: This functionality is only available on Windows.

SSLClientCert

The TLS/SSL client certificate store for SSL Client Authentication (2-way SSL).

Data Type

string

Default Value

""

Remarks

The name of the certificate store for the client certificate.

The SSLClientCertType field specifies the type of the certificate store specified by
SSLClientCert. If the store is password protected, specify the password in
SSLClientCertPassword.

SSLClientCert is used in conjunction with the SSLClientCertSubject field in order to specify
client certificates. If SSLClientCert has a value, and SSLClientCertSubject is set, a search for
a certificate is initiated. See SSLClientCertSubject for more information.

Designations of certificate stores are platform-dependent.

The following are designations of the most common User and Machine certificate stores in
Windows:

MY A certificate store holding personal certificates with their associated private keys.

CA Certifying authority certificates.

ROOT Root certificates.

SPC Software publisher certificates.

TIBCO® Data Virtualization Client Interfaces Guide

170 | Power BI Connector for TIBCO(R) Data Virtualization

In Java, the certificate store normally is a file containing certificates and optional private
keys.

When the certificate store type is PFXFile, this property must be set to the name of the file.
When the type is PFXBlob, the property must be set to the binary contents of a PFX file (for
example, PKCS12 certificate store).

SSLClientCertType

The type of key store containing the TLS/SSL client certificate.

Possible Values

USER, MACHINE, PFXFILE, PFXBLOB, JKSFILE, JKSBLOB, PEMKEY_FILE, PEMKEY_BLOB,
PUBLIC_KEY_FILE, PUBLIC_KEY_BLOB, SSHPUBLIC_KEY_FILE, SSHPUBLIC_KEY_BLOB,
P7BFILE, PPKFILE, XMLFILE, XMLBLOB

Data Type

string

Default Value

"USER"

Remarks

This property can take one of the following values:

USER - default For Windows, this specifies that the certificate store is a
certificate store owned by the current user. Note that this store
type is not available in Java.

MACHINE For Windows, this specifies that the certificate store is a
machine store. Note that this store type is not available in Java.

PFXFILE The certificate store is the name of a PFX (PKCS12) file
containing certificates.

PFXBLOB The certificate store is a string (base-64-encoded) representing a
certificate store in PFX (PKCS12) format.

JKSFILE The certificate store is the name of a Java key store (JKS) file
containing certificates. Note that this store type is only available

TIBCO® Data Virtualization Client Interfaces Guide

171 | Power BI Connector for TIBCO(R) Data Virtualization

in Java.

JKSBLOB The certificate store is a string (base-64-encoded) representing a
certificate store in JKS format. Note that this store type is only
available in Java.

PEMKEY_FILE The certificate store is the name of a PEM-encoded file that
contains a private key and an optional certificate.

PEMKEY_BLOB The certificate store is a string (base64-encoded) that contains a
private key and an optional certificate.

PUBLIC_KEY_FILE The certificate store is the name of a file that contains a PEM-
or DER-encoded public key certificate.

PUBLIC_KEY_BLOB The certificate store is a string (base-64-encoded) that contains
a PEM- or DER-encoded public key certificate.

SSHPUBLIC_KEY_FILE The certificate store is the name of a file that contains an SSH-
style public key.

SSHPUBLIC_KEY_BLOB The certificate store is a string (base-64-encoded) that contains
an SSH-style public key.

P7BFILE The certificate store is the name of a PKCS7 file containing
certificates.

PPKFILE The certificate store is the name of a file that contains a PuTTY
Private Key (PPK).

XMLFILE The certificate store is the name of a file that contains a
certificate in XML format.

XMLBLOB The certificate store is a string that contains a certificate in XML
format.

SSLClientCertPassword

The password for the TLS/SSL client certificate.

Data Type

TIBCO® Data Virtualization Client Interfaces Guide

172 | Power BI Connector for TIBCO(R) Data Virtualization

string

Default Value

""

Remarks

If the certificate store is of a type that requires a password, this property is used to specify
that password to open the certificate store.

SSLClientCertSubject

The subject of the TLS/SSL client certificate.

Data Type

string

Default Value

"*"

Remarks

When loading a certificate the subject is used to locate the certificate in the store.

If an exact match is not found, the store is searched for subjects containing the value of
the property. If a match is still not found, the property is set to an empty string, and no
certificate is selected.

The special value "*" picks the first certificate in the certificate store.

The certificate subject is a comma separated list of distinguished name fields and values.
For example, "CN=www.server.com, OU=test, C=US, E=support@company.com". The
common fields and their meanings are shown below.

Field Meaning

CN Common Name. This is commonly a host name like www.server.com.

O Organization

OU Organizational Unit

TIBCO® Data Virtualization Client Interfaces Guide

173 | Power BI Connector for TIBCO(R) Data Virtualization

Field Meaning

L Locality

S State

C Country

E Email Address

If a field value contains a comma, it must be quoted.

SSLServerCert

The certificate to be accepted from the server when connecting using TLS/SSL.

Data Type

string

Default Value

""

Remarks

If using a TLS/SSL connection, this property can be used to specify the TLS/SSL certificate
to be accepted from the server. Any other certificate that is not trusted by the machine is
rejected.

This property can take the following forms:

Description Example

A full PEM Certificate (example shortened
for brevity)

-----BEGIN CERTIFICATE-----
MIIChTCCAe4CAQAwDQYJKoZIhv......Qw== -----
END CERTIFICATE-----

A path to a local file containing the
certificate

C:\cert.cer

TIBCO® Data Virtualization Client Interfaces Guide

174 | Power BI Connector for TIBCO(R) Data Virtualization

Description Example

The public key (example shortened for
brevity)

-----BEGIN RSA PUBLIC KEY-----
MIGfMA0GCSq......AQAB -----END RSA PUBLIC KEY-

The MD5 Thumbprint (hex values can also
be either space or colon separated)

ecadbdda5a1529c58a1e9e09828d70e4

The SHA1 Thumbprint (hex values can also
be either space or colon separated)

34a929226ae0819f2ec14b4a3d904f801cbb150d

If not specified, any certificate trusted by the machine is accepted.

Use '*' to signify to accept all certificates. Note that this is not recommended due to
security concerns.

Logfile

A path to the log file.

Data Type

string

Default Value

""

Remarks

Once this property is set, the provider will populate the log file as it carries out various
tasks, such as when authentication is performed or queries are executed. If the specified
file doesn't already exist, it will be created.

Connection strings and version information are also logged, though connection properties
containing sensitive information are masked automatically.

If a relative filepath is supplied, the location of the log file will be resolved based on the
path found in the Location connection property.

For more control over what is written to the log file, you can adjust the Verbosity property.
Log contents are categorized into several modules. You can show/hide individual modules
using the LogModules property.

TIBCO® Data Virtualization Client Interfaces Guide

175 | Power BI Connector for TIBCO(R) Data Virtualization

To edit the maximum size of a single logfile before a new one is created, see
MaxLogFileSize.

If you would like to place a cap on the number of logfiles generated, use MaxLogFileCount.

Verbosity

The verbosity level that determines the amount of detail included in the log file.

Data Type

string

Default Value

"1"

Remarks

The verbosity level determines the amount of detail that the provider reports to the Logfile.
Verbosity levels from 1 to 5 are supported. These are detailed in the Logging page.

LogModules

Core modules to be included in the log file.

Data Type

string

Default Value

""

Remarks

Only the modules specified (separated by ';') will be included in the log file. By default all
modules are included.

See the Logging page for an overview.

 MaxLogFileSize

A string specifying the maximum size in bytes for a log file (for example, 10 MB).

Data Type

TIBCO® Data Virtualization Client Interfaces Guide

176 | Power BI Connector for TIBCO(R) Data Virtualization

string

Default Value

"100MB"

Remarks

When the limit is hit, a new log is created in the same folder with the date and time
appended to the end. The default limit is 100 MB. Values lower than 100 kB will use 100 kB
as the value instead. Adjust the maximum number of logfiles generated with
MaxLogFileCount.

MaxLogFileCount

A string specifying the maximum file count of log files. When the limit is hit, a new log is
created in the same folder with the date and time appended to the end and the oldest log
file will be deleted.

Data Type

string

Default Value

""

Remarks

A string specifying the maximum file count of log files. When the limit is hit, a new log is
created in the same folder with the date and time appended to the end and the oldest log
file will be deleted. The minimum supported value is 2. A value of 0 or a negative value
indicates no limit on the count.

Location

A path to the directory that contains the schema files defining tables, views, and stored
procedures.

Data Type

string

Default Value

"%APPDATA%\\TIBCO\\Composite Data Provider\\Schema"

TIBCO® Data Virtualization Client Interfaces Guide

177 | Power BI Connector for TIBCO(R) Data Virtualization

Remarks

The path to a directory which contains the schema files for the provider (.rsd files for tables
and views, .rsb files for stored procedures). The folder location can be a relative path from
the location of the executable. The Location property is only needed if you want to
customize definitions (for example, change a column name, ignore a column, and so on) or
extend the data model with new tables, views, or stored procedures.

If left unspecified, the default location is "%APPDATA%\\TIBCO\\Composite Data
Provider\\Schema" with %APPDATA% being set to the user's configuration directory:

Platform %APPDATA%

Windows The value of the APPDATA environment
variable

Mac ~/.config

Linux ~/.config

BrowsableSchemas

This property restricts the schemas reported to a subset of the available schemas. For
example, BrowsableSchemas=SchemaA,SchemaB,SchemaC.

Data Type

string

Default Value

""

Remarks

Listing the schemas from databases can be expensive. Providing a list of schemas in the
connection string improves the performance.

Tables

This property restricts the tables reported to a subset of the available tables. For example,
Tables=TableA,TableB,TableC.

TIBCO® Data Virtualization Client Interfaces Guide

178 | Power BI Connector for TIBCO(R) Data Virtualization

Data Type

string

Default Value

""

Remarks

Listing the tables from some databases can be expensive. Providing a list of tables in the
connection string improves the performance of the provider.

This property can also be used as an alternative to automatically listing views if you
already know which ones you want to work with and there would otherwise be too many
to work with.

Specify the tables you want in a comma-separated list. Each table should be a valid SQL
identifier with any special characters escaped using square brackets, double-quotes or
backticks. For example, Tables=TableA,
[TableB/WithSlash],WithCatalog.WithSchema.`TableC With Space`.

Note that when connecting to a data source with multiple schemas or catalogs, you will
need to provide the fully qualified name of the table in this property, as in the last example
here, to avoid ambiguity between tables that exist in multiple catalogs or schemas.

Views

Restricts the views reported to a subset of the available tables. For example,
Views=ViewA,ViewB,ViewC.

Data Type

string

Default Value

""

Remarks

Listing the views from some databases can be expensive. Providing a list of views in the
connection string improves the performance of the provider.

This property can also be used as an alternative to automatically listing views if you
already know which ones you want to work with and there would otherwise be too many
to work with.

TIBCO® Data Virtualization Client Interfaces Guide

179 | Power BI Connector for TIBCO(R) Data Virtualization

Specify the views you want in a comma-separated list. Each view should be a valid SQL
identifier with any special characters escaped using square brackets, double-quotes or
backticks. For example, Views=ViewA,[ViewB/WithSlash],WithCatalog.WithSchema.`ViewC
With Space`.

Note that when connecting to a data source with multiple schemas or catalogs, you will
need to provide the fully qualified name of the table in this property, as in the last example
here, to avoid ambiguity between tables that exist in multiple catalogs or schemas.

Alternate Security Credentials

Uses the URL to set an alternate security credentials value for client authorization when
using TDV with a client restricted license.

Data Type

string

Default Value

""

Remarks

Uses the URL to set an alternate security credentials value for client authorization when
using TDV with a client restricted license.

BatchSize

The maximum size of each batch operation to submit.

Data Type

int

Default Value

0

Remarks

When BatchSize is set to a value greater than 0, the batch operation will split the entire
batch into separate batches of size BatchSize. The split batches will then be submitted to
the server individually. This is useful when the server has limitations on the size of the
request that can be submitted.

TIBCO® Data Virtualization Client Interfaces Guide

180 | Power BI Connector for TIBCO(R) Data Virtualization

Setting BatchSize to 0 will submit the entire batch as specified.

CaseSensitive

Specifies case sensitivity in the request values.

Data Type

bool

Default Value

false

Remarks

Specifies case sensitivity in the request values. By default (false), requests are not case-
sensitive.

Catalog

The name of the catalog to use.

Data Type

string

Default Value

""

Remarks

This field allows you to limit the Catalog to the one explicitly specified. If not set, the
provider will retrieve the available catalogs from the TDV server.

CommitFailure

Specifies the behavior if a commit fails.

Possible Values

none, rollback, bestEffort

Data Type

string

TIBCO® Data Virtualization Client Interfaces Guide

181 | Power BI Connector for TIBCO(R) Data Virtualization

Default Value

"none"

Remarks

Specifies the behavior if a commit fails. Possible values are: rollback or bestEffort.

CommitInterrupt

Specifies the behavior if a commit is interrupted.

Possible Values

none, ignore, log, fail

Data Type

string

Default Value

"none"

Remarks

Specifies the behavior if a commit is interrupted. Possible values are: ignore, log, fail.

Compensate

The correcting behavior.

Data Type

string

Default Value

"disabled"

Remarks

The correcting behavior, possible values are: disabled or enabled.

ConnectionLifeTime

The maximum lifetime of a connection in seconds. Once the time has elapsed, the
connection object is disposed.

TIBCO® Data Virtualization Client Interfaces Guide

182 | Power BI Connector for TIBCO(R) Data Virtualization

Data Type

int

Default Value

"0"

Remarks

The maximum lifetime of a connection in seconds. Once the time has elapsed, the
connection object is disposed. The default is 0 which indicates there is no limit to the
connection lifetime.

ConnectTimeout

The time-out for initial connection, in seconds.

Data Type

int

Default Value

30

Remarks

The time-out for initial connection, in seconds. Use 0 (zero) for infinite time-out.

DefaultCatalog

The default catalog for a specified connection.

Data Type

string

Default Value

""

Remarks

The default catalog for a specified connection.

TIBCO® Data Virtualization Client Interfaces Guide

183 | Power BI Connector for TIBCO(R) Data Virtualization

DefaultSchema

The default schema for a specified connection.

Data Type

string

Default Value

""

Remarks

The default schema for a specified connection.

DelegateOauth2flowToServer

Specify whether to delegate the OAuth flow to the TDV server.

Data Type

bool

Default Value

false

Remarks

Specify whether to delegate the OAuth flow to the TDV server.

EnableFlood

Values are true or false. Default value is true. If true, the server will constantly send data,
filling the network buffer.Useful for larger result sets.

Data Type

bool

Default Value

true

Remarks

Values are true or false. Default value is true. If true, the server will constantly send data,
filling the network buffer.Useful for larger result sets.

TIBCO® Data Virtualization Client Interfaces Guide

184 | Power BI Connector for TIBCO(R) Data Virtualization

EnableReconnectOnError

Attempt to reconnect to TDV if the connection was lost during the lifetime of the provider.

Data Type

bool

Default Value

false

Remarks

Attempt to reconnect to TDV if the connection was lost during the lifetime of the provider.
This property can be useful to Enable for long-lived connections, in a case where the TCP
connection to the server is lost, such as during a restart of the TDV Server, where errors
such as 'Action impossible while not connected' or 'Connection to the server has been
forcibly closed.' would otherwise be encountered.

FetchBytes

The maximum number of rows to fetch for a batch based on batch size, in bytes.

Data Type

int

Default Value

131072

Remarks

The maximum number of rows to fetch for a batch based on batch size, in bytes.

Setting FetchBytes to a very large number can cause an Out Of Memory error in the server.
The value set for FetchBytes affects the memory used on the client and the TDV server, so
the value should be set based on the heap size configured.

FetchRows

Maximum number of rows to fetch for a batch.

Data Type

int

TIBCO® Data Virtualization Client Interfaces Guide

185 | Power BI Connector for TIBCO(R) Data Virtualization

Default Value

500

Remarks

Maximum number of rows to fetch for a batch. Set to 0 (zero) to return an unlimited
number of rows.

IgnoreTrailingSpaces

Specifies whether to ignore trailing spaces at the end of values.

Data Type

bool

Default Value

false

Remarks

Specifies whether to ignore trailing spaces at the end of values.

Locale

Value that defines the user's language and country.

Data Type

string

Default Value

""

Remarks

Value that defines the user's language and country.

MaxRows

Limits the number of rows returned rows when no aggregation or group by is used in the
query. This helps avoid performance issues at design time.

Data Type

TIBCO® Data Virtualization Client Interfaces Guide

186 | Power BI Connector for TIBCO(R) Data Virtualization

int

Default Value

-1

Remarks

Limits the number of rows returned rows when no aggregation or group by is used in the
query. This helps avoid performance issues at design time.

NoMetadata

Blocks return of result-set metadata during query execution.

Data Type

bool

Default Value

false

Remarks

Blocks return of result-set metadata during query execution.

OptimizationPrepare

Specifies whether to optimize prepare requests sent to TDV.

Data Type

bool

Default Value

true

Remarks

When set to "True" (default), the provider will submit the query in a single request to TDV.

When set to "False", the provider will submit an initial prepare request to TDV.

Other

These hidden properties are used only in specific use cases.

TIBCO® Data Virtualization Client Interfaces Guide

187 | Power BI Connector for TIBCO(R) Data Virtualization

Data Type

string

Default Value

""

Remarks

The properties listed below are available for specific use cases. Normal driver use cases
and functionality should not require these properties.

Specify multiple properties in a semicolon-separated list.

Integration and Formatting

DefaultColumnSize Sets the default length of string fields when the data source
does not provide column length in the metadata. The default
value is 2000.

ConvertDateTimeToGMT Determines whether to convert date-time values to GMT, instead
of the local time of the machine.

RecordToFile=filename Records the underlying socket data transfer to the specified file.

ParamMode

Controls the behavior of OUT parameters for stored procedures.

Possible Values

normal, return, omit, omitCursors

Data Type

string

Default Value

"normal"

Remarks

Controls the behavior of OUT parameters for stored procedures.

Valid values are:

TIBCO® Data Virtualization Client Interfaces Guide

188 | Power BI Connector for TIBCO(R) Data Virtualization

normal Report OUT parameters in procedure metadata as OUT parameters.

return Report OUT parameters as return values.

omit Omit OUT parameters from metadata.

omitCursors Omit output cursors from metadata.

PoolIdleTimeout

The allowed idle time for a connection before it is closed.

Data Type

int

Default Value

60

Remarks

The allowed idle time a connection can remain in the pool until the connection is closed.
The default is 60 seconds.

PoolMaxSize

The maximum connections in the pool.

Data Type

int

Default Value

100

Remarks

The maximum connections in the pool. The default is 100. To disable this property, set the
property value to 0 or less.

PoolMinSize

The minimum number of connections in the pool.

TIBCO® Data Virtualization Client Interfaces Guide

189 | Power BI Connector for TIBCO(R) Data Virtualization

Data Type

int

Default Value

1

Remarks

The minimum number of connections in the pool. The default is 1.

PoolWaitTime

The max seconds to wait for an available connection.

Data Type

int

Default Value

60

Remarks

The max seconds to wait for a connection to become available. If a new connection
request is waiting for an available connection and exceeds this time, an error is thrown. By
default, new requests wait forever for an available connection.

QueryPassthrough

This option passes the query to the TDV server as is.

Data Type

bool

Default Value

false

Remarks

When this is set, queries are passed through directly to TDV.

TIBCO® Data Virtualization Client Interfaces Guide

190 | Power BI Connector for TIBCO(R) Data Virtualization

Readonly

You can use this property to enforce read-only access to TDV from the provider.

Data Type

bool

Default Value

false

Remarks

If this property is set to true, the provider will allow only SELECT queries. INSERT, UPDATE,
DELETE, and stored procedure queries will cause an error to be thrown.

RegisterOutputCursors

Specifies how to handle output cursors.

Data Type

bool

Default Value

false

Remarks

Specifies how to handle output cursors.

Valid values are:

true Bind or register output cursors as output parameters.

false Do not bind or register output cursors as output parameters; instead, use
SQLMoreResults or Statement.getMoreResults() to access the cursors.

RequestTimeout

The time-out for query commands and other requests, in seconds.

Data Type

TIBCO® Data Virtualization Client Interfaces Guide

191 | Power BI Connector for TIBCO(R) Data Virtualization

int

Default Value

0

Remarks

The time-out for query commands and other requests, in seconds.

SessionTimeout

Session inactivity time-out, in seconds.

Data Type

int

Default Value

0

Remarks

Server session inactivity timeout, in seconds. Set to 0 (zero) for infinite time-out.

This value is submitted to the server when a session is initiated and the server controls the
session timeout.

SessionToken

Uses the URL to set a session token value for client authorization when using TDV with a
client restricted license.

Data Type

string

Default Value

""

Remarks

Uses the URL to set a session token value for client authorization when using TDV with a
client restricted license.

TIBCO® Data Virtualization Client Interfaces Guide

192 | Power BI Connector for TIBCO(R) Data Virtualization

StripDuplicates

Values are true or false. Default value is true. If true, the server will detect duplicate
CHAR/VARCHAR columns in subsequent rows, and will not re-transmit the data across the
wire.

Data Type

bool

Default Value

true

Remarks

Values are true or false. Default value is true. If true, the server will detect duplicate
CHAR/VARCHAR columns in subsequent rows, and will not re-transmit the data across the
wire.

The provider will submit this option to the server to identify how the response data will be
returned by the server. When true, the server will strip duplicate values to decrease the size
of the response data, thus increasing performance. This option does not affect result
output.

StripTrailingZeros

Determines whether decimal result values are to be returned with trailing zeroes removed.

Data Type

bool

Default Value

false

Remarks

Determines whether decimal result values are to be returned with trailing zeroes removed.

TraceFolder

The absolute directory to save the trace file.

Data Type

TIBCO® Data Virtualization Client Interfaces Guide

193 | Power BI Connector for TIBCO(R) Data Virtualization

string

Default Value

""

Remarks

The absolute directory to save the trace file.

TraceLevel

The level of information to log.

Possible Values

off, fatal, error, warn, info, debug, all

Data Type

string

Default Value

"error"

Remarks

The level of information to log. Valid values are: off, fatal, error (default), warn, info, debug,
and all.

UseConnectionPooling

This property enables connection pooling.

Data Type

bool

Default Value

false

Remarks

This property enables connection pooling. The default is false. See Connection Pooling for
information on using connection pools.

TIBCO® Data Virtualization Client Interfaces Guide

194 | Power BI Connector for TIBCO(R) Data Virtualization

ValidateRemoteCert

Values are true or false. Default value is false. If true, the client will validate the server's
cert.

Data Type

bool

Default Value

false

Remarks

Values are true or false. Default value is false. If true, the client will validate the server's
cert.

ValidateRemoteHostname

Values are true or false. Default value is false. If true, the client will validate the server's
hostname.

Data Type

bool

Default Value

false

Remarks

Values are true or false. Default value is false. If true, the client will validate the server's
hostname.

EnableFastExec

Specifies whether to enable fast execution of queries.

Data Type

bool

Default Value

false

TIBCO® Data Virtualization Client Interfaces Guide

195 | Power BI Connector for TIBCO(R) Data Virtualization

Remarks

Values are true or false (default).

Results are processed and returned immediately (instead of round trip) when a query is
submitted, potentially improving performance of low latency queries.

TIBCO® Data Virtualization Client Interfaces Guide

196 | Connecting to TDV Server through Web Interfaces

Connecting to TDV Server through Web
Interfaces
This topic describes how to retrieve data through a SOAP, REST, and OData client program.

• Connecting to TDV Server through SOAP

• SOAP Message Compression

• SOAP Message Optimization

• Connecting to TDV Server through REST

• Connecting to TDV Server through OData\

Connecting to TDV Server through SOAP
Web service clients can access TDV-defined Web services published through SOAP over
HTTP. This topic describes how to view the WSDL of a TDV Web service published by SOAP
and verify that the Web service is ready.

TDV requires that messages sent to the TDV Server are from identifiable source and can be
authenticated.

View the SOAP of a TDV Web service from Studio
1. In Studio, select the data service under Web Services in the resource tree.

2. Right-click and select Open.

3. Select the SOAP tab.

4. Expand WSDL URLs under the Service portion of the screen.

5. Copy one or more of the URLs that is displayed.

6. Open the development tool or file where you are developing your SOAP client, and
paste the URL.

TIBCO® Data Virtualization Client Interfaces Guide

197 | Connecting to TDV Server through Web Interfaces

View the SOAP of a TDV Web service using a URL in a browser

 1. In a browser, enter the services URL of the data service. You can use Studio to locate
the URL of your service.

Or type the URL using the following format:

http://<Host>:<HTTP_
Port>/services/<Folders>/<DataServiceName>.wsdl

https://<Host>:<HTTPs_Port>/services/<Folders>/<DataServiceName>.wsdl:

— <Host> is the name of the machine where TDV Server is running. If you are on the
same computer as TDV, the computer name would be localhost.

— <HTTP_Port> or <HTTPS_Port> is the number of the port where the Web service is
published.

— <Folders> is any optional folder or set of folders containing the Data Service.

— <DataServiceName> is the name for the WSDL-transformed data service.

You can use this URL (or any accessible WSDL URL) as a data source to demonstrate
the availability of the data, or to demonstrate TDV introspection into WSDL data
sources.

 2. Click the ENTER key.

The WSDL of the Data Service is displayed in the browser.

 3. If the WSDL is as you want it, the Web service is now ready for importing into your
client application.

 4. Open the development tool or file where you are developing your SOAP client, and
paste the URL.

 5. If the published content from TDV does not provide binary parameters, attempting to
set Force MTOM to true will not work as expected.

View the SOAP of a Legacy TDV Web service from Studio

 1. In Studio, select the data service under Web Services in the resource tree.

 2. Right-click and select View WSDL.

TIBCO® Data Virtualization Client Interfaces Guide

198 | Connecting to TDV Server through Web Interfaces

 3. Type in a valid username and password with access to the WSDL.

A browser window opens, displaying the currently published WSDL.

 4. If the WSDL is as you want it, the Web service is now ready for importing into a client
application.

 5. Copy the URL from the URL address field at the top of your browser.

 6. Open the development tool or file where you are developing your SOAP client, and
paste the URL.

SOAP Message Compression
TDV Web services supports GZIP compression of the SOAP message body.

The client making an HTTP request of a published TDV Web service needs to signal that it
supports GZIP compression with a request header that includes:

Accept-Encoding: gzip

The response message sent to the client has a compressed message body, and the HTTP
header looks like the following:

Content-Type: text/xml; charset=utf-8

Content-Encoding: gzip

Transfer-Encoding: chunked

Server: Jetty(6.2.11)

SOAP Message Optimization
TDV Web services supports the FastInfoset encoding of SOAP messages.

TIBCO® Data Virtualization Client Interfaces Guide

199 | Connecting to TDV Server through Web Interfaces

The client application making an HTTP request of a published TDV Web service needs to
signal that it supports FastInfoset encoding with a request header that includes:

Accept: application/fastinfoset

The response message sent to the client application has a binary message body, and the
HTTP header looks like the following:

Content-Type: application/fastinfoset

Server: Jetty(6.2.11)

Connecting to TDV Server through REST
Connecting to TDV Server through REST varies depending on the development tool that
you are using to develop your client application, but typically all you need to do is use the
Service URL to establish the connection. There are no additional drivers to install.

These instructions are included as a guideline; your system and the necessary steps might
vary. Refer to your development tool documentation and perform thorough testing of your
system after establishing the connection between TDV Server and REST.

TDV requires that messages sent to the TDV Server are from identifiable source and can be
authenticated.

To define the connection between TDV Server and REST
1. In Studio, select the data service under Web Services in the resource tree.

2. Right-click and select Open.

3. Select the REST tab.

4. Expand Endpoint URLs under the Operations portion of the screen.

5. Copy one or more of the URLs that is displayed.

6. Open the development tool or file where you are developing your REST client, and
paste the URL.

TIBCO® Data Virtualization Client Interfaces Guide

200 | Connecting to TDV Server through Web Interfaces

Connecting to TDV Server through OData
The Open Data Protocol (OData) is an open Web protocol for querying and updating data.

Connecting to TDV Server through OData varies depending on the development tool that
you are using to develop your client application, but typically all you need to do is use the
Service URL to establish the connection. There are no additional drivers to install.

These instructions are included as a guideline; your system and the necessary steps might
vary. Refer to your development tool documentation and perform thorough testing of your
system after establishing the connection between TDV Server and OData.

OData with TDV:

• Allows datasource query over HTTP.

• Returns results in XML.

• Similar to ODBC over HTTP.

• Comes for free when relational resource published in virtual database.

• Works with tables and views.

• Requires that primary key metadata is defined.

• Does not work with procedures.

To define the connection between TDV Server and OData
1. Open the Data Service in Studio.

2. Navigate to the OData configuration panel.

TIBCO® Data Virtualization Client Interfaces Guide

201 | Connecting to TDV Server through Web Interfaces

3. Copy the URL listed in the Service URLs section.

4. Open the development tool or file where you are developing your OData client, and
paste the URL. For example, when using OData Explorer:

TIBCO® Data Virtualization Client Interfaces Guide

202 | Connecting to TDV Server through ADO.NET

Connecting to TDV Server through ADO.NET
You can use the native ADO.NET driver functionality on Windows operating systems to
develop or consume TDV resources.

You can use Microsoft Visual Studio and other third-party software to develop solutions
that use resources defined by the TDV through the ADO.NET driver interface. The .NET Data
provider is written in managed C# code and provides a native implementation of ADO.NET
API.

These topics are included:

• Setting Up the ADO.NET Driver

• Configure an ADO.NET Connection to a Client Restricted Server

• Adding and Configuring a Connection to TDV in Visual Studio

• Modifying or Deleting a Connection

• Working with the Server Explorer

• Working with the Visual ToolBox Items

• Defining an ADO.NET Client using a Connection URL

• Sample Code for Testing of an ADO.NET Driver

Setting Up the ADO.NET Driver
This section includes the following:

• Client-Side ADO.NET Driver Support

• Installing the ADO.NET Driver

• Uninstalling and Repairing ADO.NET

• Updating the ADO.NET Driver

• Configure an ADO.NET Connection to a Client Restricted Server

TIBCO® Data Virtualization Client Interfaces Guide

203 | Connecting to TDV Server through ADO.NET

Client-Side ADO.NET Driver Support
The TDV ADO.NET driver can be installed, uninstalled, or re-installed. It is delivered as a
DLL and .NuGet package. It supports native ADO.NET driver functionality on the operating
systems supported by .Net Standard 2.0.

Refer the following link for a list of OS and .Net versions supported by .Net Standard 2.0:

https://dotnet.microsoft.com/en-us/platform/dotnet-standard

TDV supports communication and use with Visual Studio version 2019 that the tool
extension supports. You will need to install the extension by executing the following file:

TDV_INSTALL_DIR\ADO.NET Driver\Composite.VisualStudio.vsix

The SKUs supported by the Visual Studio Extension are Community, Professional and
Enterprise. The Extension essentially has a Provider for DDEX(Data Designer Extensibility).
Refer the following link for further details:

https://docs.microsoft.com/en-us/previous-versions/bb163760(v=vs.140)

Installing the ADO.NET Driver
The TDV ADO.NET driver installation package for Windows operating systems is named,
TIB_tdv_ADONet_<TDV Version>.msi. For example, in 8.6 release of TDV, the driver is called
as TIB_tdv_ADONet_8.6.0.msi. Obtain this from the client driver zip file.

Note: The version number of the Nupkg file that comes with TDV ADO.Net driver will not
match the TDV version format (For example, the Nupkg file name that is included with TDV
Server 8.6.1 is called as TDV ADO.NET 8.6.3). Due to NuGet packaging rules (i.e. <TDV Major
version><TDV Minor version><TDV build number), only the first two digits will match.

To install the ADO.NET driver
1. Make sure Visual Studio and any other interface that accesses the ADO.Net driver is

closed.

2. If an older version of the driver exists, it is recommended that you uninstall that
version, before installing the current version.

3. Double click or open TIB_tdv_ADONet_<TDV Version>.msi. For example, in 8.6
release of TDV, the driver is called as TIB_tdv_ADONet_8.6.0.msi

https://dotnet.microsoft.com/en-us/platform/dotnet-standard
https://docs.microsoft.com/en-us/previous-versions/bb163760(v=vs.140)

TIBCO® Data Virtualization Client Interfaces Guide

204 | Connecting to TDV Server through ADO.NET

During the last installation step, the Visual Studio command table is rebuilt to complete
the process. This part of the installation process takes a while to complete.

4. Each user has to install the extension by executing the following file:

TDV_INSTALL_DIR\ADO.NET Driver\Composite.VisualStudio.vsix

Uninstalling and Repairing ADO.NET
You can uninstall ADO.NET or repair it.

To uninstall or repair the ADO.NET driver
1. Run the TIB_tdv_ADONet_<TDV Version>_<ADO.Net version>.msi installer on a

computer that has an ADO.NET driver installed. For example, in 8.4 release of TDV,
the driver is called as TIB_tdv_ADONet_8.4.0_4.5.msi

2. The installer automatically gives you the option to uninstall or repair the TDV
ADO.NET driver.

You can also use the Windows Add/Remove Programs from control panel to remove the
ADO.NET driver.

Updating the ADO.NET Driver
After updating your driver, you might need to update your client application code.

To update the ADO.NET driver
1. Make sure there is no application using and holding ADO.NET driver.

2. Uninstall the old ADO.NET driver.

3. Install the new ADO.NET driver.

4. Update connection settings in the client and development tools.

TIBCO® Data Virtualization Client Interfaces Guide

205 | Connecting to TDV Server through ADO.NET

Configure an ADO.NET Connection to a Client
Restricted Server
OEM installations of the TDV Server that have a client-restricted license might require that
all client connections with TDV present a valid session token to negotiate the connection.
Only clients submitting a valid session token are able to connect with client-restricted OEM
TDV Servers.

The ADO.NET client uses the TDV ADO.NET driver to connect with TDV. The ADO.NET client
must incorporate a valid session token into the connection string for the license restricted
OEM TDV Servers.

To provide a valid session token
1. Locate the sessionToken string value, sent with the TDV Server license file, that

enables licensed OEM use of the TDV Server through authorized clients.

2. Add the sessionToken into the ADO.NET client ConnectionString field so that the
string is reported like the following:

host=10.1.2.123;port=9401;domain=composite;dataSource=TEST;sessio
nToken=ffa29823a2a8e340f20f15048aeebced746387d235abc12;

Adding and Configuring a Connection to TDV in
Visual Studio
To communicate with a published TDV data service, provide the ADO.NET driver with the
appropriate properties for host, port, user, password, and domain to create a connection.

To create and configure a connection
1. Open the Visual Studio Server Explorer pane by choosing the Server Explorer

selection from the View menu.

2. Right-click the Data Connections node, select the option to Add Connection, and
click OK.

3. Select TIBCO Data Virtualization Server as the data source.

TIBCO® Data Virtualization Client Interfaces Guide

206 | Connecting to TDV Server through ADO.NET

If TDV is not displayed, then either the driver was not installed or Visual Studio must
be restarted to recognize the driver.

4. Click Continue and enter the connection information for the selected data source.

Field Description

Host TDV Server host name or IP octet. Use localhost if you plan to use Visual
Studio and TDV Server on the same local computer.

TIBCO® Data Virtualization Client Interfaces Guide

207 | Connecting to TDV Server through ADO.NET

Field Description

Port Use the number of the JDBC or ODBC open port (default: 9401) or the
SSL protected port (default: 9403). For use of SSL, Server certificates
must be installed separately.

User Name The TDV user name.

Password The TDV password.

Domain The TDV domain to which this data source belongs. Typically, that
domain is composite for installations with locally defined users.

Datasource Data source refers to the TDV database name published in the Data
Services node.

Catalog Specifies the catalog that is used for the connection.

Note: The User Name, Password, and Domain fields are not used for Kerberos or
NTLM authentication because the authentication status is negotiated according to
the presence of a token and communication with the Kerberos authentication
server.

5. Click Test Connection to make sure that you can connect to the TDV data source.

6. Click Advanced.

7. Use the Advanced Properties panel to configure the connection, debug, and security
settings.

TIBCO® Data Virtualization Client Interfaces Guide

208 | Connecting to TDV Server through ADO.NET

Note: SSL security is configured using the Security Encrypt, KeyStoreFile, and
KeystorePass parameters described below.

Parameter Value description

Advanced

AccessToken The authorization tokens used for OAuth2 authentication. The
tokens are represented in a specific format -

<header>.<payload>.<signature>.

Each of the parts of the token is in a JSON format.

The access token is used in place of id/password credentials,

TIBCO® Data Virtualization Client Interfaces Guide

209 | Connecting to TDV Server through ADO.NET

Parameter Value description

with a limited lifetime & privileges.

AccessTokenType The type of the AccessToken. JWT (JSON Web Token) is the
default supported format. JWT token is a self-contained JSON
form and ideal for federation.

ConnectTimeout The number of seconds the client waits for a connection to be
established or to fail. A value of 0 disables the timeout.

FetchBytes Maximum number of rows to fetch for a batch based on batch
size, in bytes. Setting fetchBytes to a very large number can
cause an Out Of Memory error in the server. The value set for
fetchBytes affects the memory used on the JDBC client and the
TDV server, so the value should be set based on the heap size
configured.

FetchRows The maximum number of rows fetched from TDV at one time.

Note: There is no relationship between FetchRows and
FetchBytes. When the dbchannel gets a record, it calculates
the number of fetched rows and fetched bytes. If the number
of fetched rows is greater than fetchRows or the number of
fetched bytes is greater than fetchBytes, dbchannel stops
fetching rows and returns all fetched records.

RequestTimeout The number of seconds the client waits for the TDV Server to
return a request. A value of 0 disables the timeout.

SessionTimeout Timeout for session inactivity on the server. This setting gives
the TDV Server an indication of how long a session should be
maintained if the connection with the client is lost without the
server being notified.

SessionToken The location of the session token used to authenticate to the
sever.

EnableKeepAlive Property Type: Boolean

TIBCO® Data Virtualization Client Interfaces Guide

210 | Connecting to TDV Server through ADO.NET

Parameter Value description

Default Value: false

When set to true, the driver enables TCP-KeepAlive for the
connection.

Cluster

EnableReconnectOnError Default value (false) results in an exception if the connection
object dies. If you set it to true, the driver tries to create a new
connection to the same server when the connection dies.
When Active Clustering is in use, set this value to true, so that
any failure to connect automatically initiates another attempt
to connect to the server.

PingInterval The TDV ADO.NET driver lets you configure a ping mechanism
to assess TDV status after it sends a command to the server.
After the driver sends a request to the server, PingInterval
initiates ping verifications repeatedly at the specified interval.
Verification of status by pings helps the server avoid lengthy
response times for verification of connection status—for
example, when the connection might have been lost just after
a command was issued. PingInterval is the number of seconds
between consecutive ping status checks. The default value is 0,
which disables ping verification.

PingTimeoutWindow This should be greater than or equal to the value of
PingInterval. It means the ping timeout fails. From the time
that common command send to the server, the driver sends
continuous ping commands to the server. If the ping still fails
after PingTimeoutWindow, an exception is thrown and the
connection is closed. Otherwise, the driver waits and sends
ping commands to the server to check the server’s status.
Default value is 0, which means this option is not in use.

Connection Properties in this section are values that were set in Adding
and Configuring a Connection to TDV in Visual Studio. The
values of the catalog, data source name, domain, host, port,

TIBCO® Data Virtualization Client Interfaces Guide

211 | Connecting to TDV Server through ADO.NET

Parameter Value description

and user are populated from the values entered on that
screen, and they can be changed here.

Debug

ErrorLoggingEnabled Enable ADO.NET driver log.

StatusInterval Log thread and connection status with a specified time interval
in seconds.

TraceFolder Absolute directory to save trace file, the trace file name is
"CsOdbcDebug_"+<DSN Name>+".log". the default folder is C:\
or $COMPOSITE_HOME.

TraceLevel Valid values are off, fatal, error (this is the default), debug,
warn, info, debug, and all.

The valid values for client-side log settings are off, fatal, error
(default), warn, info, debug, all, stdout.

On UNIX-based platforms, the log file CsOdbcDebug.log is
created in the directory specified by the environment variable
COMPOSITE_HOME.

Pooling

ConnectionLifeTime Setting ConnectionLifeTime=0 means each connection will be
closed as soon as it is used. When using connection pool if you
want to reuse the connection by putting the connection back
to the connection pool set ‘connectionlifetime’ value to a value
greater than zero.

The Unit for ConnectionLifeTime is second. For example
ConnectionLifeTime=60000 means 60000 seconds

MaxPoolSize Sets the maximum number of connections that are opened in
the same pool at the same time. If the maximum is reached
and no usable connection is available, subsequent requests are

TIBCO® Data Virtualization Client Interfaces Guide

212 | Connecting to TDV Server through ADO.NET

Parameter Value description

queued until a connection is available.

MinPoolSize Sets the minimum number of connections that is maintained
even if inactive to avoid the time cost of recreating new
connections for a new request.

Pooling When true, inactive connections are saved and reused as
necessary.

Security

Encrypt True or False. Used for SSL security. Set to True to enable SSL
security. The default is False.

Integrated_Authentication Specified the integrate authentication method with three
values: '(Disabled)', 'Kerberos', 'NTLM'.

Kerberos SPN A service principal name (SPN) used by Kerberos
authentication to associate a service instance with a service
logon account. This allows for service authenticate of an
account even if the client does not have the account name.

KeyStoreFile Used for SSL security. Specifies the keystore file to use for
verification. The file is in the PKCS#12 format. The default
keystore could be found at apps/ADO.NET/ Security/cis_ado_
keystore.pfx, which includes the client certificate and private
key.

KeyStorePass Used for SSL security. Specifies the password for the
KeyStoreFile. The default value is ‘changeit’.

User_Tokens Authentication values that can be packaged for delivery.

TlsVersion The TLS Version information.

ValidateRemoteCert True or False. The default is False.

ValidateRemoteHostname True or False. The default is False.

TIBCO® Data Virtualization Client Interfaces Guide

213 | Connecting to TDV Server through ADO.NET

8. Click OK twice to finish the configuration.

After defining the Connection profile settings, the newly created connection to the TDV
data source is displayed in the Visual Studio Server Explorer. You can work with the TDV
data source using the standard Server Explorer interface.

Modifying or Deleting a Connection
A connection should be modified or deleted only if no active editor for its objects is
opened. Otherwise your data could be lost.

To modify and delete a connection
1. Use the Visual Studio Server Explorer context menu for the corresponding node.

2. You can modify any of the settings by overwriting the existing values with new ones.

Working with the Server Explorer
Because you can customize the working area of Microsoft Visual Studio, the views
presented in the screen shots below might differ from what you see. From the Server
Explorer panel a table editor can be launched to create new queries from published TDV
objects (tables, views and procedures).

TIBCO® Data Virtualization Client Interfaces Guide

214 | Connecting to TDV Server through ADO.NET

To work with published TDV objects in Visual Studio
1. From the Visual Studio Server Explorer pane select and expand a TDV data source

node.

2. Right-click on the Tables node and select New Query.

3. In the Add Table dialog, select the tables you want in the query and click Add, then
Close the dialog.

4. Use the Query Designer to query the TDV data sources in Visual Studio.

Working with the Visual ToolBox Items
TDV ADO.NET components can be added to the Visual Studio .NET Toolbox. After the
objects are in the toolbox, Visual Studio Designer lets you add objects to the Windows
Forms so that then you can configure them using either the Properties windows or a
wizard. The following components are available:

• CompositeConnection

• CompositeCommand

TIBCO® Data Virtualization Client Interfaces Guide

215 | Connecting to TDV Server through ADO.NET

• CompositeCommandBuilder

• CompositeDataAdapter

This is only available for Windows Forms applications (not ASP.NET).

To use the ToolBox items
1. From the Visual Studio Tools menu, select Choose Toolbox Items.

2. Enter “Composite” in the Filter field. The following items appear.

3. Check the check boxes next to the items you want to add as shown above. Visual
Studio displays the toolbox items added.

4. Click OK.

5. Create or open an existing Windows Forms project.

6. Display the Toolbox Components.

7. Notice that the Composite components appear in the Toolbox panel rolled under the
General tab.

TIBCO® Data Virtualization Client Interfaces Guide

216 | Connecting to TDV Server through ADO.NET

8. Drag-and-drop the TDV items to your project.

9. Use the Properties panel to configure the TDV components.

Defining an ADO.NET Client using a Connection
URL
It is possible to create client program and establish a connection to your data through TDV
without having to define a DSN.

Note: The following instruction are guidelines only.

This topic also includes the following:

• ADO.NET Driver Connection URL Properties

To create a client program without defining a DSN connection
1. Create and declare your connection URL, using the following syntax:

{Driver=<driver name>;Server=<fully qualified
hostname>;Port=<port>;User=<username>;Password=<password>;domain=
<domain name>;dataSource=<datasource name>

The following examples show how the syntax might be implemented in a C++
program.

TIBCO® Data Virtualization Client Interfaces Guide

217 | Connecting to TDV Server through ADO.NET

Platform Example

Windows
SQLCHAR dsn[] =

"Driver={TDV8.0};Server=localhost;Port=9401;User=admin;
Password=admin;Domain=composite;
dataSource=redwood;user=admin;password=admin;validateRemoteHost
name=
false;connectTimeout=3000;enableFastExec=false";

For other URL properties, see ADO.NET Driver Connection URL Properties.

2. Declare the user name and password variables for the connection statement.

3. (Optional) Determine the ADO.NET driver name using one of the following methods.

Platform Location of Name

Windows The driver name can be found in the Add/Remove Programs of the
Windows control panel.

4. (Optional) Write a small sample program to test the connection URL.

5. Create or modify your client program so that it includes the connection syntax. For
example, you must include a statement similar to the following to establish the
connection:

conn = DriverManager.getConnection(url, userName, password);

ADO.NET Driver Connection URL Properties
This table lists the names of properties that you can specify in the ADO.NET connection
URL.

TIBCO® Data Virtualization Client Interfaces Guide

218 | Connecting to TDV Server through ADO.NET

ADO.NET Property Description

alternatesecuritycredentials Specifies an alternate security property value to the identity
within the current session. This is used to allow the user
passing security property to the data source.

Note: You may get unexpected results when multiple
requests are made on the same session or when multiple
identities access the same session.

caseSensitive Specifies case sensitivity in the request values. By default
(false), requests are not case-sensitive.

catalog Specifies the catalog that is used for the connection.

commitFailure Specifies the behavior if commit failed. Possible values are:
rollback or bestEffort.

commitInterrupt Specifies behavior if commit is interrupted.Possible values
are: ignore, log, fail.

compensate Specifies correcting behavior. If enabled, compensation
blocks will be run if the transaction rolls back. Possible
values: disabled or enabled. Default value is disabled.

connectTimeout Time-out for initial connection, in seconds. Use 0 (zero) for
infinite time-out.

dataSource Specifies the data source that is used for all connections.

domain Specifies an identification string that defines a realm of
administrative autonomy, authority, or control.

enableFastExec Valid values are true and false. The default value is false.

Results are processed and returned immediately (instead of
a round trip) when a query is submitted, potentially
improving performance of low latency queries.

enableFlood Values are true or false.

TIBCO® Data Virtualization Client Interfaces Guide

219 | Connecting to TDV Server through ADO.NET

ADO.NET Property Description

Default value is true.If true, the server will constantly send
data, filling the network buffer.Useful for larger result sets.

enableReconnectOnError Specifies cluster reconnection behavior.

encrypt True or False. Used for SSL security. Set to True to enable
SSL security. The default is False.

errorloggingenabled Enable ADO.NET driver log.

fetchBytes Maximum number of rows to fetch for a batch based on
batch size, in bytes. Setting fetchBytes to a very large
number can cause an Out Of Memory error in the server.
The value set for fetchBytes affects the memory used on the
client and the TDV server, so the value should be set based
on the heap size configured. The default value is used if this
property is set to zero.

fetchRows Maximum number of rows to fetch for a batch. The default
value is used if this property is set to zero.

host/server TDV Server host name.

ignoreTrailingSpace Ignore trailing spaces at the end of values. Default: false.

 Specified the integrate authentication method with three
values: '(Disabled)', 'Kerberos', 'NTLM'

kerberos spn Valid on Windows platform only, not useful on UNIX
platforms.

Kerberos SPN value, only useful if the SSO value equals
Kerberos.

keyStoreFile Used for SSL security. Specifies the keystore file to use for
verification. The file is in the PKCS#12 format. The default
keystore could be found at apps/ADO.NET/ Security/cis_

TIBCO® Data Virtualization Client Interfaces Guide

220 | Connecting to TDV Server through ADO.NET

ADO.NET Property Description

ado_keystore.pfx, which includes the client certificate and
private key.

keyStorePass Used for SSL security. Specifies the password for the
KeyStoreFile. The default value is ‘changeit’.

locale Value that defines the user’s language and country.

maxpoolsize Sets the maximum number of connections that are opened
in the same pool at the same time. If the maximum is
reached and no usable connection is available, subsequent
requests are queued until a connection is available.

minpoolsize Sets the minimum number of connections that is
maintained even if inactive to avoid the time cost of
recreating new connections for a new request.

nometadata Blocks return of result-set metadata during query execution.

paramMode Controls the behavior of OUT parameters for stored
procedures:

• normal—Report OUT parameters in procedure
metadata as OUT parameters.

• return—Report OUT parameters as return values.

• omit—Omit OUT parameters from metadata.

• omitCursors—Omit output cursors from metadata.

password/pwd Specifies the password for the user name that you specify in
the Username property. These values are used for your data
source connection.

pingInterval Maximum time to wait before sending a ping request while
waiting for a result from TDV, in seconds.

pingTimeoutWindow The length of time the JDBC or ODBC client waits before

TIBCO® Data Virtualization Client Interfaces Guide

221 | Connecting to TDV Server through ADO.NET

ADO.NET Property Description

closing a connection to the TDV server, after a ping to the
TDV server has failed.

The value of this parameter should be greater than or equal
to the "PingInterval" parameter. If a ping sent to the TDV
server fails, the ODBC or JDBC client continues to send
pings to TDV to check status. If these client pings continue
to fail after the TimeoutWindow has expired, the ODBC or
JDBC client closes the connection to the TDV server and
sends a message. While the TimeoutWindow has not
expired, the ODBC or JDBC client connection stays open
and continues to send pings to the TDV server waiting for a
response. The default for this property is 0, which means
the setting is not being used.

pooling When true, inactive connections are saved and reused as
necessary.

port TDV Server listening port.

registerOutputCursors • true—Bind or register output cursors as output
parameters.

• false—Do not bind or register output cursors as
output parameters; instead, use SQLMoreResults to
access the cursors.

requestTimeout Time-out for query commands and other requests

sessionTimeout Session inactivity timeout, in seconds. Set to zero for
infinite timeout.

sessionToken Uses the URL to set a session token value for client
authorization when using TDV with a client restricted
license.

Example: &sessionToken=<VALUE>

TIBCO® Data Virtualization Client Interfaces Guide

222 | Connecting to TDV Server through ADO.NET

ADO.NET Property Description

spn Valid on Windows platform only, not useful on UNIX
platforms.

Kerberos SPN value, only useful if the SSO value equals
Kerberos.

sso Valid on Windows platform only, not useful on UNIX
platforms. Single-sign-on type: ""/(Disabled), Kerberos or
NTLM.

The default value is "", which forces the client application
to provide user and password information to connect.

statusinterval Log thread and connection status with a specified time
interval in seconds.

stripDuplicates Values are true or false. Default value is false.

If true, the server will detect for duplicate CHAR/VARCHAR
columns in subsequent rows, and will not re-transmit the
data across the wire.

This would potentially lead to data savings across the wire.

stripTrailingZeros Determines whether decimal result values are to be
returned with trailing zeros removed.

traceFolder Absolute directory to save trace file, the trace file name is
"CsOdbcDebug_"+<DSN Name>+".log". the default folder is
C:\ or $COMPOSITE_HOME

traceLevel Valid values are off, fatal, error (this is the default), debug,
warn, info, debug, and all.

The valid values for client-side log settings are off, fatal,
error (default), warn, info, debug, all, stdout.

On UNIX-based platforms, the log file CsOdbcDebug.log is
created in the directory specified by the environment
variable COMPOSITE_HOME.

TIBCO® Data Virtualization Client Interfaces Guide

223 | Connecting to TDV Server through ADO.NET

ADO.NET Property Description

user_tokens Authentication values that can be packaged for delivery.

user/uid Specifies the user name for connections to the data source.

validateRemoteCert Useful on Windows platform only, it is ignored on UNIX
platforms.

When true, the TDV client initiates handshake validation,
validating the TDV certificate and using it for password
encryption. If validation fails, no connection is established.

When false (default), no certificate validation is performed
prior to the establishment of a connection.

The TDV Server certificate is loaded from the Truststore File
Location set in the Studio Configuration panel. The Keystore
Key Alias is used when it is configured for use. For more
information, refer to “TDV Configuration Parameters” in the
TDV Administration Guide.

The TDV ADO.NET driver uses the system certification store
to validate the certificate. The TDV Server certificate must
be added to this client trust store or validation fails.

validateRemoteHostname Useful on Windows platform only, it is ignored on UNIX
platforms.

When true, the ADO.NET driver compares the value of host
in the URL with the subject CN (common name) value in the
certificate received from the targeted TDV Server.

If the host name validation fails, the connection is not
established. When false (default), the host name validation
is not performed.

AccessToken The authorization tokens used for OAuth2 authentication.
The access token is used in place of id/password
credentials, with a limited lifetime & privileges.

TIBCO® Data Virtualization Client Interfaces Guide

224 | Connecting to TDV Server through ADO.NET

ADO.NET Property Description

AccessTokenType Indicates the type of AccessToken.

EnableKeepAlive Property Type: Boolean

Default Value: false

When set to true, the driver enables TCP-KeepAlive for the
connection.

delegateOauth2flowToServer This is a flag used to indicate whether the OAUTH2 ROPC
flow delegation is used for ADO.Net driver.

Setting this to True will

 1. Delegate OAUTH2 ROPC flow to TDV Server from the
ADO.Net driver.

 2. Invoke a call to the OAUTH ID Provider and get token
from it.

Setting this to False indicates not to delegate OAUTH2
ROPC flow to TDV Server from the ADO.Net driver.

Sample Code for Testing of an ADO.NET Driver
The examples in this section describe various way to write code to consume TDV resources
through an ADO.NET connection interface. This sample code was developed and tested on
a Microsoft Windows XP Professional platform, using Microsoft Visual Studio and TDV.

• Create a CompositeConnection Object

• Create a CompositeCommand Object

• Select Data from a TDV Published Resource

• Getting the Column Type

• Getting Column Metadata

• Using an Update Operation in the Sample Code

• About Using Parameters

TIBCO® Data Virtualization Client Interfaces Guide

225 | Connecting to TDV Server through ADO.NET

• Invoking a Stored Procedure Example

• Example with Special Data Types

• Retrieving Metadata

• Retrieving Tables with a Named Schema

Create a CompositeConnection Object
This creates a CompositeConnection object with a parameter object called
CompositeConnectionStringBuilder. When it has been created, you must call the open
method to connect to the server. If there is an exception when connecting to the server,
the sample code catch returns to try the connection again.

Always use the Close method to close the conn object when finished with it. Use the conn
object to access the TDV Server.

To create a CompositeConnection object using
compositeConnectionStringBuilder

1. Create a class called BaseTest. For example:

public class BaseTest

{

 protected CompositeConnection conn;

 protected CompositeConnectionStringBuilder builder;

 public BaseTest()

 {

 }

TIBCO® Data Virtualization Client Interfaces Guide

226 | Connecting to TDV Server through ADO.NET

}

This code defines a constructor method.

2. Add code to create more examples.

For example, build a CompositeConnectionStringBuilder object that requires a
BuildConnectionString method to feed the object:

public class BaseTest

{

 public BaseTest()

 {

// Build the CompositeConnectionStringBuilder object when calling the
construction method.

 BuildConnectionString();

 }

// Construct the CompositeConnectionStringBuilder object.

 private void BuildConnectionString()

 {

 String connstring =
“host=localhost;port=9401;user=admin;password=admin;domain=composite;dat
asource=examples”;

 builder = new CompositeConnectionStringBuilder(connstring);

TIBCO® Data Virtualization Client Interfaces Guide

227 | Connecting to TDV Server through ADO.NET

 }

}

3. In the BaseTest class, create a CompositeConnection object, and create Open and
Close methods and a CompositeConnection object with the following code:

// Create CompositeConnect

protected void Open()

{

 try

 {

 conn = new CompositeConnection(builder);

 conn.Open();

 }

 catch (Exception ex)

 {

 throw new Exception(ex.Message);

 }

}

TIBCO® Data Virtualization Client Interfaces Guide

228 | Connecting to TDV Server through ADO.NET

protected void Close()

{

 try

 {

 if (conn.State == ConnectionState.Closed)

 return;

 conn.Close();

 }

 catch (Exception ex)

 {

 Assert.Fail(ex.Message);

 }

}

protected CompositeConnection GetConnection()

{

TIBCO® Data Virtualization Client Interfaces Guide

229 | Connecting to TDV Server through ADO.NET

 if (conn == null || conn.State == ConnectionState.Closed)

 Open();

 return conn;

}

Create a CompositeCommand Object
The following sections provide code samples for how to select or update data from a
published TDV resource. You can use multiple programmatic styles to access, use, and
change the data.

• Using a SQL Statement to Create the CompositeCommand Object

• Using the conn.CreateCommand Method to Create the CompositeCommand Object

• Using CompositeCommand to Create the CompositeCommand Object

Using a SQL Statement to Create the CompositeCommand Object

The following builds a CompositeCommand object with a SQL statement and the
CompositeConnection object.

try

{

 String sql = "delete from products where ProductID=1111";

 CompositeCommand cmd = new CompositeCommand(sql, conn);

}

TIBCO® Data Virtualization Client Interfaces Guide

230 | Connecting to TDV Server through ADO.NET

catch (Exception ex)

{

 Throw ex;

}

Using the conn.CreateCommand Method to Create the
CompositeCommand Object

The following retrieves a CompositeCommand object by calling the conn.CreateCommand
method. Set the SQL statement to cmd before using it to access TDV.

try

{

 CompositeCommand cmd = conn.CreateCommand();

 cmd.CommandText = "delete from products where ProductID=1111";

}

catch (Exception ex)

{

 Throw ex;

}

TIBCO® Data Virtualization Client Interfaces Guide

231 | Connecting to TDV Server through ADO.NET

Using CompositeCommand to Create the CompositeCommand Object

Use the following to create a new object. Call the CompositeCommand default constructor
and set the CommandText and Connection objects before using it.

try

{

 CompositeCommand cmd = new CompositeCommand();

 cmd.CommandText = "delete from products where ProductID=1111";

 cmd.Connection=conn;

}

catch (Exception ex)

{

 Throw ex;

}

Select Data from a TDV Published Resource
You can select the data from the TDV Server with a SQL statement such as:

select ProductName from products where ProductID=1111

TIBCO® Data Virtualization Client Interfaces Guide

232 | Connecting to TDV Server through ADO.NET

To select data from a TDV published resource
1. Edit the following code to send the SQL:

public void TestExecuteScalar()

{

 CompositeConnection conn = GetConnection();

 try

 {

 CompositeCommand cmd = new CompositeCommand(); cmd.CommandText =
"select ProductName from products where ProductID=1111";

 cmd.Connection = conn;

 String name = (String)cmd.ExecuteScalar();

 Console.WriteLine("(ProductName:" + name + ",TestExecuteScalar)");

 }

 catch (Exception ex)

 {

 throw ex;

 }

TIBCO® Data Virtualization Client Interfaces Guide

233 | Connecting to TDV Server through ADO.NET

}

2. Call the cmd.ExecuteScalar method to get the object that locates the first row and
first column in the result set of the ExecuteScalar.

3. Conversion to a recognized data type is necessary, because it is an Object type
value.

Select Data from a TDV Published Resource on the
Server
Here is another example illustrating a data selection from the server.

public void TestExecuteReader()

{

 try

 {

 CompositeCommand cmd = new CompositeCommand("select
ProductID,ProductName from products where ProductID=1111",GetConnection
());

 CompositeDataReader reader = cmd.ExecuteReader();

 while (reader.Read())

 {

 int ProductID = reader.GetInt32(0);

TIBCO® Data Virtualization Client Interfaces Guide

234 | Connecting to TDV Server through ADO.NET

 String ProductName = reader.GetString("ProductName");

 Console.WriteLine("(ProductID:" + ProductID + ",ProductName:" +
ProductName + "TestExecuteReader)");

 }

 reader.Close();

 }

 catch (Exception ex)

 {

 throw ex;

 }

}

To select data from a published resource on the server
1. Call cmd.ExecuteReader to get a CompositeDataReader object.

2. Access result set data using the CompositeDataReader object. The Read method tells
you whether there is row data. If the Read method result value is true, columns are
accessible by their respective ordinal integer or by column name. The ordinal integer
numbering begins with 0, not with 1.

3. To get the first column value of the current row, use the statement:

int ProductID = reader.GetInt32(0);

TIBCO® Data Virtualization Client Interfaces Guide

235 | Connecting to TDV Server through ADO.NET

4. Because the object in that column is an integer, the GetInt32 method retrieves the
value. If the column type were a string, the GetString (column name|column ordinal)
method would retrieve the value.

5. Close the reader using reader.Close().

If the reader is not closed, errors occur.

Getting the Column Type
This topic provides sample code showing how to get the column type.

To get the column type
1. Use the following sample code to get the column type:

public void TestColumnType()

{

 CompositeConnection conn = GetConnection();

 try

 {

 CompositeCommand cmd = conn.CreateCommand();

 cmd.CommandText = "select * from products where ProductID=1111";

 CompositeDataReader reader = cmd.ExecuteReader();

 int columns = reader.FieldCount;

TIBCO® Data Virtualization Client Interfaces Guide

236 | Connecting to TDV Server through ADO.NET

//reader.Read();

 for (int i = 0; i < columns; i++)

 {

 Console.WriteLine("field name:" + reader.GetName(i) + ",field type:"
+ reader.GetFieldType(i));

 }

 reader.Close();

 }

 catch (Exception ex)

 {

 throw ex;

 }

}

The number of columns you can access is given by reader.FieldCount. If the value is
3, three columns are in the select result, so you can access columns 0, 1, and 2.

2. Call the GetName method to get the column name.

3. Call GetFieldType to get the column type.

TIBCO® Data Virtualization Client Interfaces Guide

237 | Connecting to TDV Server through ADO.NET

Getting Column Metadata
The following code shows a way to access column metadata using CompositeDataReader.

You can call GetSchemaTable to get the DataTable object. It contains some rows, and
returns every row present with column metadata. The metadata contains:

ColumnName, ColumnOrdinal, ColumnSize, NumericPrecision, NumericScale,
DataType, ProviderType, IsLong, AllowDBNull, IsReadOnly, IsRowVersion,
IsUnique, IsKey, IsAutoIncrement, BaseSchemaName, BaseCatalogName,
BaseTableName, and BaseColumnName.

To get the column metadata
1. Use the following code to retrieve the rows and the metadata by name. The

BaseSchemaName, BaseCatalogName, and BaseTableName are always present.

public void TestReaderMetadata()

{

 CompositeConnection conn = GetConnection();

 Try

 {

 CompositeCommand cmd = conn.CreateCommand();

 cmd.CommandText = "SELECT * FROM PRODUCTS WHERE ProductID=1111";

 CompositeDataReader reader = cmd.ExecuteReader();

 DataTable dt = reader.GetSchemaTable();

TIBCO® Data Virtualization Client Interfaces Guide

238 | Connecting to TDV Server through ADO.NET

 INT ROWS = dt.Rows.Count;

 IF (rows > 0)

 {

 foreach (DataRow row in dt.Rows)

 {

 String ColumnName = (String)row["ColumnName"];

 int ColumnOrdinal = (int)row["ColumnOrdinal"];

 int ColumnSize = (int)row["ColumnSize"];

 int NumericPrecision = (int)row["NumericPrecision"];

 int NumericScale = (int)row["NumericScale"];

 Type DataType = (Type)row["DataType"];

 int ProviderType = (int)row["ProviderType"];

 bool IsLong = (bool)row["IsLong"];

 bool AllowDBNull = (bool)row["AllowDBNull"];

 bool IsReadOnly = (bool)row["IsReadOnly"];

TIBCO® Data Virtualization Client Interfaces Guide

239 | Connecting to TDV Server through ADO.NET

 bool IsRowVersion = (bool)row["IsRowVersion"];

 bool IsUnique = (bool)row["IsUnique"];

 bool IsKey = (bool)row["IsKey"];

 bool IsAutoIncrement = (bool)row["IsAutoIncrement"];

 String BaseSchemaName = (String)row["BaseSchemaName"];

 String BaseCatalogName = (String)row["BaseCatalogName"];

 String BaseTableName = (String)row["BaseTableName"];

 String BaseColumnName = (String)row["BaseColumnName"];

 Console.WriteLine("Column properties:");

 Console.WriteLine("ColumnName:" + ColumnName+

 ",ColumnOrdinal:" + ColumnOrdinal+

 ",ColumnSize:" + ColumnSize+

 ",NumericPrecision:" + NumericPrecision+

 ",NumericScale:" + NumericScale+

 ",DataType:" + DataType+

TIBCO® Data Virtualization Client Interfaces Guide

240 | Connecting to TDV Server through ADO.NET

 ",ProviderType:" + ProviderType+

 ",IsLong:" + IsLong+

 ",AllowDBNull:" + AllowDBNull+

 ",IsReadOnly:" + IsReadOnly+

 ",IsRowVersion:" + IsRowVersion+

 ",IsUnique:" + IsUnique+

 ",IsKey:" + IsKey+

 ",IsAutoIncrement:" + IsAutoIncrement+

 ",BaseSchemaName:" + BaseSchemaName+

 ",BaseCatalogName:" + BaseCatalogName+

 ",BaseTableName:" + BaseTableName+

 ",BaseColumnName:" + BaseColumnName+"."

);

 }

 }

TIBCO® Data Virtualization Client Interfaces Guide

241 | Connecting to TDV Server through ADO.NET

 reader.Close();

 }

 catch (Exception ex)

 {

 Assert.Fail(ex.Message);

 }

}

Using an Update Operation in the Sample Code
Update operations can perform insertions, updates, and deletions of data and rows. This
example shows how to run update SQL. The most important method is ExecuteNonQuery.
Usually it is used to execute update SQL. The return value is the number of rows that are
affected by the update.

public void TestUpdate()

{

 CompositeConnection conn = GetConnection();

 try

 {

TIBCO® Data Virtualization Client Interfaces Guide

242 | Connecting to TDV Server through ADO.NET

 CompositeCommand cmd = new CompositeCommand("delete from products
where ProductID=1111", conn);

 int cnt = cmd.ExecuteNonQuery();

 cmd.Parameters.Clear();

 cmd.CommandText = "insert into products
(ProductID,ProductName,ProductDescription) values(1111,'Composite
DataBase','big base.')";

 cnt = cmd.ExecuteNonQuery();

 cmd.Parameters.Clear();

 cmd.CommandText = "update products set ProductName='TDV' where
ProductID=1111";

 cnt=cmd.ExecuteNonQuery();

 cmd.CommandText = "select ProductName from products where
ProductID=1111";

 string name = (string)cmd.ExecuteScalar();

 if (!name.Equals("TDV"))

 Console.WriteLine("error occurred.");

 }

 catch (Exception ex)

TIBCO® Data Virtualization Client Interfaces Guide

243 | Connecting to TDV Server through ADO.NET

 {

 throw ex;

 }

}

About Using Parameters
The construct method in the following sample code is for CompositeParameter. You can
create a new parameter with the methods:

public CompositeParameter(string parameterName, object value)

public CompositeParameter(string parameterName, object value,
CompositeDbType dbType)

public CompositeParameter(string parameterName, CompositeDbType dbType)

• The current argument name is parameterName. This must not be empty.

• The value of the current argumentvalue.

• The type to assign to the current parameter is dbType. The value of dbType must be
one of the CompositeDbType objects.

Methods for Adding Parameters

There are several ways to add parameters to the CompositeParameterCollection object. In
the following sample, Method A uses a prepared SQL statement as the cmd.CommandText.
Method B illustrates the binding of a placeholder with a parameter. This method can be
used except when working with the following data types: Clob, Date, Time, and Timestamp.

((CompositeParameterCollection)cmd.Parameters).Add("@ProductID", 1111);

TIBCO® Data Virtualization Client Interfaces Guide

244 | Connecting to TDV Server through ADO.NET

Convert the cmd.Parameters object to the CompositeParameterCollection type. After
converting the Add method to declare a new parameter name:

'public CompositeParameter Add(string parameterName, object value)'

Method C uses the following JDBC style SQL statement:

update products set ProductName=? where ProductID=?

The question mark (?) is a placeholder without an appended name string. The placeholder
is bound with the corresponding parameter as follows:

cmd.Parameters.Add(new CompositeParameter("?ProductName", "TDV"));

cmd.Parameters.Add(new CompositeParameter("?ProductID", 1111));

The public CompositeParameter Add(CompositeParameter value) method is used to add a
parameter. The first parameter is bound to the first placeholder, and the last parameter is
bound to the last placeholder.

The following sample code contains four possible methods (A through D) for implementing
parameters. The sample uses the ADO.NET placeholder characters of ? and @.

public void TestParameter()

{

 CompositeConnection conn = GetConnection();

 try

 {

//Method A

 CompositeCommand cmd = conn.CreateCommand();

TIBCO® Data Virtualization Client Interfaces Guide

245 | Connecting to TDV Server through ADO.NET

 cmd.CommandText = "delete from products where ProductID=@ProductID";

 cmd.Parameters.Add("@ProductID", CompositeDbType.INTEGER);

 cmd.Parameters[0].Value = 1111;

 int cnt = cmd.ExecuteNonQuery();

//Method B

 cmd.Parameters.Clear();

 cmd = new CompositeCommand("insert into products
(ProductID,ProductName) values(@ProductID,@ProductName)", conn);

 ((CompositeParameterCollection)cmd.Parameters).Add("@ProductID",
1111);

 ((CompositeParameterCollection)cmd.Parameters).Add("@ProductName",
"Discovery");

 cnt = cmd.ExecuteNonQuery();

//Method C

 cmd.Parameters.Clear();

 cmd.CommandText = "update products set ProductName=? where
ProductID=?";

 cmd.Parameters.Add(new CompositeParameter("?ProductName", "TDV"));

TIBCO® Data Virtualization Client Interfaces Guide

246 | Connecting to TDV Server through ADO.NET

 cmd.Parameters.Add(new CompositeParameter("?ProductID", 1111));

 cnt = cmd.ExecuteNonQuery();

//Method D

 cmd.Parameters.Clear();

 cmd.CommandText = "select ProductName from products where
ProductID=?ProductID";

 cmd.Parameters.Add(new CompositeParameter("?ProductID", 1111));

 String ProductName = (String)cmd.ExecuteScalar();

 if (!ProductName.Equals("TDV"))

 Console.WriteLine("error happen.");

 }

 catch (Exception ex)

 {

 throw ex;

 }

}

TIBCO® Data Virtualization Client Interfaces Guide

247 | Connecting to TDV Server through ADO.NET

About ADO.NET Placeholders
The following is a sample SQL statement with a parameter that uses a placeholder:

delete from products where ProductID=@ProductID

In the example, @ProductID is the placeholder argument name, and the @ and ? characters
are placeholders. Using ? is recommended.) The argument name must not be empty.

If the SQL statement is a prepared statement, you must bind @ProductID with a parameter
object. This object contains the argument name, value and type. ADO.NET can send those
values to the server to gain access to the result.

From Method A in About Using Parameters, a prepared SQL statement was used as the
cmd.CommandText:

cmd.CommandText = "delete from products where ProductID=@ProductID";

You can bind the placeholder in the following manner:

cmd.Parameters.Add("@ProductID", CompositeDbType.INTEGER);

The cmd.Parameters is an object of the CompositeParameterCollection and every
CompositeCommand object has a cmd.Parameters object that contains all parameters
bound to the all placeholder.

You could instead use the cmd.Parameters.Add method to bind a placeholder and
parameter object. Adding a parameter object to the @ProductID placeholder and defining
its type as a CompositeDbType.INTEGER requires a value of the parameter like the
following:

cmd.Parameters[0].Value = 1111;

The cmd.Parameters[0] refers to the first parameter object, with a value of 1111.

Invoking a Stored Procedure Example
After all definitions are in place, the call to ExecuteNonQuery invokes the stored procedure.
The LookupProduct procedure (in the TDV directory path

TIBCO® Data Virtualization Client Interfaces Guide

248 | Connecting to TDV Server through ADO.NET

~/shared/examples/LookupProduct) must be published before this sample code is
executed; otherwise, the return value of ExecuteNonQuery is not valid.

The procedure SQL statement is the same for JDBC and ODBC.

The sample gets a CompositeCommand object, and then defines the CommandType as a
StoredProcedure using the following line::

cmd.CommandType = CommandType.StoredProcedure;

An exception can occur if the CompositeCommand object is called without this
specification.

A new ID parameter is added with the CompositeParameter object type:

CompositeParameter id = new CompositeParameter("?ProductID", 12,
CompositeDbType.INTEGER);

The CompositeParameter ID parameter object gets a name, value, and type:

"?ProductID", 12, and CompositeDbType.INTEGER.

Procedure parameters must have a specified direction. There are four parameter directions
in the ADO.NET standard:

• Input

• Output

• InputOutput

• ReturnValue

In this example, ProductID is an input parameter, so the example code defines:

id.Direction = ParameterDirection.Input;

The example also has an output parameter that is declared with the following line:

CompositeParameter cursor = new CompositeParameter("?cursor",
CompositeDbType.OTHER);

TIBCO® Data Virtualization Client Interfaces Guide

249 | Connecting to TDV Server through ADO.NET

The name is set to a ?cursor placeholder of type CompositeDbType.OTHER. When the
parameter is a cursor, you must specify CompositeDbType.OTHER as the data type. Setting
the direction is required:

cursor.Direction = ParameterDirection.Output;

The sample code adds those parameter objects with the lines:

cmd.Parameters.Add(id);

cmd.Parameters.Add(cursor);

To read a valid output value the sample uses:

CompositeDataReader reader = (CompositeDataReader)cursor.Value;

Cursor output must be fetched by the CompositeDataReader. All cursor data is mapped to
the CompositeDbType.OTHER data type, so returned values are CompositeDataReader
objects. The CompositeDataReader object can be obtained from cursor.Value.

The following sample code illustrates one way to invoke a procedure:

public void TestSelect()

{

 CompositeConnection conn = GetConnection();

 String sql = "{call LookupProduct(?ProductID,?cursor)}";

 CompositeCommand cmd = new CompositeCommand(sql, conn);

 cmd.CommandType = CommandType.StoredProcedure;

 CompositeParameter id = new CompositeParameter("?ProductID", 12,
CompositeDbType.INTEGER);

TIBCO® Data Virtualization Client Interfaces Guide

250 | Connecting to TDV Server through ADO.NET

 id.Direction = ParameterDirection.Input;

 CompositeParameter cursor = new CompositeParameter("?cursor",
CompositeDbType.OTHER);

 cursor.Direction = ParameterDirection.Output;

 cmd.Parameters.Add(id);

 cmd.Parameters.Add(cursor);

 try

 {

 cmd.ExecuteNonQuery();

 CompositeDataReader reader = (CompositeDataReader)cursor.Value;

 if (reader != null)

 {

 String ProductName;

 int ProductID;

 String ProductDescription;

 if (reader.Read())

TIBCO® Data Virtualization Client Interfaces Guide

251 | Connecting to TDV Server through ADO.NET

 {

//ProductName=reader.GetString("ProductName");

 ProductName = (String)reader["ProductName"];

//ProductID=reader.GetInt32("ProductID");

 ProductID = (int)reader["ProductID"];

//ProductDescription=reader.GetString("ProductDescription");

 ProductDescription = (String)reader["ProductDescription"];

 }

 }

 }

 catch (Exception ex)

 {

 throw ex;

 }

}

TIBCO® Data Virtualization Client Interfaces Guide

252 | Connecting to TDV Server through ADO.NET

The following sample code defines a method with a SQL string, SQL, that can be used to
call a stored procedure, p_integer, with a placeholder parameter, ?int, bound to intValue.

The definition of the CompositeParameter is the following:

CompositeParameter intValue = new CompositeParameter("?int",
CompositeDbType.INTEGER);

The ?int is an InputOutput parameter, with a type of CompositeDbType.INTEGER.

Set a procedure parameter value with a code line like:

intValue.Value = 12

Retrieve a procedure parameter value using a line like:

int value = (int)intValue.Value

The following code sample is another way to invoke a stored procedure:

public void TestInOut()

{

 string sql = "{call p_integer(?int)}";

 CompositeCommand cmd = new CompositeCommand(sql, conn);

 cmd.CommandType = Command60

Type.StoredProcedure;

 CompositeParameter intValue = new CompositeParameter("?int",
CompositeDbType.INTEGER);

 cmd.Parameters.Add(intValue);

TIBCO® Data Virtualization Client Interfaces Guide

253 | Connecting to TDV Server through ADO.NET

 intValue.Direction = ParameterDirection.InputOutput;

 intValue.Value = 12;

 try

 {

 cmd.ExecuteNonQuery();

 int value = (int)intValue.Value;

 }

 catch (Exception ex)

 {

 throw ex;

 }

}

Using CompositeCommandBuilder
The CompositeCommandBuilder can be used to execute code to access or modify TDV
resources. The following example code deletes the first row of the current SELECT. The
builder.GetUpdateCommand is necessary when using a Microsoft implementation, but is
optional in the following sample.

TIBCO® Data Virtualization Client Interfaces Guide

254 | Connecting to TDV Server through ADO.NET

To use the CompositeCommandBuilder
1. Define a CompositeDataAdapter object with a SQL statement and connection object.

2. Create a new CompositeCommandBuilder object, with a CompositeDataAdapter
object as an argument.

3. Create a new DataTable object and clear it. Use a call to the da.Fill(dt) method to
populate it with data.

4. To delete the first row, make this call: dt.Rows[0].Delete(). The deletion is finalized
after calling the da.Update(dt) statement.

public void TestDelete()

{

 CompositeConnection conn = GetConnection();

 CompositeDataAdapter da = new CompositeDataAdapter("select * from
products where ProductID in (1111)", conn);

 CompositeCommandBuilder cb = new CompositeCommandBuilder(da);

 DataTable dt = new DataTable();

 dt.Clear();

 da.Fill(dt);

 dt.Rows[0].Delete();

 da.Update(dt);

}

TIBCO® Data Virtualization Client Interfaces Guide

255 | Connecting to TDV Server through ADO.NET

5. Insert rows into a cursor with specified values. Section A marks where the insertion
of a new row begins.

public void TestInsert()

{

 try

 {

 CompositeConnection conn = GetConnection();

 CompositeDataAdapter da = new CompositeDataAdapter("select * from
products", conn);

 CompositeCommandBuilder cb = new CompositeCommandBuilder(da);

 DataTable dt = new DataTable();

 da.Fill(dt);

//Section A

 //Create the new row

 DataRow row = dt.NewRow();

 //The values in the new row are set with:

 row["ProductID"] = 1111;

TIBCO® Data Virtualization Client Interfaces Guide

256 | Connecting to TDV Server through ADO.NET

 row["ProductName"] = "TDV";

 row["ProductDescription"] = DBNull.Value;

 dt.Rows.Add(row);

 //Insertion of the new rows into the database

 da.Update(dt);

 }

 catch (Exception ex)

 {

 throw ex;

 }

}

6. (Optionally) When using a Microsoft implementation, you must use the
builder.GetUpdateCommand method. Here is some sample code from a Microsoft-
based implementation:

public DataSet TestUpdate()

{

 CompositeConnection conn = GetConnection();

TIBCO® Data Virtualization Client Interfaces Guide

257 | Connecting to TDV Server through ADO.NET

 String queryString = "select * from products where ProductID in
(1111)";

 String tableName = "products";

 CompositeDataAdapter adapter = new CompositeDataAdapter();

 adapter.SelectCommand = new CompositeCommand(queryString, conn);

 CompositeCommandBuilder builder = new CompositeCommandBuilder(adapter);

 DataSet dataSet = new DataSet();

 adapter.Fill(dataSet, tableName);

 dataSet.Tables[0].Rows[0]["ProductName"] = "Discovery";

 builder.GetUpdateCommand();

 adapter.Update(dataSet, tableName);

 return dataSet;

}

Example with Special Data Types
This section contains several code samples that show different ways to define and use
special data types, including CLOB, date, time, and datetime.

The following is procedure invoking code that uses the time data types.

TIBCO® Data Virtualization Client Interfaces Guide

258 | Connecting to TDV Server through ADO.NET

public void TestTime()

{

 string sql = "{call p_time(?time1,?date,?timestamp)}";

 CompositeCommand cmd = new CompositeCommand(sql, conn);

 cmd.CommandType = CommandType.StoredProcedure;

 CompositeParameter timestamp = new CompositeParameter("?timestamp", new
CompositeTimeStamp(DateTime.Parse("2003-12-24 03:12:52.112")));

 CompositeParameter time = new CompositeParameter("?time1", new
CompositeTime(DateTime.Parse("03:16:54.111")));

 CompositeParameter date = new CompositeParameter("?date",
DateTime.Parse("1999-09-11"), CompositeDbType.DATE);

 timestamp.Direction = ParameterDirection.InputOutput;

 time.Direction = ParameterDirection.InputOutput;

 date.Direction = ParameterDirection.InputOutput;

 cmd.Parameters.Add(time);

 cmd.Parameters.Add(date);

 cmd.Parameters.Add(timestamp);

 try

TIBCO® Data Virtualization Client Interfaces Guide

259 | Connecting to TDV Server through ADO.NET

 {

 cmd.ExecuteNonQuery();

 string timeStr = ((DateTime)time.Value).ToString("HH:mm:ss.fff");

 string dateStr = ((DateTime)date.Value).ToString("yyyy-MM-dd");

 string timestampStr = ((DateTime)timestamp.Value).ToString("yyyy-MM-dd
HH:mm:ss.fff");

 }

 catch (Exception ex)

 {

 throw ex;

 }

}

If you want to use a date, time or timestamp data type, you must specify that data type or
use a CompositeDate, CompositeTime, or CompositeTimestamp object.

CompositeParameter date = new CompositeParameter("?date", DateTime.Parse
("1999-09-11"), CompositeDbType.DATE)

You can create a new CompositeParameter object and set the type to one of the following:

CompositeDbType.DATE

TIBCO® Data Virtualization Client Interfaces Guide

260 | Connecting to TDV Server through ADO.NET

CompositeDbType.TIME

CompositeDbType.TIMESTAMP

Set the value to CompositeTimeStamp, CompositeTime, or CompositeDate object.

If the DATE type parameter is not specified, the ADO.NET driver sets the type to TimeStamp
by default.

Values retrieved as Date(time, timestamp) value are DateTime (.NET object) type. The
GetDateTime method can be used to retrieve values that can be converted to DateTime
objects.

CompositeParameter timestamp = new CompositeParameter("?timestamp", new
CompositeTimeStamp(DateTime.Parse("2003-12-24 03:12:52.112")));

Defining a CLOB type is shown in the following code; or you can explore using the
CompositeClob type:

public void TestClob()

{

 try

 {

 CompositeConnection conn = GetConnection();

 string sql = "insert into ALL_TYPE(ID,COLUMN_10) values(?id,?clob) ";

 CompositeCommand cmd = new CompositeCommand(sql, conn);

 CompositeParameter id = new CompositeParameter("?id", 111);

TIBCO® Data Virtualization Client Interfaces Guide

261 | Connecting to TDV Server through ADO.NET

 CompositeParameter clob = new CompositeParameter("?clob",
"www.compositesw.com", CompositeDbType.CLOB);

 cmd.Parameters.Add(clob);

 cmd.Parameters.Add(id);

 int cnt = cmd.ExecuteNonQuery();

 }

 catch (Exception e)

 {

 throw ex;

 }

}

Retrieving Metadata
The metadata capabilities in TDV ADO.NET Driver are exposed through a generic API using
the CompositeConnection object. The CompositeConnection object's GetSchema method
has overloads that allow you to pass the name of the schema information, called the
metadata collection, that you are interested in. You can also pass filter information. The
following table shows the GetSchema overloads.

TIBCO® Data Virtualization Client Interfaces Guide

262 | Connecting to TDV Server through ADO.NET

Overload Description

GetSchema() Gets a DataTable with a row for each metadata collection that is
available with this provider. This option is the same as calling
GetSchema("MetaDataCollections").

GetSchema
(string)

Passes a metadata collection name and gets a DataTable containing
a row for each item found in that metadata collection in the
database.

GetSchema
(string, string
array)

Passes a metadata collection name and an array of string values that
specify how to filter the results, and gets a DataTable containing a
row for each filtered item found in the metadata collection in the
database.

You need an open connection to execute the GetSchema method. You can start by calling
the GetSchema method with no parameters. It returns a list of the available metadata
collections.

The following is a sample that retrieves the restrictions information for TABLES.

public void TestRestrictionInfo()

{

 string space = " ";

 CompositeConnection conn = GetConnection();

 try

 {

 DataTable dt = conn.GetSchema("Restrictions");

 foreach (DataRow myRow in dt.Rows)

TIBCO® Data Virtualization Client Interfaces Guide

263 | Connecting to TDV Server through ADO.NET

 {

 if(myRow[0].ToString().ToUpper() == "TABLES")

 {

 Console.WriteLine(myRow[0] + space + myRow[1] + space + myRow[2]);

 }

 }

 }

 catch (Exception ex)

 {

 throw ex;

 }

}

After you run the program, the following results appear. It shows that the metadata
TABLES have four restrictions: catalog_name, schema_name, table_name, and table_type.

TIBCO® Data Virtualization Client Interfaces Guide

264 | Connecting to TDV Server through ADO.NET

Retrieving Tables with a Named Schema
The following is an example of how to retrieve the tables where the schema name is a fixed
value like Mytest.

public void TestGetTablesInfo()

{

 CompositeConnection conn = GetConnection();

 try

 {

 string[] res = new string[4];

 res[1] = "Mytest";

 res[3] = "Table";

 DataTable dt = conn.GetSchema("Tables",res);

 foreach (DataRow myRow in dt.Rows)

 {

 Console.WriteLine(myRow["table_name"]);

 }

 }

TIBCO® Data Virtualization Client Interfaces Guide

265 | Connecting to TDV Server through ADO.NET

 catch (Exception ex)

 {

 throw ex;

 }

}

TIBCO® Data Virtualization Client Interfaces Guide

266 | ADO.NET Provider for TIBCO(R) Data Virtualization

ADO.NET Provider for TIBCO(R) Data
Virtualization

Overview
The ADO.NET Provider for TIBCO(R) Data Virtualization offers the most natural way to
access TDV data from .NET applications. The provider wraps the complexity of accessing
TDV data in an easy-to-integrate, fully managed ADO.NET Data Provider.

The provider hides the complexity of accessing data and provides additional powerful
security features, smart caching, batching, socket management, and more.

Key Features
 l DataBind to TDV using Visual Studio wizards.

 l Real-time access to TDV.

 l Comprehensive support for create, read, update, and delete (CRUD) operations.

Getting Started

See Getting Started for A-Z guides on authenticating and connecting to TDV data. See the
TDV integration guides for information on connecting from other applications.

Using ADO.NET

The provider has the same ADO.NET architecture as the native .NET data providers for SQL
Server and OLEDB. Code with familiar classes such as CompositeConnection,
CompositeCommand, CompositeDataAdapter, CompositeDataReader,
CompositeDataSource, CompositeParameter, and so on. See Using ADO.NET for guides
relating to these and other ADO.NET features such as batch processing, connection
pooling, and calling stored procedures.

TIBCO® Data Virtualization Client Interfaces Guide

267 | ADO.NET Provider for TIBCO(R) Data Virtualization

Entity Framework

You can leverage Entity Framework to quickly and easily model database resources using
.NET objects. In Using ADO.NET (Entity Framework), you can find instructions related to EF6
setup and installation, as well as the creation of both model-first and code-first data
models.

Entity Framework Core

Entity Framework Core provides a streamlined, cross-platform solution for modelling
database resources as .NET objects. Using ADO.NET (Entity Framework Core) covers how to
surface TDV data using EF Core console and ASP.NET applications. Additionally, you can
find instructions for automatically building data models from data source metadata using
reverse engineering (scaffolding).

SSRS

You can use the provider to enable real-time connectivity to TDV within your SSRS reports.
Using ADO.NET (SSRS) details provider deploy, the creation of shared and embedded data
sources and datasets, and the publishing of SSRS reports.

DbProviderFactory

The provider supports the creation of strongly typed DbProviderFactory and DBConnection
objects in order to facilitate connecting to TDV with generic code. Using ADO.NET
(DbProviderFactory) describes how to get connected as well as create, configure, and
execute DbCommands.

Schema Discovery

See Schema Discovery to use standard ADO.NET schema collections to discover schema
information and other metadata.

Advanced Features

Advanced Features details additional features supported by the provider, such as , ssl
configuration, firewall/proxy settings, and advanced logging.

TIBCO® Data Virtualization Client Interfaces Guide

268 | ADO.NET Provider for TIBCO(R) Data Virtualization

Connection String Options

The Connection properties describe the various options that can be used to establish a
connection.

Getting Started

Connecting to TDV

Establishing a Connection shows how to authenticate to TDV and configure any necessary
connection properties. You can also configure provider capabilities through the available
Connection properties, from data modeling to firewall traversal. The Advanced Settings
section shows how to set up more advanced configurations and troubleshoot connection
errors.

Connecting from Visual Studio

The ADO.NET Provider for TIBCO(R) Data Virtualization provides a seamless integration with
Microsoft Visual Studio. The provider is registered as an ADO.NET provider with Visual
Studio, allowing for integration with visual designer tools, Server Explorer, and ADO.NET
data source configuration wizards.

Visual Studio Version Support

The ADO.NET Provider for TIBCO(R) Data Virtualization supports Visual Studio versions 2012
and above.

.NET Version Support

The ADO.NET Provider for TIBCO(R) Data Virtualization supports .NET Framework 4.0 and
above as well as .NET Standard 2.0.

TDV Version Support

The provider enables read/write SQL-92 access to TIBCO(R) Data Virtualization version 7.0.1
and above.

TIBCO® Data Virtualization Client Interfaces Guide

269 | ADO.NET Provider for TIBCO(R) Data Virtualization

See Also

See Using ADO.NET to create ADO.NET connection objects from code.

See Using ADO.Net - Entity Framework to build an EF model based on the TDV connection.

See Using ADO.Net SSRS to connect to TDV and create real-time reports.

See Using DbProviderFactoryto connect to TDV from generic ADO.NET code.

Establishing a Connection
Set the Host, Domain, User, Password, and DataSource connection properties to connect to
the TDV Server.

Using ADO.NET
This section provides a walk-through of writing data access code to TDV in ADO.NET.

Connecting from Code

See Establishing a Connection for the prerequisite information you need to deploy the
provider and configure the connection to TDV. Connecting from Code shows how to
connect with the classes CompositeConnection, CompositeConnectionStringBuilder, and, in
ASP.NET, CompositeDataSource.

Discovering Schemas

You can use the classes detailed in Schema Discovery to discover the table schemas at run
time. You can also query the available System Tables to retrieve schema information, data
source information, and other data provider metadata.

Executing SQL

You can use native ADO.NET interfaces to execute data manipulation SQL to TDV: Querying
with the DataReader and Querying with the DataAdapter provide code examples and
guides to using native ADO.NET interfaces to access TDV data. Results can be processed
from the DataTable instance filled or from the DataReader returned.

TIBCO® Data Virtualization Client Interfaces Guide

270 | ADO.NET Provider for TIBCO(R) Data Virtualization

Updating the Data shows how to use the provider to update changes to a data set.

Connection Pooling

Instantiate pooled connections by configuring the connection string. See Connection
Pooling to create and configure a pool.

Installed Assemblies
The assemblies shipped by the provider contain standard ADO.NET components, including
components for creating ASP.NET applications and SSRS reports, from code and from the
designer.

Choosing the Assemblies for Your Version of the .NET Framework

The lib folder in the installation directory has .NET 4.0 assembiles. The netstandard2.0
subfolder contains the System.Data.CompositeClient assembly compiled with .NET
Standard 2.0.

Determining Project Dependencies

The following sections list the main assemblies and assemblies you need to integrate with
Visual Studio designers and other tools.

Main ADO.NET Assemblies

The ADO.NET Provider for TIBCO(R) Data Virtualization ships the following ADO.NET
assemblies:

 l System.Data.CompositeClient.dll: This is the main ADO.NET provider assembly.

 l System.Data.CompositeClient.Designer.dll: This assembly contains design-time
resources that you can include for a better development experience. It does not need
to be deployed and it is not available for .NET Core applications.

Note that if you are building a .NET Core application that requires support for code pages
other than UTF8 (such as Latin-1), you will need to add a NuGet reference for
System.Text.Encoding.CodePages.

TIBCO® Data Virtualization Client Interfaces Guide

271 | ADO.NET Provider for TIBCO(R) Data Virtualization

Entity Framework Assemblies

The provider supports Entity Framework with the following assembly:

System.Data.CompositeClient.Entities.EF6.dll: This assembly includes support for Entity
Framework 6 (EF6).

See Using ADO.Net - Entity Framework for information on creating Entity Framework data
models with the provider.

Entity Framework Core Assemblies

The provider supports EF Core with the following assembly:

TIBCO.EntityFrameworkCore.CompositeClient.dll: This assembly includes support for Entity
Framework Core.

See Using ADO.Net - Entity Framework Core for information on creating EF Core data
models with the provider.

SSRS Assemblies

The provider supports SSRS 2005 and above; the assemblies for each SSRS version are
located in the SSRS subfolder in the installation folder. For example:

 l TIBCO.SSRS2017.Composite.dll: This assembly is deployed to the report server.

 l TIBCO.SSRS2017.Composite.Design.dll: This assembly contains design-time resources
that you can include for a better development experience. It does not need to be
deployed.

See Using ADO.Net SSRS for a guide to deploying the provider to your SSRS server and
creating a report.

Connecting from Code
The ADO.NET Provider for TIBCO(R) Data Virtualization implements a standard
DbConnection object in CompositeConnection. You can also use the
CompositeConnectionStringBuilder to programmatically build, parse, and rebuild
connection strings.

TIBCO® Data Virtualization Client Interfaces Guide

272 | ADO.NET Provider for TIBCO(R) Data Virtualization

Creating Connection Objects

See Establishing a Connection for guides to defining the connection string and
authenticating. Below is a typical invocation to create CompositeConnection objects.

C#

using (CompositeConnection connection =
 new CompositeConnection
("Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwo
rd=myPassword"))
{
 connection.Open();
}

VB.NET

Using connection As New CompositeConnection
("Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwo
rd=myPassword")
 connection.Open
End Using

Using CompositeConnectionStringBuilder

The following code example shows how to use an ADO.NET connection string builder to
parse a connection string.

C#

CompositeConnectionStringBuilder builder =
 new CompositeConnectionStringBuilder
("Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwo
rd=myPassword");
 //Pass the connection string builder an existing connection string,
and you can get and set any of the elements as strongly typed
properties.
 builder.ConnectionString =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword";
 //Now that the connection string has been parsed,
 // you can work with individual items:
 builder.MyString = "new property";
 builder.MyBoolean = true;
 // You can refer to connection keys using strings,
 // as well.

TIBCO® Data Virtualization Client Interfaces Guide

273 | ADO.NET Provider for TIBCO(R) Data Virtualization

 builder["Logfile"] = "test.log";
 builder["Verbosity"] = 5;

VB.NET

Dim builder As CompositeConnectionStringBuilder = New
CompositeConnectionStringBuilder
("Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwo
rd=myPassword")
'Pass the connection string builder an existing connection string, and
you can get and set any of the elements using strongly typed properties.
builder.ConnectionString =
Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Password
=myPassword"
'Now that the connection string has been parsed,
' you can work with individual items:
builder.MyString = "new property"
builder.MyBoolean = True
' You can refer to connection keys using strings,
' as well.
builder("Logfile") = "test.log"
builder("Verbosity") = 5

Querying with the DataReader
The ADO.NET Provider for TIBCO(R) Data Virtualization implements two ADO.NET interfaces
you can use to retrieve data from TDV: CompositeDataAdapter and CompositeDataReader
objects. Whereas CompositeDataAdapter objects retrieve a single result set of all the data
that matches a query, CompositeDataReader objects fetch data in subset increments as
needed.

Using the CompositeDataReader

The CompositeDataReader retrieves data faster than the CompositeDataAdapter because it
can retrieve data in pages. As you read data from the CompositeDataReader, it periodically
requests the next page of results from the data source, if required. This causes results to be
returned at a faster rate. The following example selects all the columns from the Products
table:

C#

TIBCO® Data Virtualization Client Interfaces Guide

274 | ADO.NET Provider for TIBCO(R) Data Virtualization

string connectionString =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword";
using (CompositeConnection connection = new CompositeConnection
(connectionString)) {
 CompositeCommand cmd = new CompositeCommand("SELECT * FROM Products",
connection);
 CompositeDataReader rdr = cmd.ExecuteReader();
 while (rdr.Read()) {
 Console.WriteLine(String.Format("\t{0} --> \t\t{1}", rdr["Id"], rdr
["ProductName"]));
 }
}

VB.NET

Dim connectionString As String =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword"
Using connection As New CompositeConnection(connectionString)
 Dim cmd As New CompositeCommand("SELECT * FROM Products", connection)
 Dim rdr As CompositeDataReader = cmd.ExecuteReader()
 While rdr.Read()
 Console.WriteLine([String].Format(vbTab & "{0} --> " & vbTab & vbTab
& "{1}", rdr("Id"), rdr("ProductName")))
 End While
End Using

Querying with the DataAdapter
The ADO.NET Provider for TIBCO(R) Data Virtualization implements two ADO.NET interfaces
you can use to retrieve data from TDV: CompositeDataAdapter and CompositeDataReader
objects. Whereas CompositeDataAdapter objects retrieve a single result set of all the data
that matches a query, CompositeDataReader objects fetch data in subset increments as
needed.

Using the CompositeDataAdapter

Use the adapter's Fill method to retrieve data from the data source. An empty DataTable
instance is passed as an argument to the Fill method. When the method returns, the
DataTable instance is populated with thequeried data. Note that the

TIBCO® Data Virtualization Client Interfaces Guide

275 | ADO.NET Provider for TIBCO(R) Data Virtualization

CompositeDataAdapter is slower than the CompositeDataReader because the Fill method
needs to retrieve all data from the data source before returning.

The following example selects the Id and ProductName columns of the Products table:

C#

string connectionString =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword";

using (CompositeConnection connection = new CompositeConnection
(connectionString)) {

 CompositeDataAdapter dataAdapter = new CompositeDataAdapter(

 "SELECT Id, ProductName FROM [Public].[Sample].Products", connection);

 DataTable table = new DataTable();

 dataAdapter.Fill(table);

 Console.WriteLine("Contents of Products.");

 foreach (DataRow row in table.Rows) {

 Console.WriteLine("{0}: {1}", row["Id"], row["ProductName"]);

TIBCO® Data Virtualization Client Interfaces Guide

276 | ADO.NET Provider for TIBCO(R) Data Virtualization

 }

}

VB.NET

Dim connectionString As String =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword"

Using connection As New CompositeConnection(connectionString)

 Dim dataAdapter As New CompositeDataAdapter("SELECT Id, ProductName
FROM [Public].[Sample].Products", connection)

 Dim table As New DataTable()

 dataAdapter.Fill(table)

 Console.WriteLine("Contents of Products.")

 For Each row As DataRow In table.Rows

 Console.WriteLine("{0}: {1}", row("Id"), row("ProductName"))

TIBCO® Data Virtualization Client Interfaces Guide

277 | ADO.NET Provider for TIBCO(R) Data Virtualization

 Next

End Using

Using the CompositeDataSource
The CompositeDataSource enables you to use a single Web control to connect to TDV and
query data. By binding the control to other controls such as the GridView or ListBox, you
can display, edit, and save TDV data in an ASP.NET page. You can use the Visual Studio
Designer to initialize the control, visually build queries, and bind controls; you can also
define SQL commands from page code. The examples below show both approaches and
use the GridView control as an example.

To use the CompositeDataSource, add a reference to System.Data.CompositeClient.Web.dll
in your ASP.NET project.

Bind Data Programmatically

The following example shows how to bind the results of a TDV query to an ASP.NET data
grid. After registering the assembly for use with the CompositeDataSource, set the
DataSourceID field of the GridView control to the Id of the CompositeDataSource control:

<%@ Register Assembly="System.Data.CompositeClient.Web"
Namespace="System.Data.CompositeClient" TagPrefix="cc1" %>

...

<cc1:CompositeDataSource ID="CompositeDataSource1" runat="server"
ConnectionString="Host=myHost;Domain=myDomain;DataSource=myDataSource;Us
er=myUser;Password=myPassword" SelectCommand="SELECT * FROM Products
WHERE ProductName = 'Konbu' LIMIT 10"></cc1:CompositeDataSource>

<asp:GridView DataSourceID="CompositeDataSource1"
runat="server"></asp:GridView>

TIBCO® Data Virtualization Client Interfaces Guide

278 | ADO.NET Provider for TIBCO(R) Data Virtualization

Bind Data Using the Designer

Complete the following steps to use the Designer in Visual Studio to bind the
CompositeDataSource to a GridView control:

1. Drag a GridView from the Toolbox onto the page.

2. Click the Smart Tag of the GridView.

3. Choose the option to create a new data source, which launches a wizard to
configure the control.

4. On the first page, select a connection string from the menu or click New Connection
to define a new connection or to save a connection entry in the Web.config file.

5. On the next page, select the option to define a SQL statement or visually build the
query.

When you exit the wizard, the GridView displays the columns of the result set.

Batch Processing
The ADO.NET Provider for TIBCO(R) Data Virtualization enables you to take advantage of
the bulk load support in TDV through CompositeDataAdapters. You can use the Batch API
to execute related SQL data manipulation statements simultaneously.

Using the ADO.NET Batch API

Performing a batch update consists of the following basic steps:

1. Define custom parameterized SQL statements in CompositeCommand objects.

2. Set the UpdatedRowSource property of the CompositeCommand object to
"UpdateRowSource.None".

3. Assign the CompositeCommand objects to the CompositeDataAdapter.

4. Add the parameters to the command.

5. Call the CompositeDataAdapter's Update method. Pass in a DataSet or DataTable
containing your changes.

TIBCO® Data Virtualization Client Interfaces Guide

279 | ADO.NET Provider for TIBCO(R) Data Virtualization

Controlling Batch Size

Depending on factors such as the size of the request, your network resources, and the
performance of the server, you may gain performance by executing several smaller batch
requests. You can control the size of each batch by setting the CompositeDataAdapter's
UpdateBatchSize property to a positive integer.

Bulk Insert

The following code prepares a single batch that inserts records in bulk and retrieves the
new records' Ids. The example executes a batch insert of new DataRows, which have the
"Added" state.

C#

CompositeDataAdapter adapter = new CompositeDataAdapter();

using (CompositeConnection conn = new CompositeConnection
("Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwo
rd=myPassword")) {

 conn.Open();

 adapter.InsertCommand = conn.CreateCommand();

 adapter.InsertCommand.CommandText = "INSERT INTO [Public].
[Sample].Products (ProductName) VALUES (@ProductName)";

 adapter.InsertCommand.UpdatedRowSource = UpdateRowSource.None;

 adapter.InsertCommand.Parameters.Add("@ProductName", "ProductName");

TIBCO® Data Virtualization Client Interfaces Guide

280 | ADO.NET Provider for TIBCO(R) Data Virtualization

 DataTable batchDataTable = new DataTable();

 batchDataTable.Columns.Add("ProductName", typeof(string));

 batchDataTable.Rows.Add("Ikura");

 batchDataTable.Rows.Add("Konbu");

 adapter.UpdateBatchSize = 2;

 adapter.Update(batchDataTable);

 CompositeCommand cmd = new CompositeCommand("SELECT * FROM
LastResultInfo#TEMP", conn);

 adapter = new CompositeDataAdapter(cmd);

 DataTable res = new DataTable();

 adapter.Fill(res);

 foreach (DataRow row in res.Rows)

 foreach(DataColumn col in res.Columns)

 Console.Write("{0}: {1}", col.ColumnName, row[col]);

}

VB.NET

TIBCO® Data Virtualization Client Interfaces Guide

281 | ADO.NET Provider for TIBCO(R) Data Virtualization

Dim adapter As New CompositeDataAdapter()

Using conn As New CompositeConnection
("Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwo
rd=myPassword")

 conn.Open()

 adapter.InsertCommand = conn.CreateCommand()

 adapter.InsertCommand.CommandText = "INSERT INTO [Public].
[Sample].Products (Id) VALUES (@ProductName)"

 adapter.InsertCommand.UpdatedRowSource = UpdateRowSource.None

 adapter.InsertCommand.Parameters.Add("@ProductName", "ProductName")

 Dim batchDataTable As New DataTable()

 batchDataTable.Columns.Add("ProductName", GetType(String))

 batchDataTable.Rows.Add("Konbu")

 batchDataTable.Rows.Add("Ikura")

 adapter.UpdateBatchSize = 2

 adapter.Update(batchDataTable)

TIBCO® Data Virtualization Client Interfaces Guide

282 | ADO.NET Provider for TIBCO(R) Data Virtualization

 Dim cmd As New CompositeCommand("SELECT * FROM LastResultInfo#TEMP",
conn)

 adapter = New CompositeDataAdapter(cmd)

 Dim res As New DataTable()

 adapter.Fill(res)

 For Each row As DataRow In res.Rows

 For Each col As DataColumn In res.Columns

 Console.WriteLine("{0}: {1}", col.ColumnName, row(col))

 Next

 Next

End Using

Bulk Update

A batch update additionally requires the primary key of each row to update. The following
example executes a batch for all DataRow records with a "Modified" state:

C#

CompositeDataAdapter adapter = new CompositeDataAdapter();

TIBCO® Data Virtualization Client Interfaces Guide

283 | ADO.NET Provider for TIBCO(R) Data Virtualization

using (CompositeConnection conn = new CompositeConnection
("Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwo
rd=myPassword")) {

 conn.Open();

 adapter.UpdateCommand = conn.CreateCommand();

 adapter.UpdateCommand.CommandText = "UPDATE [Public].[Sample].Products
SET ProductName=@ProductName WHERE Id=@Id";

 adapter.UpdateCommand.Parameters.Add("@ProductName", "ProductName");

 adapter.UpdateCommand.Parameters.Add("@Id", "Id");

 adapter.UpdateCommand.UpdatedRowSource = UpdateRowSource.None;

 adapter.UpdateBatchSize = 2;

 adapter.Update(dataTable);

}

VB.NET

Dim adapter As New CompositeDataAdapter()

Using conn As New CompositeConnection
("Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwo
rd=myPassword")

TIBCO® Data Virtualization Client Interfaces Guide

284 | ADO.NET Provider for TIBCO(R) Data Virtualization

 conn.Open()

 adapter.UpdateCommand = conn.CreateCommand()

 adapter.UpdateCommand.CommandText = "UPDATE [Public].[Sample].Products
SET ProductName=@ProductName WHERE Id=@Id"

 adapter.UpdateCommand.Parameters.Add("@ProductName", "ProductName")

 adapter.UpdateCommand.Parameters.Add("@Id", "Id")

 adapter.UpdateCommand.UpdatedRowSource = UpdateRowSource.None

 adapter.UpdateBatchSize = 2

 adapter.Update(dataTable)

End Using

Bulk Delete

The following code prepares a single batch that deletes records in bulk. The primary key
for each row is required. The following example executes a batch for all DataRow records
with a "Deleted" state:

C#

CompositeDataAdapter adapter = new CompositeDataAdapter();

using (CompositeConnection conn = new CompositeConnection

TIBCO® Data Virtualization Client Interfaces Guide

285 | ADO.NET Provider for TIBCO(R) Data Virtualization

("Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwo
rd=myPassword")) {

 conn.Open();

 adapter.DeleteCommand = conn.CreateCommand();

 adapter.DeleteCommand.CommandText = "DELETE FROM [Public].
[Sample].Products WHERE Id=@Id";

 adapter.DeleteCommand.Parameters.Add("@Id", "Id");

 adapter.DeleteCommand.UpdatedRowSource = UpdateRowSource.None;

 adapter.UpdateBatchSize = 2;

 adpater.Update(table);

}

VB.NET

Dim adapter As New CompositeDataAdapter()

Using conn As New CompositeConnection
("Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwo
rd=myPassword")

 conn.Open()

 adapter.DeleteCommand = conn.CreateCommand()

TIBCO® Data Virtualization Client Interfaces Guide

286 | ADO.NET Provider for TIBCO(R) Data Virtualization

 adapter.DeleteCommand.CommandText = "DELETE FROM [Public].
[Sample].Products WHERE Id=@Id"

 adapter.DeleteCommand.Parameters.Add("@Id", "Id")

 adapter.DeleteCommand.UpdatedRowSource = UpdateRowSource.None

 adapter.UpdateBatchSize = 2

 adpater.Update(table)

End Using

Connection Pooling
The provider implements a standard ADO.NET connection pool. Set UseConnectionPooling
to enable the pool. The following sections show how to configure and use them.

Working with Pooled Connections

Just as you would interact with a non-pooled connection, you use standard ADO.NET
objects to get and close connections. But, in this case, the CompositeConnection object
retrieved is a handle for the physical connection owned by the connection pool. When the
connection is closed, instead of the connection being destroyed, the handle is returned to
the pool, where it is available for the next connection request.

You must explicitly close the connection for it to be returned to the pool.

Configuring the Connection Pool

In addition to UseConnectionPooling, set the following connection properties to control the
connection pool:

 l PoolMaxSize: Define the maximum number of connections that can be open at any

TIBCO® Data Virtualization Client Interfaces Guide

287 | ADO.NET Provider for TIBCO(R) Data Virtualization

given time.

 l PoolIdleTimeout: Set a limit to how long connections can remain open and idle. If
this limit is exceeded, the connection is returned to the pool.

 l PoolWaitTime: Set a limit to how long new connection requests should wait for a
connection to become available. If this limit is exceeded, the request returns an error.
By default, connection requests wait forever for a connection to become available.

Connection Pooling with CompositeConnection
To use the default method for pooling connections, instantiate the CompositeConnection
with UseConnectionPooling:

C#

using (CompositeConnection connection = new CompositeConnection
("UseConnectionPooling=true;Host=myHost;Domain=myDomain;DataSource=myDat
aSource;User
=myUser;Password=myPassword")) {connection.Open();}

VB.NET

Using (CompositeConnection connection = new CompositeConnection
("UseConnectionPooling=true;Host=myHost;Domain=myDomain;DataSource=myDat
aSource;User=
myUser;Password=myPassword"))
connection.Open()
End Using

Closing the Connection Pool

The connection pool is closed when the active process ends.

Calling Stored Procedures
You can invoke a stored procedure using CompositeCommand in the same way as any
other SQL stored procedure. To instantiate a CompositeCommand object, provide the
name of the stored procedure and a CompositeConnection instance as arguments to the
constructor. Set the value of the CommandType property to "StoredProcedure" and add

TIBCO® Data Virtualization Client Interfaces Guide

288 | ADO.NET Provider for TIBCO(R) Data Virtualization

the parameters as key-value pairs to the Parameters collection of the CompositeCommand
instance.

C#

string connectionString =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword";

using (CompositeConnection connection = new CompositeConnection
(connectionString)) {

 CompositeCommand cmd = new CompositeCommand("SearchSuppliers",
connection);

 cmd.CommandType = CommandType.StoredProcedure;

 cmd.Parameters.Add(new CompositeParameter("@Country", "US"));

 // Add other parameters as needed ...

 CompositeDataReader rdr = cmd.ExecuteReader();

 while (rdr.Read()) {

 for (int i = 0; i < rdr.FieldCount; i++) {

 Console.WriteLine(rdr.GetName(i) + " --> " + rdr[i]);

 }

 Console.WriteLine();

 }

TIBCO® Data Virtualization Client Interfaces Guide

289 | ADO.NET Provider for TIBCO(R) Data Virtualization

}

VB.NET

Dim connectionString As String =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword"

Using connection As New CompositeConnection(connectionString)

 Dim cmd As New CompositeCommand("SearchSuppliers", connection)

 cmd.CommandType = CommandType.StoredProcedure

 cmd.Parameters.Add(New CompositeParameter("@Country", "US"))

 ' Add other parameters as needed ...

 Dim rdr As CompositeDataReader = cmd.ExecuteReader()

 While rdr.Read()

 For i As Integer = 0 To rdr.FieldCount - 1

 Console.WriteLine(rdr.GetName(i) + " --> " + rdr(i))

 Next

 Console.WriteLine()

 End While

TIBCO® Data Virtualization Client Interfaces Guide

290 | ADO.NET Provider for TIBCO(R) Data Virtualization

End Using

Alternatively, you can set the parameters of a stored procedure in the text of the
command. The support for stored procedure statements follows the standard form shown
below:

"EXECUTE my_proc @first = 1, @second = 2, @third = 3;"

"EXEC my_proc @first = 1, @second = 2, @third = 3;"

To execute a parameterized query, add parameters as key-value pairs to the Parameters
collection of the CompositeCommand instance.

C#

string connectionString =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword";

using (CompositeConnection connection = new CompositeConnection
(connectionString)) {

 CompositeCommand cmd = new CompositeCommand("EXECUTE SearchSuppliers
Country = @Country;", connection);

 cmd.Parameters.Add(new CompositeParameter("@Country", "US"));

 // Add other parameters as needed ...

 CompositeDataReader rdr = cmd.ExecuteReader();

 while (rdr.Read()) {

 for (int i = 0; i < rdr.FieldCount; i++) {

TIBCO® Data Virtualization Client Interfaces Guide

291 | ADO.NET Provider for TIBCO(R) Data Virtualization

 Console.WriteLine(rdr.GetName(i) + " --> " + rdr[i]);

 }

 Console.WriteLine();

 }

}

VB.NET

Dim connectionString As String =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword"

Using connection As New CompositeConnection(connectionString)

 Dim cmd As New CompositeCommand("EXECUTE SearchSuppliers Country =
@Country;", connection)

 cmd.Parameters.Add(New CompositeParameter("@Country", "US"))

 ' Add other parameters as needed ...

 Dim rdr As CompositeDataReader = cmd.ExecuteReader()

 While rdr.Read()

 For i As Integer = 0 To rdr.FieldCount - 1

TIBCO® Data Virtualization Client Interfaces Guide

292 | ADO.NET Provider for TIBCO(R) Data Virtualization

 Console.WriteLine(rdr.GetName(i) + " --> " + rdr(i))

 Next

 Console.WriteLine()

 End While

End Using

Using ADO.Net - Entity Framework

Creating EF 6 Models from the Designer and Code

The ADO.NET Provider for TIBCO(R) Data Virtualization includes an Entity Framework 6
(EF6) provider. The following sections show how to build an EF data model that surfaces
access to TDV tables.

Register the EF6 Provider

Before a data model can be defined, it is necessary to first register the EF6 provider in the
target application. See Using EF 6 to set up a project.

Model-First

The included EF6 provider can be used to derive database objects from live TDV data.
Model-First Approach shows how to generate a model using schema introspection.

Code-First

The code-first approach gives developers granular control over the data exposed in the
data model. Code-First Approach shows how to manually define the entity definitions.

TIBCO® Data Virtualization Client Interfaces Guide

293 | ADO.NET Provider for TIBCO(R) Data Virtualization

Using EF 6
The Entity Framework is now being developed outside of the .NET Framework. This means
several dependencies that were part of the .NET framework are now part of the Entity
Framework. This section describes how to use Entity Framework 6 (EF6) in your project.

Install Entity Framework 6

First, install and configure the EF6 environment. Use the Package Manager Console in
Visual Studio to install the latest version of Entity Framework. Run the the following
command to download and install Entity Framework automatically:

Install-Package EntityFramework

Register the Entity Framework Provider

Complete the following steps to register the Entity Framework provider:

1. Add the following provider entry in the "providers" section of your App.config or
Web.config. This section should already exist if the Entity Framework installation
was successful.

<configuration>

...

<entityFramework>

 <providers>

 ...

 <provider invariantName="System.Data.CompositeClient"
type="System.Data.CompositeClient.CompositeProviderServices,
System.Data.CompositeClient.Entities.EF6" />

TIBCO® Data Virtualization Client Interfaces Guide

294 | ADO.NET Provider for TIBCO(R) Data Virtualization

 </providers>

</entityFramework>

</configuration>

2. Add a reference to System.Data.CompositeClient.Entities.EF6.dll, located in the lib >
4.0 subfolder in the installation directory.

3. Build the project to complete the setup for using EF6.

Build the Project

It is important to build the project so that the referenced assemblies are copied locally to
the build location. These assemblies are used by the Visual Studio Entity Data Model
wizard.

Using Entity Framework

With the setup complete, you can either use the Entity Data Model wizard described in
Model-First Approach or use the code-first approach described in Code-First Approach.

Model-First Approach
This section describes how to use the Entity Data Model wizard to create the .edmx file and
execute queries.

Install and Set Up Entity Framework

Install Entity Framework or add references to the required assemblies for your chosen
version of Entity Framework. The assemblies are located in the lib subfolder of the
installation directory. See Using EF 6 for using Entity Framework 6 (EF6). See Installed
Assemblies for more information about all assemblies shipped with the provider.

TIBCO® Data Virtualization Client Interfaces Guide

295 | ADO.NET Provider for TIBCO(R) Data Virtualization

Add a Data Connection in Server Explorer

Before you can create an Entity Data Model, you will need to create a data connection. To
do this,

 1. Navigate to Server Explorer -> right click "Data Connections" -> Add
Connection...

 2. Click the Change button beside the Data Source box.

 3. Select TIBCO TDV Data Source, then click OK.

 4. Configure your connection settings, then click OK.

Add a New Item To Your Project

In the Visual Studio Solution Explorer, right-click your project and click Add > New Item.

Create an ADO.NET Entity Data Model

In the resulting Add New Item dialog, click ADO.NET Entity Data Model and enter an
appropriate title, such as "CompositeEntityDataModel.edmx".

Use the Entity Data Model Wizard

Complete the following steps to create the .edmx file with the Entity Data Model wizard:

 1. On the first page, select Generate from database.

 2. On the next page, select the data provider connection you want to use with your
project or create a new connection.

 3. Select whether to include sensitive data (such as passwords) in the connection string.
Note that the option to exclude sensitive data means password fields are not copied
to the generated config file with the rest of the connection string properties.

 4. Select the box to save the entity connection settings in App.Config, and enter a name
for the context class of the data connection; for example, "CompositeEntities".

After Visual Studio retrieves the necessary information from the live data source, the wizard
presents a listing of database objects you can include in your project. Note that this step
may take several minutes as Visual Studio retrieves table schemas from TDV.

TIBCO® Data Virtualization Client Interfaces Guide

296 | ADO.NET Provider for TIBCO(R) Data Virtualization

Perform LINQ Commands in Your Code

You are now ready to start using LINQ in your code.

C#

CompositeEntities context = new CompositeEntities();
var ProductsQuery = from Products in context.Products
orderby Products.ProductName
select Products;

VB.NET

Dim context As CompositeEntities = New CompositeEntities()
Dim ProductsQuery = From Products In context.Products
Order By Products.ProductName
Select Products

Note: Be sure to declare (c#)"using System.Linq"/(VB.Net)"Imports System.Linq" in your
file.

Code-First Approach
An alternative to introspecting the model from the provider is to handwrite your model
classes. This is the code-first approach to Entity Framework, which gives you greater
control over the exact data model you use in your application.

Install Entity Framework

Install Entity Framework or add references to the required assemblies for your chosen
version of Entity Framework. See Using EF 6 for using Entity Framework 6. See Installed
Assemblies for more information about all assemblies shipped with the provider.

Register the Provider

Add the connection string to App.Config or Web.config. The connectionStrings node is often
located directly below the configSection node in the root configuration node.

<configuration>
...

TIBCO® Data Virtualization Client Interfaces Guide

297 | ADO.NET Provider for TIBCO(R) Data Virtualization

<connectionStrings>
<add name="CompositeContext"
connectionString="Host=myHost;Domain=myDomain;DataSource=myDataSource;Us
er=myUser;
Password=myPassword" providerName="System.Data.CompositeClient" />
</connectionStrings>...
</configuration>

Create the Context Class

This is the base object that extends DbContext and exposes the DbSet properties that
represent the tables in the data source. Override some of the default functionality of the
DbContext class by overriding the OnConfiguring method.

C#

using System.Data.Entity;
using System.Data.Entity.Infrastructure;
using System.Data.Entity.ModelConfiguration.Conventions;
class CompositeContext : DbContext {
public CompositeContext() { }
public DbSet<Products> Products { set; get; }
protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
// To remove the requests to the Migration History table
Database.SetInitializer<CompositeContext>(null);
// To remove the plural names
modelBuilder.Conventions.Remove<PluralizingTableNameConvention>();
//For versions of EF before 6.0, uncomment the following line to remove
calls to EdmTable, a metadata table
//modelBuilder.Conventions.Remove<IncludeMetadataConvention>();
//To remove the default schema "dbo"
modelBuilder.HasDefaultSchema("");
}
}

VB.NET

Imports System.Data.Entity
Imports System.Data.Entity.Infrastructure
Imports System.Data.Entity.ModelConfiguration.Conventions
Class CompositeContext
Inherits DbContext
Public Sub New()
End Sub

TIBCO® Data Virtualization Client Interfaces Guide

298 | ADO.NET Provider for TIBCO(R) Data Virtualization

public property Products As DbSet(Of Products)
Protected Overrides Sub OnModelCreating(modelBuilder As DbModelBuilder)
' To remove the requests to the Migration History table
Database.SetInitializer(of CompositeContext)(Nothing)
' To remove the plural names
modelBuilder.Conventions.Remove(Of PluralizingTableNameConvention)
' For versions of EF before 6.0, uncomment the following line to remove
calls to EdmTable, a metadata table
' modelBuilder.Conventions.Remove(Of IncludeMetadataConvention)()
' To remove the default schema "dbo"modelBuilder.HasDefaultSchema("")
End Sub
End Class

Create the Table Models

Define a class for each table that was defined in the DbSet properties of the context class.
The table classes should have a list of properties that correspond to each field of that
table. A corresponding map class must be defined to configure attributes for each property
in the table class.

C#

using System.Data.Entity.ModelConfiguration;
using System.ComponentModel.DataAnnotations.Schema; //EF 6 and later
//using System.ComponentModel.DataAnnotations //For versions of EF
before 6
[System.ComponentModel.DataAnnotations.Schema.Table("[Public].
[Sample].Products")]
public class Products {
[System.ComponentModel.DataAnnotations.Key]
public System.String Id { get; set; }
public System.String ProductName { get; set; }
}

VB.NET

Imports System.Data.Entity.ModelConfiguration
Imports System.ComponentModel.DataAnnotations.Schema 'EF 6 and later
'Imports System.ComponentModel.DataAnnotations 'For versions of EF
before 6
<System.ComponentModel.DataAnnotations.Schema.Table("[Public].
[Sample].Products")>
public class Products
<System.ComponentModel.DataAnnotations.Key>
public property Id As System.String

TIBCO® Data Virtualization Client Interfaces Guide

299 | ADO.NET Provider for TIBCO(R) Data Virtualization

public property ProductName As System.String
End Class

Perform LINQ Commands in Your Code

You are now ready to start using LINQ in your code. Be sure to declare (c#)"using
System.Linq"/(VB.Net)"Imports System.Linq" in your file.

C#

CompositeContext ents = new CompositeContext();
var ProductsQuery = from Products in ents.Products
orderby Products.ProductName
select Products;

VB.Net

Dim ents As CompositeContext = New CompositeContext()
Dim ProductsQuery = From Products In ents.Products
Order By Products.ProductName
Select Products

Using ADO.Net - Entity Framework Core

Creating EF 6 Models from the Designer and Code

The ADO.NET Provider for TIBCO(R) Data Virtualization includes an Entity Framework (EF)
Core provider. The following sections show how to build an EF data model that surfaces
access to TDV tables.

Register the EF Core Provider

Before a data model can be defined, it is necessary to first register the EF Core provider in
the target application. Getting Started with EFCore describes this process.

TIBCO® Data Virtualization Client Interfaces Guide

300 | ADO.NET Provider for TIBCO(R) Data Virtualization

Scaffolding

The data model can be inferred automatically (scaffolded) via Package Manager Console
commands. Reverse Engineering (Scaffolding) shows how to reverse engineer a data model
using scaffolding. Before a data model can be defined, it is necessary to first register the EF
Core provider in the target application.

Code-First

The code-first approach gives developers granular control over the data exposed in the
data model. Code-First Approach shows how to manually define the entity definitions.

EF Console Application

EFCore Console Application outlines how to register the EF Core provider in a console app.

ASP.NET Application

EFCore ASP.NET Application outlines how to register the EF Core provider in an ASP.NET
app.

Getting Started with EFCore

Install Entity Framework Core

Install and configure the Entity Framework Core environment. Use the Package Manager
Console in Visual Studio to install the appropriate version of EF Core.

The following versions are supported through bundled assemblies.

 l 3.1

 l 6.0

To download and install EF Core automatically, first run one of the following commands:

TIBCO® Data Virtualization Client Interfaces Guide

301 | ADO.NET Provider for TIBCO(R) Data Virtualization

Install-Package Microsoft.EntityFrameworkCore -Version 3.1 //Run this
command if using EF Core 3.1
Install-Package Microsoft.EntityFrameworkCore -Version 6.0 //Run this
command if using EF Core 6.0

Additionally, you'll need to install EF Core's Relational assembly, as shown in the following
example::

Install-Package Microsoft.EntityFrameworkCore.Relational -Version 3.1
//Run this command if using EF Core 3.1
Install-Package Microsoft.EntityFrameworkCore.Relational -Version 6.0
//Run this command if using EF Core 6.0

If you need access to code pages beyond those bundled with .NET Standard, install the
following package:

Install-Package System.Text.Encoding.CodePages

Register the Entity Framework Core Provider

Complete the following steps to register the Entity Framework Core provider:

 1. Add a reference to System.Data.CompositeClient.dll, located in the lib ->
netstandard2.0 subfolder in the installation directory.

 2. Add a reference to TIBCO.EntityFrameworkCore.Composite.dll

— For EF Core 6.0, this is located in the lib -> net6.0 -> EFCORE60 subfolder in
the installation directory.

— For EF Core 3.1, this is located in the lib -> netstandard2.0 -> EFCORE31
subfolder in the installation directory.

 3. Build the project to complete the setup for using EF Core.

Creating the Data Model

There are two approaches that can be taken in creating the context and entity classes for
your application. With the Code-First Approach approach, you can fine-tune your model by
writing the classes manually. Alternatively, you can make use of Reverse Engineering
(Scaffolding) to generate these classes automatically from your TDV schema.

TIBCO® Data Virtualization Client Interfaces Guide

302 | ADO.NET Provider for TIBCO(R) Data Virtualization

Reverse Engineering (Scaffolding)
Reverse engineering (via scaffolding) is a process which streamlines OR/M by automatically
constructing classes for all of the tables and views available via the TDV schema. This
process also creates a TIBCOContext class, which extends DbContext and exposes the
DbSet properties that represent the tables in the data source.

Install Entity Framework Core Tools

If you're making use of scaffolding in a console app, you'll first need to install the EF Tools
via the Package Manager Console (PMC).

Install-Package Microsoft.EntityFrameworkCore.Tools -Version 3.1 //Run
this command if using EF Core 3.1
 Install-Package Microsoft.EntityFrameworkCore.Tools -Version 6.0 //Run
this command if using EF Core 6.0

Scaffolding

Scaffolding is performed using the PMC in Visual Studio. You can use following commands
to scaffold.

Scaffold All Tables

Use the following command to scaffold all tables and views from the schema into your
Models folder:

Scaffold-DbContext
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword" TIBCO.EntityFrameworkCore.Composite -OutputDir Models -
Context CompositeContext

Scaffold A Subset of Tables

You can also refine the scaffolding process to only create classes for a limited selection of
tables. This is especially useful when a large schema is taking a long time to scaffold due to
the large number of classes it has to generate. This is accomplished by specifying the

TIBCO® Data Virtualization Client Interfaces Guide

303 | ADO.NET Provider for TIBCO(R) Data Virtualization

tables/views that you want to scaffold at the end of your Scaffold-DbContext command in
the PMC.

Scaffold-DbContext
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword" TIBCO.EntityFrameworkCore.Composite -OutputDir Models -
Context CompositeContext -Tables Products

Updating your Data Model

If you would like to add re-scaffold to update the model additional table classes after the
initial generation, simply add a '-Force' argument to any Scaffold-DbContext command.
The existing model will then be overwritten with your changes.

Code-First Approach
An alternative to introspecting the model from the provider is to handwrite your model
classes. This is the code-first approach to Entity Framework, which gives you greater
control over the exact data model you use in your application.

Create the Context Class

This is the base object that extends DbContext and exposes the DbSet properties that
represent the tables in the data source. Override some of the default functionality of the
DbContext class by overriding the OnConfiguring method.

using Microsoft.EntityFrameworkCore;
public class CompositeContext : DbContext
{
public DbSet<Products> Products { get; set; }
protected override void OnConfiguring(DbContextOptionsBuilder
optionsBuilder)
{
if (!optionsBuilder.IsConfigured)
{
optionsBuilder.UseComposit
("Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwo
rd=myPassword");
}
}
}

TIBCO® Data Virtualization Client Interfaces Guide

304 | ADO.NET Provider for TIBCO(R) Data Virtualization

Create the Table Models

Define a class for each table that was defined in the DbSet properties of the context class.
The table classes should have a list of properties that correspond to each field of that
table. A corresponding map class must be defined to configure attributes for each property
in the table class.

public class Products{
public string Id { get; set; }
public string ProductName { get; set; }
}

EFCore Console Application

Creating the Data Model

There are two approaches that can be taken in creating the context and entity classes for
your application. With the Code-First Approach approach, you can fine-tune your model by
writing the classes manually. Alternatively, you can make use of Reverse Engineering
(Scaffolding) to generate these classes automatically from your TDV schema.

Perform LINQ Commands in Your Code

After Entity Framework Core is set up and the TDV provider is registered, you can execute
LINQ in your code.

using System.Linq;
using MySolutionName.Models;
System.Text.Encoding.RegisterProvider
(System.Text.CodePagesEncodingProvider.Instance); // Include this if you
would like to use code pages not bundled in .NET Standard.
CompositeContext ents = new CompositeContext();
var ProductsQuery = from Products in ents.Products
orderby Products.ProductName
select Products;

TIBCO® Data Virtualization Client Interfaces Guide

305 | ADO.NET Provider for TIBCO(R) Data Virtualization

EFCore ASP.NET Application

Creating the Data Model

There are two approaches that can be taken in creating the context and entity classes for
your application. With the Code-First Approach approach, you can fine-tune your model by
writing the classes manually. Alternatively, you can make use of Reverse Engineering
(Scaffolding) to generate these classes automatically from your TDV schema.

Registering the Context with Dependency Injection

In order for the MVC controller to make use of the CompositeContext, you'll need to
register it with dependency injection. Add the following to the beginning of your Startup.cs:

using MySolutionName.Models;
using Microsoft.EntityFrameworkCore;

Next, find the ConfigureServices method in Startup.cs and add the following at the end:

var connection
=@"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passw
ord=myPassword";
services.AddDbContext<CompositeContext>(options => options.UseComposite
(connection));

Creating a Controller and Views

To create a controller and views for your web app, follow the procedure below:

 1. Right-click the Controllers folder in the Solution Explorer and navigate to Add ->
Controller...

 2. Choose MVC Controller with views, using Entity Framework, and click Add.

 3. Set the Model Class to the class corresponding to your table/view and set the Data
context class to CompositeContext.

 4. Click Add. Note the name of the controller.

TIBCO® Data Virtualization Client Interfaces Guide

306 | ADO.NET Provider for TIBCO(R) Data Virtualization

Running Your Application

Now that the controllers and views have been setup, you can launch your app using Debug
-> Start Without Debugging. The app will then launch in your browser. You can find your
data by navigating to <Base URL of App>/<Name of controller without the 'Controller.cs' at
the end>.

Using ADO.Net SSRS
You can use the ADO.NET Provider for TIBCO(R) Data Virtualization to integrate real-time
connectivity to TDV into your SSRS reports. The provider supports SSRS versions 2005 and
above.

Create and Publish Reports in the Report Designer

Create and Publish Reports in the Report Designer

Complete the following steps to publish reports to servers running in native mode or in
SharePoint mode, using the Report Designer tool in Visual Studio:

Deploy the Provider

Create a Data Source

Create a Dataset

Publish a Report

Deploy the Provider
The ADO.NET Provider for TIBCO(R) Data Virtualization automates SSRS deployment,
adding the report type "TIBCO TDV Report." This section shows the typical deployment
flow. See Installed Assemblies for more information on the SSRS assemblies used by the
provider.

Deploy to Native-Mode Servers

The provider installation provides an option to automatically deploy the provider on native
mode report servers.

TIBCO® Data Virtualization Client Interfaces Guide

307 | ADO.NET Provider for TIBCO(R) Data Virtualization

Sharepoint-Mode Report Servers

On SharePoint mode report servers, you can run the install-sprs.ps1 PowerShell script. Run
the script from the lib subfolder in the installation directory.

Create a Data Source
Follow the steps below to create the data source, providing authentication and any
necessary connection properties.

Share or Embed the Data Source

You can create shared data sources or create an embedded data source restricted to a
single port.

1. Open your report or create a new Report Server project and add a new report by
right-clicking the Reports folder in Solution Explorer and clicking Add -> New Item ->
Report.

2. If you want to create a shared data source, right-click Shared Data Sources in
Solution Explorer and click Add New Data Source. If you want to create an
embedded data source, right-click Data Sources in the Report Data view.

3. Enter a name for the data source and in the Type menu select TIBCO Composite
Report.

4. In the Connection String box, enter the connection string to connect to TDV. A
typical connection string is below:

Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passw
ord=myPassword

See Establishing a Connection for a connection and authentication how-to.

Create a Dataset
Follow the steps below to use Visual Studio wizards to define the query that will provide
the report's dataset.

TIBCO® Data Virtualization Client Interfaces Guide

308 | ADO.NET Provider for TIBCO(R) Data Virtualization

Share or Embed TDV Datasets

Like SSRS data sources, datasets can be shared with other reports or embedded in a single
report. Both types access the remote data without making a copy; report definitions in
SSRS do not contain the actual data.

1. If you want to create a shared dataset, right-click Shared Datasets in Solution
Explorer and click Add New Dataset. If you want to create an embedded dataset,
right-click Datasets in the Report Data view, click Add Dataset, and select the option
to use a dataset embedded in your report.

2. Select the data source you created.

3. Click Query Designer to build the query visually and preview the results. Or, enter a
query in the Query box:

SELECT * FROM Products WHERE ProductName = 'Konbu'

4. To create a parameterized query, use the following syntax and click Run in the
Query Designer.

SELECT * FROM Products WHERE ProductName = @ProductName

When you create the dataset, a report parameter is associated with the dataset
parameter you defined.

Publish a Report
Follow the steps below to design a simple report using Tablix and publish the report from
Visual Studio.

Design the Report

Use Tablix (table, list, and matrix) data regions as the base for the design of your report:
Select a data region, such as a Table, in the Toolbox, and then click the design surface. The
table is added to the designer. You can then drag columns from the dataset to columns in
the table.

TIBCO® Data Virtualization Client Interfaces Guide

309 | ADO.NET Provider for TIBCO(R) Data Virtualization

Preview and Publish the Report

To retrieve live data into the report, click the Preview tab in the Designer. For a
parameterized query, specify a parameter and then click View Report

To publish a report to a report server or to a SharePoint site, configure the report folder
and the URL of the report server in the project properties:

• If you are publishing to SharePoint, the values for all properties must be fully
qualified URLs.

• For example, a native mode report server has the following syntax:
http://MyServerName/ReportServer. A SharePoint mode report server has the
following syntax: http://MyServerName/MySite/MySubsite.

• After you have defined the project configuration, you can deploy the report project
or a single report by right-clicking the object in Solution Explorer and clicking
Deploy.

Using DbProviderFactory

Creating Data Access Objects with CompositeProviderFactory

The following sections show how to use the CompositeProviderFactory class to create
objects like CompositeConnection, CompositeCommand, and CompositeDataAdapter in a
generic way.

Register and Configure DbConnections

Register the provider to the configuration context and define the DbProviderFactory and
DbConnection objects. See Creating DbConnections for a guide.

Querying Using DbCommands

Executing DbCommands describes how to use an existing DbProviderFactory and
DbConnection object to execute queries to TDV.

TIBCO® Data Virtualization Client Interfaces Guide

310 | ADO.NET Provider for TIBCO(R) Data Virtualization

Creating DbConnections
You can use DbProviderFactory and DbConnection objects to connect to TDV with generic
code. This section describes how to connect from your project.

Adding Provider Information to the Configuration Context

To create a strongly typed DbProviderFactory, you must first register the ADO.NET Provider
for TIBCO(R) Data Virtualization in the configuration context (machine.config, app.config, or
web.config). Note that the provider installer registers the provider in machine.config.

If you are not using the installer -- for example, if you are using the NuGet package instead
-- you need to manually register the provider. You can do so by adding an entry to the
System.Data section of the configuration context. You can modify the System.Data section
in your machine.config or app.config (the System.Data in the app config is merged with
machine.config at run time). Below is the syntax and format of the configuration entry:

<system.data>

 <DbProviderFactories>

 <add name="ADO.NET Provider for TIBCO(R) Data Virtualization"
invariant="System.Data.CompositeClient" description="ADO.NET Provider
for TIBCO(R) Data Virtualization"
type="System.Data.CompositeClient.CompositeProviderFactory,
System.Data.CompositeClient, Version=19.0.0.40, Culture=neutral,
PublicKeyToken=cdc168f89cffe9cf" />

</DbProviderFactories>

</system.data>

The following configuration file fragment defines a typical TDV connection string in the
context:

TIBCO® Data Virtualization Client Interfaces Guide

311 | ADO.NET Provider for TIBCO(R) Data Virtualization

<configuration>

 <connectionStrings>

 <add name="TDV"

 providerName="System.Data.CompositeClient"

connectionString="Host=myHost;Domain=myDomain;DataSource=myDataSource;Us
er=myUser;Password=myPassword"

 />

 </connectionStrings>

</configuration>

Creating the DbProviderFactory

Call DbProviderFactories.GetFactory to create the DbProviderFactory:

DbProviderFactory factory = DbProviderFactories.GetFactory
("System.Data.CompositeClient");

DbProviderFactories looks up the invariant name in the configuration context to find the
assembly and the CompositeProviderFactory class.

Creating the DbProviderFactory and DbConnection

The following code shows how to create a strongly typed DbProviderFactory object and use
it to instantiate a DbConnection object and connect to TDV.

TIBCO® Data Virtualization Client Interfaces Guide

312 | ADO.NET Provider for TIBCO(R) Data Virtualization

DbProviderFactory factory = DbProviderFactories.GetFactory
("System.Data.CompositeClient");

using(DbConnection connection = factory.CreateConnection()) {

 connection.ConnectionString =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword";

 connection.Open();

}

You can also read the connection string from the application configuration file. Note that
the ConnectionStringSettingsCollection class requires a reference to
System.Configuration.dll.

The following code retrieves the first TDV connection string defined in the application
configuration file.

ConnectionStringSettingsCollection settings =
ConfigurationManager.ConnectionStrings;

if (settings != null) {

 foreach (ConnectionStringSettings cs in settings) {

 if (cs.ProviderName == "System.Data.CompositeClient")

TIBCO® Data Virtualization Client Interfaces Guide

313 | ADO.NET Provider for TIBCO(R) Data Virtualization

 connection = cs.ConnectionString;

 break;

 }

}

Executing DbCommands
The following section shows how to execute commands using ADO.NET base classes like
DbCommand and DbDataAdapter.

Executing Commands to TDV

The following code executes a "SELECT *" query to TDV, given an existing DbConnection
object.

using (connection) {

 // Create the DbCommand.

 DbCommand command = factory.CreateCommand();

 command.CommandText =

 "SELECT * FROM Products";

TIBCO® Data Virtualization Client Interfaces Guide

314 | ADO.NET Provider for TIBCO(R) Data Virtualization

 command.Connection = connection;

 // Create the DbDataAdapter.

 DbDataAdapter adapter = factory.CreateDataAdapter();

 adapter.SelectCommand = command;

 // Fill the DataTable.

 DataTable table = new DataTable();

 adapter.Fill(table);

 // Display each row and column value.

 foreach (DataRow row in table.Rows) {

 foreach (DataColumn column in table.Columns) {

 Console.WriteLine(row[column]);

TIBCO® Data Virtualization Client Interfaces Guide

315 | ADO.NET Provider for TIBCO(R) Data Virtualization

 }

 }

}

Schema Discovery
The provider supports schema discovery using ADO.NET classes or using SQL queries to the
available system tables. The ADO.NET classes enable access to schema information,
connection property information, and information on the columns returned.

Through SQL queries to the available System Tables, you can access schema and
connection property information as well as information on data source functionality and
statistics on update operations.

Using ADO.NET Schema Collections

You can use ADO.NET schema collections to retrieve schema and connection property
information. Invoke the GetSchema method of the CompositeConnection class to access
the following metadata:

Tables

Views

Columns

Procedures

Procedure Parameters

Indexes

Index Columns

Foreign Keys

Databases

Users

TIBCO® Data Virtualization Client Interfaces Guide

316 | ADO.NET Provider for TIBCO(R) Data Virtualization

Connection Properties

Using Result Set Column Information

To access information about the columns returned by a query, invoke the GetSchemaTable
method of the CompositeDataReader class. See Result Sets for code examples.

Using SQL

You can query the System Tables to access any metadata surfaced through the provider.

Tables
The Tables schema collection lists all tables in the database, including views.

Retrieving the Table Listing

To retrieve the Tables schema collection, call the GetSchema method of the
CompositeConnection class.

C#

String connectionString =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword";

using (CompositeConnection conn = new CompositeConnection
(connectionString)) {

 conn.Open();

 DataTable databaseSchema = conn.GetSchema("Tables");

 foreach (DataRow row in databaseSchema.Rows) {

TIBCO® Data Virtualization Client Interfaces Guide

317 | ADO.NET Provider for TIBCO(R) Data Virtualization

 Console.WriteLine(row["TABLE_NAME"]);

 }

}

VB.NET

Dim connectionString As String =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword"

Using conn As New CompositeConnection(connectionString)

 conn.Open()

 Dim databaseSchema As DataTable = conn.GetSchema("Tables")

 For Each row As DataRow In databaseSchema.Rows

 Console.WriteLine(row("TABLE_NAME"))

 Next

End Using

Columns Returned

The Tables schema collection returns the following columns.

TIBCO® Data Virtualization Client Interfaces Guide

318 | ADO.NET Provider for TIBCO(R) Data Virtualization

Column Name Data Type Description

TABLE_CATALOG System.String The database that contains
the table.

TABLE_SCHEMA System.String The schema that contains the
table.

TABLE_NAME System.String The table name.

TABLE_TYPE System.String The table type.

Views
ou can retrieve the listing of views from the Views schema collection.

Retrieving the View Listing

To retrieve the Views schema collection, call the GetSchema method of the
CompositeConnection class, as shown in the following examples.

C#

String connectionString =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword";

using (CompositeConnection conn = new CompositeConnection
(connectionString)) {

 conn.Open();

 DataTable databaseSchema = conn.GetSchema("Views");

TIBCO® Data Virtualization Client Interfaces Guide

319 | ADO.NET Provider for TIBCO(R) Data Virtualization

 foreach (DataRow row in databaseSchema.Rows) {

 Console.WriteLine(row["TABLE_NAME"]);

 }

}

VB.NET

Dim connectionString As String =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword"

Using conn As New CompositeConnection(connectionString)

 conn.Open()

 Dim databaseSchema As DataTable = conn.GetSchema("Views")

 For Each row As DataRow In databaseSchema.Rows

 Console.WriteLine(row("TABLE_NAME"))

 Next

End Using

Columns Returned

The Views schema collection returns the following columns:

TIBCO® Data Virtualization Client Interfaces Guide

320 | ADO.NET Provider for TIBCO(R) Data Virtualization

Column Name Data Type Description

TABLE_CATALOG System.String The database that contains the view.

TABLE_SCHEMA System.String The schema that contains the view.

TABLE_NAME System.String The view name.

CHECK_OPTION System.String Whether the view was created using WITH
CHECK OPTION.

IS_UPDATEABLE System.String Whether the view is updateable.

Columns
To access metadata for the columns available in the database, retrieve the Columns
schema collection. You can also access the column metadata for views by retrieving the
ViewColumns schema collection.

Alternatively, retrieve metadata from Result Sets. The same columns are returned for result
set metadata as the Columns and ViewColumns schema collections; see below.

Retrieving Column Metadata

Call the GetSchema method of the CompositeConnection class to retrieve the Columns or
ViewColumns schema collections. You can restrict results by table name, as shown in the
example below.

C#

string connectionString =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword";

TIBCO® Data Virtualization Client Interfaces Guide

321 | ADO.NET Provider for TIBCO(R) Data Virtualization

using (CompositeConnection conn = new CompositeConnection
(connectionString)) {

 conn.Open();

 DataTable databaseSchema = conn.GetSchema("Columns", new string[]
{"Products"});

 foreach (DataRow column in databaseSchema.Rows) {

 Console.WriteLine(column["COLUMN_NAME"]);

 Console.WriteLine(column["IS_KEY"]);

 Console.WriteLine(column["DATA_TYPE"]);

 }

}

VB.NET

Dim connectionString As String =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword"

Using conn As New CompositeConnection(connectionString)

TIBCO® Data Virtualization Client Interfaces Guide

322 | ADO.NET Provider for TIBCO(R) Data Virtualization

 conn.Open()

 Dim databaseSchema As DataTable = conn.GetSchema("Columns", New String
() {"Products"})

 For Each column As DataRow In databaseSchema.Rows

 Console.WriteLine(column("COLUMN_NAME"))

 Console.WriteLine(column("IS_KEY"))

 Console.WriteLine(column("DATA_TYPE"))

 Next

End Using

Columns Returned

The Columns and ViewColumns schema collections and DataTables returned from the
query contain the following columns.

Column Name Data Type Description

TABLE_CATALOG System.String The database containing the table.

TABLE_SCHEMA System.String The schema containing the table.

TABLE_NAME System.String The table containing the column.

COLUMN_NAME System.String The column name.

TIBCO® Data Virtualization Client Interfaces Guide

323 | ADO.NET Provider for TIBCO(R) Data Virtualization

Column Name Data Type Description

ORDINAL_POSITION System.Int32 The sequence number of the column.

COLUMN_DEFAULT System.String The default value of the column.

IS_NULLABLE System.String Whether the column allows null values. This
value is YES or NO.

DATA_TYPE System.String The column data type.

CHARACTER_MAXIMUM_
LENGTH

System.Int32 The maximum length in characters of a
column with character data.

NUMERIC_PRECISION System.Int32 The maximum number of digits allowed for
numeric data.

NUMERIC_SCALE System.Int32 The maximum column scale or the number
of digits to the right of the decimal point in
numeric data.

DATETIME_PRECISION System.Int32 Returns the precision in fractional seconds if
the parameter type is datetime or
smalldatetime. Otherwise, returns NULL.

CHARACTER_SET_NAME System.String The name of the character set for a column
with character data.

COLUMN_COMMENT System.String A brief description of the column.

IS_KEY System.Boolean Whether the column is the primary key of
the table referenced by TABLE_NAME.

IS_READONLY System.Boolean Whether the column is read-only.

PROVIDER_TYPE System.Type Indicates the appropriate data type
dependent on the language you are
executing in.

TIBCO® Data Virtualization Client Interfaces Guide

324 | ADO.NET Provider for TIBCO(R) Data Virtualization

Procedures
The Procedures schema collection describes the available stored procedures.

Retrieving the Stored Procedure Listing

To retrieve the Procedures schema collection, call the GetSchema method of the
CompositeConnection class. Access the metadata in the DataTable object returned.

The following example outputs a list of stored procedure names:

C#

String connectionString =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword";

using (CompositeConnection conn = new CompositeConnection
(connectionString)) {

 conn.Open();

 DataTable table = conn.GetSchema("Procedures");

 foreach (DataRow row in table.Rows)

 Console.WriteLine(row["SPECIFIC_NAME"]);

}

VB.NET

TIBCO® Data Virtualization Client Interfaces Guide

325 | ADO.NET Provider for TIBCO(R) Data Virtualization

Dim connectionString As String =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword"

Using conn As New CompositeConnection(connectionString)

 conn.Open()

 Dim table As DataTable = conn.GetSchema("Procedures")

 For Each row As DataRow in table.Rows

 Console.WriteLine(row("SPECIFIC_NAME"))

 Next

End Using

Columns Returned

The Procedures schema collection contains the following columns:

Column Name Data Type Description

SPECIFIC_CATALOG System.String The name of the database containing the stored
procedure.

SPECIFIC_SCHEMA System.String The schema that contains the stored procedure.

SPECIFIC_NAME System.String The name of the stored procedure containing
the parameter.

TIBCO® Data Virtualization Client Interfaces Guide

326 | ADO.NET Provider for TIBCO(R) Data Virtualization

Column Name Data Type Description

ROUTINE_CATALOG System.String The database containing the stored procedure.

ROUTINE_SCHEMA System.String The schema containing the stored procedure.

ROUTINE_NAME System.String The name of the stored procedure.

ROUTINE_TYPE System.String Returns PROCEDURE for stored procedures and
FUNCTION for functions.

Procedure Parameters
The ProcedureParameters schema collection describes the stored procedure parameters.

Retrieving Stored Procedure Parameter Metadata

The ProcedureParameters schema collection contains information about the parameters of
stored procedures.

To retrieve the ProcedureParameters schema collection, call the GetSchema method of the
CompositeConnection class. Access the metadata in the DataTable object returned. The
following example retrieves parameter information for all stored procedures:

C#

String connectionString =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword";

using (CompositeConnection conn = new CompositeConnection
(connectionString)) {

 conn.Open();

TIBCO® Data Virtualization Client Interfaces Guide

327 | ADO.NET Provider for TIBCO(R) Data Virtualization

 DataTable table = conn.GetSchema("ProcedureParameters");

 foreach (DataRow row in table.Rows) {

 foreach (DataColumn col in table.Columns) {

 Console.WriteLine(col.ColumnName + "=" + row[col]);

 }

 }

}

VB.NET

Dim connectionString As [String] =
"User=Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Pa
ssword=myPassword"

Using conn As New CompositeConnection(connectionString)

 conn.Open()

 Dim table As DataTable = conn.GetSchema("ProcedureParameters")

 For Each row As DataRow In table.Rows

 For Each col As DataColumn In table.Columns

TIBCO® Data Virtualization Client Interfaces Guide

328 | ADO.NET Provider for TIBCO(R) Data Virtualization

 Console.WriteLine(col.ColumnName + "=" + row(col))

 Next

 Next

End Using

Columns Returned

The columns of the schema collection are the following:

Column Name Data Type Description

SPECIFIC_CATALOG System.String The name of the database containing
the stored procedure.

SPECIFIC_SCHEMA System.String The schema that contains the stored
procedure.

SPECIFIC_NAME System.String The name of the stored procedure
containing the parameter.

PARAMETER_NAME System.String The name of the parameter.

PARAMETER_MODE System.String Returns IN for an input parameter, OUT
for an output parameter, or INOUT for
parameters that can be both input and
output parameters.

ORDINAL_POSITION System.Int32 The sequence number of the parameter.

DATA_TYPE System.String The data type name.

CHARACTER_MAXIMUM_
LENGTH

System.Int32 The maximum length in characters.

TIBCO® Data Virtualization Client Interfaces Guide

329 | ADO.NET Provider for TIBCO(R) Data Virtualization

Column Name Data Type Description

CHARACTER_SET_NAME System.String The name of the character set for a
column with character data.

NUMERIC_PRECISION System.Int32 The maximum number of digits in
numeric data.

NUMERIC_SCALE System.Int32 The column scale or number of digits to
the right of the decimal point.

DATETIME_PRECISION System.Int32 The precision in fractional seconds if the
parameter type is datetime or
smalldatetime. Otherwise, returns NULL.

PROCEDURE_DESCRIPTION System.String A brief description of the procedure.

PROVIDER_TYPE System.Type Indicates the appropriate data type
dependent on the language you are
executing in.

Indexes
You can retrieve information on indexes, such as the primary keys, by querying the Indexes
collection.

Retrieving Primary Key Information

To retrieve this schema collection, call the GetSchema method of the
CompositeConnection class. You can restrict the results by table name. The following
example retrieves the primary key of the TDV table Products.

C#

String connectionString =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword";

TIBCO® Data Virtualization Client Interfaces Guide

330 | ADO.NET Provider for TIBCO(R) Data Virtualization

using (CompositeConnection conn = new CompositeConnection
(connectionString)) {

 conn.Open();

 DataTable databaseSchema = conn.GetSchema("Indexes", new string[]
{"Products"});

 foreach (DataRow row in databaseSchema.Rows) {

 Console.WriteLine(row["INDEX_NAME"]);

 Console.WriteLine(row["PRIMARY"]);

 }

}

VB.NET

Dim connectionString As String =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword"

Using conn As New CompositeConnection(connectionString)

 conn.Open()

TIBCO® Data Virtualization Client Interfaces Guide

331 | ADO.NET Provider for TIBCO(R) Data Virtualization

 Dim databaseSchema As DataTable = conn.GetSchema("Indexes", New
String() {"Products"})

 For Each row As DataRow In databaseSchema.Rows

 Console.WriteLine(row("INDEX_NAME"))

 Console.WriteLine(row("PRIMARY"))

 Next

End Using

Columns Returned

The Indexes schema collection contains the following columns:

Column Name Data Type Description

INDEX_CATALOG System.String The name of the database containing the
index.

INDEX_SCHEMA System.String The name of the schema containing the index.

TABLE_NAME System.String The name of the table containing the index.

INDEX_NAME System.String The name of the index.

UNIQUE System.Boolean Whether the index is unique.

PRIMARY System.Boolean Whether the index is a primary key.

TYPE System.Int32 An integer value corresponding to the index
type: statistic (0), clustered (1), hashed (2), or
other (3).

TIBCO® Data Virtualization Client Interfaces Guide

332 | ADO.NET Provider for TIBCO(R) Data Virtualization

Column Name Data Type Description

COMMENT System.String A description of the index.

Index Columns
The IndexColumns schema collection lists the indexes and their corresponding columns. By
filtering on indexes, you can write more selective queries with faster query response times.

Retrieving Index Column Information

To retrieve this schema collection, call the GetSchema method of the
CompositeConnection class. You can restrict the results by table name. The following
example retrieves the column and sequence number for each index of the TDV table
Products.

C#

String connectionString =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword";

using (CompositeConnection conn = new CompositeConnection
(connectionString)) {

 conn.Open();

 DataTable databaseSchema = conn.GetSchema("IndexColumns", new string[]
{"Products"});

 foreach (DataRow row in databaseSchema.Rows) {

TIBCO® Data Virtualization Client Interfaces Guide

333 | ADO.NET Provider for TIBCO(R) Data Virtualization

 Console.WriteLine(row["COLUMN_NAME"]);

 Console.WriteLine(row["ORDINAL_POSITION"]);

 }

}

VB.NET

Dim connectionString As String =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword"

Using conn As New CompositeConnection(connectionString)

 conn.Open()

 Dim databaseSchema As DataTable = conn.GetSchema("IndexColumns", New
String() {"Products"})

 For Each row As DataRow In databaseSchema.Rows

 Console.WriteLine(row["COLUMN_NAME"])

 Console.WriteLine(row["ORDINAL_POSITION"])

 Next

End Using

TIBCO® Data Virtualization Client Interfaces Guide

334 | ADO.NET Provider for TIBCO(R) Data Virtualization

Columns Returned

The IndexColumns schema collection returns the following columns:

Column Name Data Type Description

INDEX_CATALOG System.String The name of the database containing the index.

INDEX_SCHEMA System.String The name of the schema containing the index.

TABLE_NAME System.String The name of the table containing the index.

INDEX_NAME System.String The name of the index.

COLUMN_NAME System.String The name of the column associated with the
index.

ORDINAL_POSITION System.Int32 The sequence number of the column.

SORT_ORDER System.Int32 Returns A for ascending and D for descending.

Foreign Keys
This section describes how to access information about foreign keys by retrieving the
ForeignKeys schema collection.

Retrieving Foreign Key Information

To retrieve the ForeignKeys schema collection, call the GetSchema method of the
CompositeConnection class. You can restrict foreign key information by the table name.

Access the results in the DataTable returned. The following example lists the foreign keys
for the Products table.

C#

TIBCO® Data Virtualization Client Interfaces Guide

335 | ADO.NET Provider for TIBCO(R) Data Virtualization

String connectionString =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword";

using (CompositeConnection conn = new CompositeConnection
(connectionString)) {

 conn.Open();

 DataTable databaseSchema = conn.GetSchema("ForeignKeys", new string[]
{"Products"});

 foreach (DataRow row in databaseSchema.Rows) {

 Console.WriteLine(row["CONSTRAINT_NAME"]);

 Console.WriteLine(row["TABLE_NAME"]);

 }

}

VB.NET

Dim connectionString As String =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword"

Using conn As New CompositeConnection(connectionString)

TIBCO® Data Virtualization Client Interfaces Guide

336 | ADO.NET Provider for TIBCO(R) Data Virtualization

 conn.Open()

 Dim databaseSchema As DataTable = conn.GetSchema("ForeignKeys", New
String() {"Products"})

 For Each row As DataRow In databaseSchema.Rows

 Console.WriteLine(row("CONSTRAINT_NAME"))

 Console.WriteLine(row("TABLE_NAME"))

 Next

End Using

Columns Returned

The ForeignKeys schema collection returns the following information about the foreign
keys in TDV.

Column Name Data Type Description

CONSTRAINT_CATALOG System.String The database containing the foreign key.

CONSTRAINT_SCHEMA System.String The schema containing the foreign key.

CONSTRAINT_NAME System.String The name of the foreign key.

CONSTRAINT_TYPE System.String Returns FOREIGN KEY.

TABLE_CATALOG System.String The database of the table containing the
foreign key.

TIBCO® Data Virtualization Client Interfaces Guide

337 | ADO.NET Provider for TIBCO(R) Data Virtualization

Column Name Data Type Description

TABLE_SCHEMA System.String The schema of the table containing the
foreign key.

TABLE_NAME System.String The name of the table containing the
foreign key.

IS_DEFERRABLE System.String Whether the foreign key is deferrable. This
value is YES or NO.

INITIALLY_DEFERRED System.String Whether the foreign is initially deferrable.
This value is YES or NO.

Databases
The Databases schema collection lists all the available databases.

Retrieving the Database Listing

To retrieve the Databases schema collection, call the GetSchema method of the
CompositeConnection class.

C#

String connectionString =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword";

using (CompositeConnection connection = new CompositeConnection
(connectionString)) {

 connection.Open();

TIBCO® Data Virtualization Client Interfaces Guide

338 | ADO.NET Provider for TIBCO(R) Data Virtualization

 DataTable databaseSchema = connection.GetSchema("Databases");

 foreach (DataRow row in databaseSchema.Rows) {

 Console.WriteLine(row["Database"]);

 }

}

VB.NET

Dim connectionString As String =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword"

Using connection As New CompositeConnection(connectionString)

 connection.Open()

 Dim databaseSchema As DataTable = connection.GetSchema("Databases")

 For Each row As DataRow In databaseSchema.Rows

 Console.WriteLine(row("Database"))

 Next

End Using

TIBCO® Data Virtualization Client Interfaces Guide

339 | ADO.NET Provider for TIBCO(R) Data Virtualization

Columns Returned

The Databases schema collection returns the following columns.

Column Name Data Type Description

Database System.String The database name.

Type System.String The database type.

Owner System.String The owner of the database.

Users
The Users schema collection lists all users in the database.

Retrieving the Users Listing

To retrieve the Users schema collection, call the GetSchema method of the
CompositeConnection class.

C#

String connectionString =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword";

using (CompositeConnection connection = new CompositeConnection
(connectionString)) {

 connection.Open();

 DataTable databaseSchema = connection.GetSchema("Users");

TIBCO® Data Virtualization Client Interfaces Guide

340 | ADO.NET Provider for TIBCO(R) Data Virtualization

 foreach (DataRow row in databaseSchema.Rows) {

 Console.WriteLine(row["User"]);

 }

}

VB.NET

Dim connectionString As String =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword"

Using connection As New CompositeConnection(connectionString)

 connection.Open()

 Dim databaseSchema As DataTable = connection.GetSchema("Users")

 For Each row As DataRow In databaseSchema.Rows

 Console.WriteLine(row("User"))

 Next

End Using

Columns Returned

The Users schema collection returns the following columns.

TIBCO® Data Virtualization Client Interfaces Guide

341 | ADO.NET Provider for TIBCO(R) Data Virtualization

Column Name Data Type Description

User System.String The user name.

Domain System.String The domain of the user.

Annotation System.String The annotations for the user.

Connection Properties
You can programmatically access the information about the available connection
properties and those set in the connection string by querying the ConnectionProperties
schema collection.

Retrieving Connection Property Information

To retrieve the ConnectionProperties schema collection, call the GetSchema method of the
CompositeConnection class. Access the results in the DataTable returned.

C#

DbProviderFactory provider = DbProviderFactories.GetFactory
("System.Data.CompositeClient");

using(DbConnection conn = provider.CreateConnection()) {

 conn.Open();

 DataTable databaseSchema = conn.GetSchema("ConnectionProperties");

 foreach (DataRow row in databaseSchema.Rows) {

TIBCO® Data Virtualization Client Interfaces Guide

342 | ADO.NET Provider for TIBCO(R) Data Virtualization

 Console.WriteLine(row["Name"]);

 Console.WriteLine(row["Type"]);

 Console.WriteLine(row["ShortDescription"]);

 }

}

VB.NET

Dim provider = DbProviderFactories.GetFactory
("System.Data.CompositeClient")

Using conn As DbConnection = provider.CreateConnection()

 conn.Open()

 Dim databaseSchema As DataTable = conn.GetSchema
("ConnectionProperties")

 For Each row As DataRow In databaseSchema.Rows

 Console.WriteLine(row("Name"))

 Console.WriteLine(row("Type"))

 Console.WriteLine(row("ShortDescription"))

 Next

TIBCO® Data Virtualization Client Interfaces Guide

343 | ADO.NET Provider for TIBCO(R) Data Virtualization

End Using

Columns Returned

The ConnectionProperties schema collection contains the following information:

Column Name Data Type Description

Name System.String The name of the connection property.

ShortDescription System.String A description of the connection property.

Type System.String The data type.

Values System.String The allowed values.

Default System.String The default value if one is not set by the
user.

Category System.String A category grouping associated connection
properties.

Required System.String Whether the property is required to
connect.

Value System.String The current value of the connection
property.

Result Sets
You can access the same column information about the results of a query that you can for
table schemas. See Columns for the columns returned.

TIBCO® Data Virtualization Client Interfaces Guide

344 | ADO.NET Provider for TIBCO(R) Data Virtualization

Retrieving Result Set Metadata

You can use the GetSchemaTable method of the CompositeDataReader to retrieve result
set metadata. Call GetSchemaTable after calling ExecuteReader.

Each row of the DataTable describes a column in the query's result.

C#

string connectionString =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword";

using (CompositeConnection conn = new CompositeConnection
(connectionString)) {

 CompositeCommand cmd = new CompositeCommand("SELECT * FROM Products
WHERE ProductName = 'Konbu'", conn);

 CompositeDataReader rdr = cmd.ExecuteReader();

 DataTable schemaTable = rdr.GetSchemaTable();

 foreach (DataRow row in schemaTable.Rows) {

 foreach (DataColumn col in schemaTable.Columns) {

 Console.WriteLine("{0}: {1}", col.ColumnName, row[col]);

 }

 }

TIBCO® Data Virtualization Client Interfaces Guide

345 | ADO.NET Provider for TIBCO(R) Data Virtualization

}

VB.NET

Dim connectionString As String =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword"

Using conn As New CompositeConnection(connectionString)

 Dim cmd As New CompositeCommand("SELECT * FROM Products WHERE
ProductName = 'Konbu'", conn)

 Dim rdr As CompositeDataReader = cmd.ExecuteReader()

 Dim schemaTable As DataTable = rdr.GetSchemaTable()

 For Each row As DataRow In schemaTable.Rows

 For Each col As DataColumn In schemaTable.Columns

 Console.WriteLine("{0}: {1}", col.ColumnName, row(col))

 Next

 Next

End Using

TIBCO® Data Virtualization Client Interfaces Guide

346 | ADO.NET Provider for TIBCO(R) Data Virtualization

Advanced Features
This section details a selection of advanced features of the TDV provider.

SSL Configuration

Use SSL Configuration to adjust how provider handles TLS/SSL certificate negotiations. You
can choose from various certificate formats; see the SSLClientCert property under
Connection String Options for more information.

Firewall and Proxy

Configure the provider for compliance with Firewall and Proxy, including Windows proxies.
You can also set up tunnel connections.

Logging

See Logging for an overview of configuration settings that can be used to refine TIBCO
logging. For basic logging, you only need to set two connection properties, but there are
numerous features that support more refined logging, where you can select subsets of
information to be logged using the LogModules connection property.

SSL Configuration

Customizing the SSL Configuration

By default, the provider attempts to negotiate SSL/TLS by checking the server's certificate
against the system's trusted certificate store.

To specify another certificate, see the SSLServerCert property for the available formats to
do so.

Client SSL Certificates

The TDV provider also supports setting client certificates. Set the following to connect
using a client certificate.

• SSLClientCert: The name of the certificate store for the client certificate.

../../../../../Content/ClientInterfaces/SSL.htm#ado.net_provider_4165405763_1024304
../../../../../Content/ClientInterfaces/Logging_1.htm#ado.net_provider_4165405763_1024471
../../../../../Content/ClientInterfaces/SSL.htm#ado.net_provider_4165405763_1024402

TIBCO® Data Virtualization Client Interfaces Guide

347 | ADO.NET Provider for TIBCO(R) Data Virtualization

• SSLClientCertType: The type of key store containing the TLS/SSL client certificate.

• SSLClientCertPassword: The password for the TLS/SSL client certificate.

• SSLClientCertSubject: The subject of the TLS/SSL client certificate.

Firewall and Proxy

Connecting Through a Firewall or Proxy

Set the following properties:

• To use a proxy-based firewall, set FirewallType, FirewallServer, and FirewallPort.

• To tunnel the connection, set FirewallType to TUNNEL.

• To authenticate, specify FirewallUser and FirewallPassword.

• To authenticate to a SOCKS proxy, additionally set FirewallType to SOCKS5.

Logging
Capturing provider logging can be very helpful when diagnosing error messages or other
unexpected behavior.

Basic Logging

You will simply need to set two connection properties to begin capturing provider logging.

• Logfile: A filepath which designates the name and location of the log file.

• Verbosity: This is a numerical value (1-5) that determines the amount of detail in the
log. See the page in the Connection Properties section for a breakdown of the five
levels.

• MaxLogFileSize: When the limit is hit, a new log is created in the same folder with
the date and time appended to the end. The default limit is 100 MB. Values lower
than 100 kB will use 100 kB as the value instead.

• MaxLogFileCount: A string specifying the maximum file count of log files. When the
limit is hit, a new log is created in the same folder with the date and time appended

TIBCO® Data Virtualization Client Interfaces Guide

348 | ADO.NET Provider for TIBCO(R) Data Virtualization

to the end and the oldest log file will be deleted. Minimum supported value is 2. A
value of 0 or a negative value indicates no limit on the count.

Once this property is set, the provider will populate the log file as it carries out various
tasks, such as when authentication is performed or queries are executed. If the specified
file doesn't already exist, it will be created.

Log Verbosity

The verbosity level determines the amount of detail that the provider reports to the Logfile.
Verbosity levels from 1 to 5 are supported. These are described in the following list:

1 Setting Verbosity to 1 will log the query, the number of rows returned by it, the
start of execution and the time taken, and any errors.

2 Setting Verbosity to 2 will log everything included in Verbosity 1 and additional
information about the request.

3 Setting Verbosity to 3 will additionally log the body of the request and the
response.

4 Setting Verbosity to 4 will additionally log transport-level communication with
the data source. This includes SSL negotiation.

5 Setting Verbosity to 5 will additionally log communication with the data source
and additional details that may be helpful in troubleshooting problems. This
includes interface commands.

The Verbosity should not be set to greater than 1 for normal operation. Substantial
amounts of data can be logged at higher verbosities, which can delay execution times.

To refine the logged content further by showing/hiding specific categories of information,
see LogModules.

Sensitive Data

Verbosity levels 3 and higher may capture information that you do not want shared outside
of your organization. The following lists information of concern for each level:

 l Verbosity 3: The full body of the request and the response, which includes all the

../../../../../Content/ClientInterfaces/Logging_1.htm#ado.net_provider_4165405763_1024471

TIBCO® Data Virtualization Client Interfaces Guide

349 | ADO.NET Provider for TIBCO(R) Data Virtualization

data returned by the provider

 l Verbosity 4: SSL certificates

 l Verbosity 5: Any extra transfer data not included at Verbosity 3, such as non human-
readable binary transfer data

Best Practices for Data Security

Although we mask sensitive values, such as passwords, in the connection string and any
request in the log, it is always best practice to review the logs for any sensitive information
before sharing outside your organization.

Advanced Logging

You may want to refine the exact information that is recorded to the log file. This can be
accomplished using the LogModules property.

This property allows you to filter the logging using a semicolon-separated list of logging
modules.

All modules are four characters long. Please note that modules containing three letters
have a required trailing blank space. The available modules are:

• EXEC: Query Execution. Includes execution messages for original SQL queries, parsed
SQL queries, and normalized SQL queries. Query and page success/failure messages
appear here as well.

• INFO: General Information. Includes the connection string, driver version (build
number), and initial connection messages.

• HTTP: HTTP Protocol messages. Includes HTTP requests/responses (including POST
messages), as well as Kerberos related messages.

• SSL : SSL certificate messages.

• OAUT: OAuth related failure/success messages.

• SQL : Includes SQL transactions, SQL bulk transfer messages, and SQL result set
messages.

• META: Metadata cache and schema messages.

• TCP : Incoming and Ongoing raw bytes on TCP transport layer messages.

An example value for this property would be.

../../../../../Content/ClientInterfaces/Logging_1.htm#ado.net_provider_4165405763_1024471

TIBCO® Data Virtualization Client Interfaces Guide

350 | ADO.NET Provider for TIBCO(R) Data Virtualization

LogModules=INFO;EXEC;SSL ;SQL ;META;

Note that these modules refine the information as it is pulled after taking the Verbosity
into account.

Connection String Options
The connection string properties are the various options that can be used to establish a
connection. This section provides a complete list of the options you can configure in the
connection string for this provider. Click the links for further details.

For more information on connecting, see Establishing a Connection.

Authentication

Property Description

Host The name of the server running TDV Server.

Port The port of the TDV server.

Domain The TDV domain to which the DataSource belongs.

DataSource The name of the TDV data source.

User The username provided for authentication with TDV Server.

Password The user's password.

Encrypt Specifies whether to encrypt the connection using SSL.

SSO The single-sign-on (SSO) type to use to authenticate.

UserTokens Authentication values that can be packaged for delivery.

TIBCO® Data Virtualization Client Interfaces Guide

351 | ADO.NET Provider for TIBCO(R) Data Virtualization

Kerberos

Property Description

KerberosKDC The Kerberos Key Distribution Center (KDC) service used to
authenticate the user.

KerberosRealm The Kerberos Realm used to authenticate the user with.

KerberosSPN The Service Principal Name for the Kerberos Domain
Controller.

UsePlatformKerberosAPI This setting determines if the platform's Kerberos API is used.

SSL

Property Description

SSLClientCert The TLS/SSL client certificate store for SSL Client Authentication
(2-way SSL).

SSLClientCertPassword The type of key store containing the TLS/SSL client certificate.

SSLClientCertPassword The password for the TLS/SSL client certificate.

SSLClientCertType The subject of the TLS/SSL client certificate.

SSLServerCert The certificate to be accepted from the server when connecting
using TLS/SSL.

TIBCO® Data Virtualization Client Interfaces Guide

352 | ADO.NET Provider for TIBCO(R) Data Virtualization

Logging

Property Description

Logfile A filepath which designates the name and location of the log file.

Verbosity The verbosity level that determines the amount of detail included in
the log file.

LogModules Core modules to be included in the log file.

Connection String
Options

A string specifying the maximum size in bytes for a log file (for
example, 10 MB).

MaxLogFileCount A string specifying the maximum file count of log files.

Schema

Property Description

Location A path to the directory that contains the schema files defining
tables, views, and stored procedures.

BrowsableSchemas This property restricts the schemas reported to a subset of the
available schemas. For example,
BrowsableSchemas=SchemaA,SchemaB,SchemaC.

Tables This property restricts the tables reported to a subset of the
available tables. For example, Tables=TableA,TableB,TableC.

Views Restricts the views reported to a subset of the available tables. For
example, Views=ViewA,ViewB,ViewC.

TIBCO® Data Virtualization Client Interfaces Guide

353 | ADO.NET Provider for TIBCO(R) Data Virtualization

Miscellaneous

Property Description

Alternate Security Credentials Uses the URL to set an alternate security credentials
value for client authorization when using TDV with a
client restricted license.

BatchSize The maximum size of each batch operation to submit.

CaseSensitive Specifies case sensitivity in the request values.

Catalog The name of the catalog to use.

CommitFailure Specifies the behavior if a commit fails.

CommitInterrupt Specifies the behavior if a commit is interrupted.

Compensate The correcting behavior.

ConnectionLifeTime The maximum lifetime of a connection in seconds.
Once the time has elapsed, the connection object is
disposed.

ConnectTimeout The time-out for initial connection, in seconds.

DefaultCatalog The default catalog for a specified connection.

DefaultSchema The default schema for a specified connection.

DelegateOauth2flowToServer Specify whether to delegate the OAuth flow to the TDV
server.

EnableFlood Values are true or false. Default value is true. If true,
the server will constantly send data, filling the network
buffer.Useful for larger result sets.

EnableReconnectOnError Attempt to reconnect to TDV if the connection was lost
during the lifetime of the provider.

TIBCO® Data Virtualization Client Interfaces Guide

354 | ADO.NET Provider for TIBCO(R) Data Virtualization

Property Description

FetchBytes The maximum number of rows to fetch for a batch
based on batch size, in bytes.

FetchRows Maximum number of rows to fetch for a batch.

IgnoreTrailingSpaces Specifies whether to ignore trailing spaces at the end
of values.

Locale Value that defines the user's language and country.

MaxRows Limits the number of rows returned rows when no
aggregation or group by is used in the query. This
helps avoid performance issues at design time.

NoMetadata Blocks return of result-set metadata during query
execution.

OptimizationPrepare Specifies whether to optimize prepare requests sent to
TDV.

Other These hidden properties are used only in specific use
cases.

ParamMode Controls the behavior of OUT parameters for stored
procedures.

PoolIdleTimeout The allowed idle time for a connection before it is
closed.

PoolMaxSize The maximum connections in the pool.

PoolMinSize The minimum number of connections in the pool.

PoolWaitTime The max seconds to wait for an available connection.

QueryPassthrough This option passes the query to the TDV server as is.

TIBCO® Data Virtualization Client Interfaces Guide

355 | ADO.NET Provider for TIBCO(R) Data Virtualization

Property Description

Readonly You can use this property to enforce read-only access
to TDV from the provider.

RegisterOutputCursors Specifies how to handle output cursors.

RequestTimeout The time-out for query commands and other requests,
in seconds.

SessionTimeout Server session inactivity timeout, in seconds.

SessionToken Uses the URL to set a session token value for client
authorization when using TDV with a client restricted
license.

StripDuplicates Values are true or false. Default value is true. If true,
the server will detect duplicate CHAR/VARCHAR
columns in subsequent rows, and will not re-transmit
the data across the wire.

StripTrailingZeros Determines whether decimal result values are to be
returned with trailing zeroes removed.

TraceFolder The absolute directory to save the trace file.

TraceLevel The level of information to log.

UseConnectionPooling This property enables connection pooling.

ValidateRemoteCert Values are true or false. Default value is false. If true,
the client will validate the server's cert.

ValidateRemoteHostname Values are true or false. Default value is false. If true,
the client will validate the server's hostname.

TIBCO® Data Virtualization Client Interfaces Guide

356 | ADO.NET Provider for TIBCO(R) Data Virtualization

Other

Property Description

EnableFastExec Specifies whether to enable fast execution of queries.

Host

The name of the server running TDV Server.

Data Type

string

Default Value

""

Remarks

This property should be set to the name or network address of the computer running TDV
Server.

Port

The port of the TDV server.

Data Type

int

Default Value

9401

Remarks

Set this to the base (plaintext) client port configured on the server.

When Encrypt is enabled, the provider will adjust the port accordingly.

Domain

The TDV domain to which the DataSource belongs.

TIBCO® Data Virtualization Client Interfaces Guide

357 | ADO.NET Provider for TIBCO(R) Data Virtualization

Data Type

string

Default Value

""

Remarks

The TDV domain to which the DataSource belongs.

Typically the domain is 'composite' for installations with locally defined users.

DataSource

The name of the TDV data source.

Data Type

string

Default Value

""

Remarks

Data source refers to the TDV database name published in the Data Services node.

User

The username provided for authentication with TDV Server.

Data Type

string

Default Value

""

Remarks

The username provided for authentication with TDV Server.

TIBCO® Data Virtualization Client Interfaces Guide

358 | ADO.NET Provider for TIBCO(R) Data Virtualization

Password

The user's password.

Data Type

string

Default Value

""

Remarks

The password provided for authentication with the TDV Server.

Encrypt

Specifies whether to encrypt the connection using SSL.

Data Type

bool

Default Value

false

Remarks

When set to true, automatically passes messages to the SSL port for processing with the
TDV SSL Certificate.

SSO

The single-sign-on (SSO) type to use to authenticate.

Possible Values

Disable, Kerberos, NTLM

Data Type

string

Default Value

"Disable"

TIBCO® Data Virtualization Client Interfaces Guide

359 | ADO.NET Provider for TIBCO(R) Data Virtualization

Remarks

The single-sign-on (SSO) type to use to authenticate. Valid values are: Disable, Kerberos,
and NTLM.

Valid on Windows platform only.

Default is "Disable" which forces the client to provide a user and password to authenticate.

UserTokens

Authentication values that can be packaged for delivery.

Data Type

string

Default Value

""

Remarks

Authentication values that can be packaged for delivery.

The URL can pass the user_tokens property to the server at the init command, in the form:
" user_tokens=(" NAME "=" VALUE ("," NAME "=" VALUE)* ")"

KerberosKDC

The Kerberos Key Distribution Center (KDC) service used to authenticate the user.

Data Type

string

Default Value

""

Remarks

The Kerberos properties are used when using Windows Authentication. The provider will
request session tickets and temporary session keys from the Kerberos Key Distribution
Center (KDC) service. The Kerberos Key Distribution Center (KDC) service is conventionally
colocated with the domain controller. If Kerberos KDC is not specified the provider will
attempt to detect these properties automatically from the following locations:

TIBCO® Data Virtualization Client Interfaces Guide

360 | ADO.NET Provider for TIBCO(R) Data Virtualization

 l Java System Properties: Kerberos settings can be configured in Java using the
config file krb5.conf, or using the system properties java.security.krb5.realm and
java.security.krb5.kdc. The provider will use the system settings if KerberosRealm and
KerberosKDC are not explicitly set.

 l Domain Name and Host: The provider will infer the Kerberos Realm and Kerberos
KDC from the configured domain name and host as a last resort.

Note: Windows authentication is supported in JRE 1.6 and above only.

KerberosRealm

The Kerberos Realm used to authenticate the user with.

Data Type

string

Default Value

""

Remarks

The Kerberos properties are used when using SPNEGO or Windows Authentication. The
Kerberos Realm is used to authenticate the user with the Kerberos Key Distribution Service
(KDC). The Kerberos Realm can be configured by an administrator to be any string, but
conventionally it is based on the domain name. If Kerberos Realm is not specified the
provider will attempt to detect these properties automatically from the following locations:

 l Java System Properties: Kerberos settings can be configured in Java using a config
file (krb5.conf) or using the system properties java.security.krb5.realm and
java.security.krb5.kdc. The provider will use the system settings if KerberosRealm and
KerberosKDC are not explicitly set.

 l Domain Name and Host: The provider will infer the Kerberos Realm and Kerberos
KDC from the user-configured domain name and host as a last resort. This might
work in some Windows environments.

Note: Kerberos-based authentication is supported in JRE 1.6 and above only.

KerberosSPN

The Service Principal Name for the Kerberos Domain Controller.

TIBCO® Data Virtualization Client Interfaces Guide

361 | ADO.NET Provider for TIBCO(R) Data Virtualization

Data Type

string

Default Value

""

Remarks

If the Service Principal Name on the Kerberos Domain Controller is not the same as the
URL that you are authenticating to, set the Service Principal Name here.

UsePlatformKerberosAPI

This setting determines if the platform's Kerberos API is used.

Data Type

bool

Default Value

false

Remarks

This setting determines if the platform's Kerberos API is used. By default no platform APIs
are relied on to perform Kerberos authentication. Use of the platform API may be enabled
by setting this to True. The default value is False.

Note: This functionality is only available on Windows.

SSLClientCert

The TLS/SSL client certificate store for SSL Client Authentication (2-way SSL).

Data Type

string

Default Value

""

Remarks

The name of the certificate store for the client certificate.

TIBCO® Data Virtualization Client Interfaces Guide

362 | ADO.NET Provider for TIBCO(R) Data Virtualization

The SSLClientCertType field specifies the type of the certificate store specified by
SSLClientCert. If the store is password protected, specify the password in
SSLClientCertPassword.

SSLClientCert is used in conjunction with the SSLClientCertSubject field in order to specify
client certificates. If SSLClientCert has a value, and SSLClientCertSubject is set, a search for
a certificate is initiated. See SSLClientCertSubject for more information.

Designations of certificate stores are platform-dependent.

The following are designations of the most common User and Machine certificate stores in
Windows:

MY A certificate store holding personal certificates with their associated private keys.

CA Certifying authority certificates.

ROOT Root certificates.

SPC Software publisher certificates.

In Java, the certificate store normally is a file containing certificates and optional private
keys.

When the certificate store type is PFXFile, this property must be set to the name of the file.
When the type is PFXBlob, the property must be set to the binary contents of a PFX file (for
example, PKCS12 certificate store).

SSLClientCertType

The type of key store containing the TLS/SSL client certificate.

Possible Values

USER, MACHINE, PFXFILE, PFXBLOB, JKSFILE, JKSBLOB, PEMKEY_FILE, PEMKEY_BLOB,
PUBLIC_KEY_FILE, PUBLIC_KEY_BLOB, SSHPUBLIC_KEY_FILE, SSHPUBLIC_KEY_BLOB,
P7BFILE, PPKFILE, XMLFILE, XMLBLOB

Data Type

string

Default Value

"USER"

TIBCO® Data Virtualization Client Interfaces Guide

363 | ADO.NET Provider for TIBCO(R) Data Virtualization

Remarks

This property can take one of the following values:

USER - default For Windows, this specifies that the certificate store is a
certificate store owned by the current user. Note that this store
type is not available in Java.

MACHINE For Windows, this specifies that the certificate store is a
machine store. Note that this store type is not available in Java.

PFXFILE The certificate store is the name of a PFX (PKCS12) file
containing certificates.

PFXBLOB The certificate store is a string (base-64-encoded) representing a
certificate store in PFX (PKCS12) format.

JKSFILE The certificate store is the name of a Java key store (JKS) file
containing certificates. Note that this store type is only available
in Java.

JKSBLOB The certificate store is a string (base-64-encoded) representing a
certificate store in JKS format. Note that this store type is only
available in Java.

PEMKEY_FILE The certificate store is the name of a PEM-encoded file that
contains a private key and an optional certificate.

PEMKEY_BLOB The certificate store is a string (base64-encoded) that contains a
private key and an optional certificate.

PUBLIC_KEY_FILE The certificate store is the name of a file that contains a PEM-
or DER-encoded public key certificate.

PUBLIC_KEY_BLOB The certificate store is a string (base-64-encoded) that contains
a PEM- or DER-encoded public key certificate.

SSHPUBLIC_KEY_FILE The certificate store is the name of a file that contains an SSH-
style public key.

TIBCO® Data Virtualization Client Interfaces Guide

364 | ADO.NET Provider for TIBCO(R) Data Virtualization

SSHPUBLIC_KEY_BLOB The certificate store is a string (base-64-encoded) that contains
an SSH-style public key.

P7BFILE The certificate store is the name of a PKCS7 file containing
certificates.

PPKFILE The certificate store is the name of a file that contains a PuTTY
Private Key (PPK).

XMLFILE The certificate store is the name of a file that contains a
certificate in XML format.

XMLBLOB The certificate store is a string that contains a certificate in XML
format.

SSLClientCertPassword

The password for the TLS/SSL client certificate.

Data Type

string

Default Value

""

Remarks

If the certificate store is of a type that requires a password, this property is used to specify
that password to open the certificate store.

SSLClientCertSubject

The subject of the TLS/SSL client certificate.

Data Type

string

Default Value

"*"

Remarks

TIBCO® Data Virtualization Client Interfaces Guide

365 | ADO.NET Provider for TIBCO(R) Data Virtualization

When loading a certificate the subject is used to locate the certificate in the store.

If an exact match is not found, the store is searched for subjects containing the value of
the property. If a match is still not found, the property is set to an empty string, and no
certificate is selected.

The special value "*" picks the first certificate in the certificate store.

The certificate subject is a comma separated list of distinguished name fields and values.
For example, "CN=www.server.com, OU=test, C=US, E=support@company.com". The
common fields and their meanings are shown below.

Field Meaning

CN Common Name. This is commonly a host name like www.server.com.

O Organization

OU Organizational Unit

L Locality

S State

C Country

E Email Address

If a field value contains a comma, it must be quoted.

SSLServerCert

The certificate to be accepted from the server when connecting using TLS/SSL.

Data Type

string

Default Value

""

Remarks

TIBCO® Data Virtualization Client Interfaces Guide

366 | ADO.NET Provider for TIBCO(R) Data Virtualization

If using a TLS/SSL connection, this property can be used to specify the TLS/SSL certificate
to be accepted from the server. Any other certificate that is not trusted by the machine is
rejected.

This property can take the following forms:

Description Example

A full PEM Certificate (example shortened
for brevity)

-----BEGIN CERTIFICATE-----
MIIChTCCAe4CAQAwDQYJKoZIhv......Qw== -----
END CERTIFICATE-----

A path to a local file containing the
certificate

C:\cert.cer

The public key (example shortened for
brevity)

-----BEGIN RSA PUBLIC KEY-----
MIGfMA0GCSq......AQAB -----END RSA PUBLIC KEY-

The MD5 Thumbprint (hex values can also
be either space or colon separated)

ecadbdda5a1529c58a1e9e09828d70e4

The SHA1 Thumbprint (hex values can also
be either space or colon separated)

34a929226ae0819f2ec14b4a3d904f801cbb150d

If not specified, any certificate trusted by the machine is accepted.

Use '*' to signify to accept all certificates. Note that this is not recommended due to
security concerns.

Logfile

A path to the log file.

Data Type

string

Default Value

""

Remarks

TIBCO® Data Virtualization Client Interfaces Guide

367 | ADO.NET Provider for TIBCO(R) Data Virtualization

Once this property is set, the provider will populate the log file as it carries out various
tasks, such as when authentication is performed or queries are executed. If the specified
file doesn't already exist, it will be created.

Connection strings and version information are also logged, though connection properties
containing sensitive information are masked automatically.

If a relative filepath is supplied, the location of the log file will be resolved based on the
path found in the Location connection property.

For more control over what is written to the log file, you can adjust the Verbosity property.
Log contents are categorized into several modules. You can show/hide individual modules
using the LogModules property.

To edit the maximum size of a single logfile before a new one is created, see
MaxLogFileSize.

If you would like to place a cap on the number of logfiles generated, use MaxLogFileCount.

Verbosity

The verbosity level that determines the amount of detail included in the log file.

Data Type

string

Default Value

"1"

Remarks

The verbosity level determines the amount of detail that the provider reports to the Logfile.
Verbosity levels from 1 to 5 are supported. These are detailed in the Logging page.

LogModules

Core modules to be included in the log file.

Data Type

string

Default Value

""

TIBCO® Data Virtualization Client Interfaces Guide

368 | ADO.NET Provider for TIBCO(R) Data Virtualization

Remarks

Only the modules specified (separated by ';') will be included in the log file. By default all
modules are included.

See the Logging page for an overview.

 MaxLogFileSize

A string specifying the maximum size in bytes for a log file (for example, 10 MB).

Data Type

string

Default Value

"100MB"

Remarks

When the limit is hit, a new log is created in the same folder with the date and time
appended to the end. The default limit is 100 MB. Values lower than 100 kB will use 100 kB
as the value instead. Adjust the maximum number of logfiles generated with
MaxLogFileCount.

MaxLogFileCount

A string specifying the maximum file count of log files. When the limit is hit, a new log is
created in the same folder with the date and time appended to the end and the oldest log
file will be deleted.

Data Type

string

Default Value

""

Remarks

A string specifying the maximum file count of log files. When the limit is hit, a new log is
created in the same folder with the date and time appended to the end and the oldest log
file will be deleted. The minimum supported value is 2. A value of 0 or a negative value
indicates no limit on the count.

TIBCO® Data Virtualization Client Interfaces Guide

369 | ADO.NET Provider for TIBCO(R) Data Virtualization

Location

A path to the directory that contains the schema files defining tables, views, and stored
procedures.

Data Type

string

Default Value

"%APPDATA%\\TIBCO\\Composite Data Provider\\Schema"

Remarks

The path to a directory which contains the schema files for the provider (.rsd files for tables
and views, .rsb files for stored procedures). The folder location can be a relative path from
the location of the executable. The Location property is only needed if you want to
customize definitions (for example, change a column name, ignore a column, and so on) or
extend the data model with new tables, views, or stored procedures.

If left unspecified, the default location is "%APPDATA%\\TIBCO\\Composite Data
Provider\\Schema" with %APPDATA% being set to the user's configuration directory:

Platform %APPDATA%

Windows The value of the APPDATA environment
variable

Mac ~/.config

Linux ~/.config

BrowsableSchemas

This property restricts the schemas reported to a subset of the available schemas. For
example, BrowsableSchemas=SchemaA,SchemaB,SchemaC.

Data Type

string

Default Value

""

TIBCO® Data Virtualization Client Interfaces Guide

370 | ADO.NET Provider for TIBCO(R) Data Virtualization

Remarks

Listing the schemas from databases can be expensive. Providing a list of schemas in the
connection string improves the performance.

Tables

This property restricts the tables reported to a subset of the available tables. For example,
Tables=TableA,TableB,TableC.

Data Type

string

Default Value

""

Remarks

Listing the tables from some databases can be expensive. Providing a list of tables in the
connection string improves the performance of the provider.

This property can also be used as an alternative to automatically listing views if you
already know which ones you want to work with and there would otherwise be too many
to work with.

Specify the tables you want in a comma-separated list. Each table should be a valid SQL
identifier with any special characters escaped using square brackets, double-quotes or
backticks. For example, Tables=TableA,
[TableB/WithSlash],WithCatalog.WithSchema.`TableC With Space`.

Note that when connecting to a data source with multiple schemas or catalogs, you will
need to provide the fully qualified name of the table in this property, as in the last example
here, to avoid ambiguity between tables that exist in multiple catalogs or schemas.

Views

Restricts the views reported to a subset of the available tables. For example,
Views=ViewA,ViewB,ViewC.

Data Type

string

Default Value

TIBCO® Data Virtualization Client Interfaces Guide

371 | ADO.NET Provider for TIBCO(R) Data Virtualization

""

Remarks

Listing the views from some databases can be expensive. Providing a list of views in the
connection string improves the performance of the provider.

This property can also be used as an alternative to automatically listing views if you
already know which ones you want to work with and there would otherwise be too many
to work with.

Specify the views you want in a comma-separated list. Each view should be a valid SQL
identifier with any special characters escaped using square brackets, double-quotes or
backticks. For example, Views=ViewA,[ViewB/WithSlash],WithCatalog.WithSchema.`ViewC
With Space`.

Note that when connecting to a data source with multiple schemas or catalogs, you will
need to provide the fully qualified name of the table in this property, as in the last example
here, to avoid ambiguity between tables that exist in multiple catalogs or schemas.

Alternate Security Credentials

Uses the URL to set an alternate security credentials value for client authorization when
using TDV with a client restricted license.

Data Type

string

Default Value

""

Remarks

Uses the URL to set an alternate security credentials value for client authorization when
using TDV with a client restricted license.

BatchSize

The maximum size of each batch operation to submit.

Data Type

int

TIBCO® Data Virtualization Client Interfaces Guide

372 | ADO.NET Provider for TIBCO(R) Data Virtualization

Default Value

0

Remarks

When BatchSize is set to a value greater than 0, the batch operation will split the entire
batch into separate batches of size BatchSize. The split batches will then be submitted to
the server individually. This is useful when the server has limitations on the size of the
request that can be submitted.

Setting BatchSize to 0 will submit the entire batch as specified.

CaseSensitive

Specifies case sensitivity in the request values.

Data Type

bool

Default Value

false

Remarks

Specifies case sensitivity in the request values. By default (false), requests are not case-
sensitive.

Catalog

The name of the catalog to use.

Data Type

string

Default Value

""

Remarks

This field allows you to limit the Catalog to the one explicitly specified. If not set, the
provider will retrieve the available catalogs from the TDV server.

TIBCO® Data Virtualization Client Interfaces Guide

373 | ADO.NET Provider for TIBCO(R) Data Virtualization

CommitFailure

Specifies the behavior if a commit fails.

Possible Values

none, rollback, bestEffort

Data Type

string

Default Value

"none"

Remarks

Specifies the behavior if a commit fails. Possible values are: rollback or bestEffort.

CommitInterrupt

Specifies the behavior if a commit is interrupted.

Possible Values

none, ignore, log, fail

Data Type

string

Default Value

"none"

Remarks

Specifies the behavior if a commit is interrupted. Possible values are: ignore, log, fail.

Compensate

The correcting behavior.

Data Type

string

Default Value

TIBCO® Data Virtualization Client Interfaces Guide

374 | ADO.NET Provider for TIBCO(R) Data Virtualization

"disabled"

Remarks

The correcting behavior, possible values are: disabled or enabled.

ConnectionLifeTime

The maximum lifetime of a connection in seconds. Once the time has elapsed, the
connection object is disposed.

Data Type

int

Default Value

"0"

Remarks

The maximum lifetime of a connection in seconds. Once the time has elapsed, the
connection object is disposed. The default is 0 which indicates there is no limit to the
connection lifetime.

ConnectTimeout

The time-out for initial connection, in seconds.

Data Type

int

Default Value

30

Remarks

The time-out for initial connection, in seconds. Use 0 (zero) for infinite time-out.

DefaultCatalog

The default catalog for a specified connection.

Data Type

TIBCO® Data Virtualization Client Interfaces Guide

375 | ADO.NET Provider for TIBCO(R) Data Virtualization

string

Default Value

""

Remarks

The default catalog for a specified connection.

DefaultSchema

The default schema for a specified connection.

Data Type

string

Default Value

""

Remarks

The default schema for a specified connection.

DelegateOauth2flowToServer

Specify whether to delegate the OAuth flow to the TDV server.

Data Type

bool

Default Value

false

Remarks

Specify whether to delegate the OAuth flow to the TDV server.

EnableFlood

Values are true or false. Default value is true. If true, the server will constantly send data,
filling the network buffer.Useful for larger result sets.

Data Type

TIBCO® Data Virtualization Client Interfaces Guide

376 | ADO.NET Provider for TIBCO(R) Data Virtualization

bool

Default Value

true

Remarks

Values are true or false. Default value is true. If true, the server will constantly send data,
filling the network buffer.Useful for larger result sets.

EnableReconnectOnError

Attempt to reconnect to TDV if the connection was lost during the lifetime of the provider.

Data Type

bool

Default Value

false

Remarks

Attempt to reconnect to TDV if the connection was lost during the lifetime of the provider.
This property can be useful to Enable for long-lived connections, in a case where the TCP
connection to the server is lost, such as during a restart of the TDV Server, where errors
such as 'Action impossible while not connected' or 'Connection to the server has been
forcibly closed.' would otherwise be encountered.

FetchBytes

The maximum number of rows to fetch for a batch based on batch size, in bytes.

Data Type

int

Default Value

131072

Remarks

The maximum number of rows to fetch for a batch based on batch size, in bytes.

TIBCO® Data Virtualization Client Interfaces Guide

377 | ADO.NET Provider for TIBCO(R) Data Virtualization

Setting FetchBytes to a very large number can cause an Out Of Memory error in the server.
The value set for FetchBytes affects the memory used on the client and the TDV server, so
the value should be set based on the heap size configured.

FetchRows

Maximum number of rows to fetch for a batch.

Data Type

int

Default Value

500

Remarks

Maximum number of rows to fetch for a batch. Set to 0 (zero) to return an unlimited
number of rows.

IgnoreTrailingSpaces

Specifies whether to ignore trailing spaces at the end of values.

Data Type

bool

Default Value

false

Remarks

Specifies whether to ignore trailing spaces at the end of values.

Locale

Value that defines the user's language and country.

Data Type

string

Default Value

TIBCO® Data Virtualization Client Interfaces Guide

378 | ADO.NET Provider for TIBCO(R) Data Virtualization

""

Remarks

Value that defines the user's language and country.

MaxRows

Limits the number of rows returned rows when no aggregation or group by is used in the
query. This helps avoid performance issues at design time.

Data Type

int

Default Value

-1

Remarks

Limits the number of rows returned rows when no aggregation or group by is used in the
query. This helps avoid performance issues at design time.

NoMetadata

Blocks return of result-set metadata during query execution.

Data Type

bool

Default Value

false

Remarks

Blocks return of result-set metadata during query execution.

OptimizationPrepare

Specifies whether to optimize prepare requests sent to TDV.

Data Type

bool

TIBCO® Data Virtualization Client Interfaces Guide

379 | ADO.NET Provider for TIBCO(R) Data Virtualization

Default Value

true

Remarks

When set to "True" (default), the provider will submit the query in a single request to TDV.

When set to "False", the provider will submit an initial prepare request to TDV.

Other

These hidden properties are used only in specific use cases.

Data Type

string

Default Value

""

Remarks

The properties listed below are available for specific use cases. Normal driver use cases
and functionality should not require these properties.

Specify multiple properties in a semicolon-separated list.

Integration and Formatting

DefaultColumnSize Sets the default length of string fields when the data source
does not provide column length in the metadata. The default
value is 2000.

ConvertDateTimeToGMT Determines whether to convert date-time values to GMT, instead
of the local time of the machine.

RecordToFile=filename Records the underlying socket data transfer to the specified file.

ParamMode

Controls the behavior of OUT parameters for stored procedures.

Possible Values

TIBCO® Data Virtualization Client Interfaces Guide

380 | ADO.NET Provider for TIBCO(R) Data Virtualization

normal, return, omit, omitCursors

Data Type

string

Default Value

"normal"

Remarks

Controls the behavior of OUT parameters for stored procedures.

Valid values are:

normal Report OUT parameters in procedure metadata as OUT parameters.

return Report OUT parameters as return values.

omit Omit OUT parameters from metadata.

omitCursors Omit output cursors from metadata.

PoolIdleTimeout

The allowed idle time for a connection before it is closed.

Data Type

int

Default Value

60

Remarks

The allowed idle time a connection can remain in the pool until the connection is closed.
The default is 60 seconds.

PoolMaxSize

The maximum connections in the pool.

Data Type

TIBCO® Data Virtualization Client Interfaces Guide

381 | ADO.NET Provider for TIBCO(R) Data Virtualization

int

Default Value

100

Remarks

The maximum connections in the pool. The default is 100. To disable this property, set the
property value to 0 or less.

PoolMinSize

The minimum number of connections in the pool.

Data Type

int

Default Value

1

Remarks

The minimum number of connections in the pool. The default is 1.

PoolWaitTime

The max seconds to wait for an available connection.

Data Type

int

Default Value

60

Remarks

The max seconds to wait for a connection to become available. If a new connection
request is waiting for an available connection and exceeds this time, an error is thrown. By
default, new requests wait forever for an available connection.

TIBCO® Data Virtualization Client Interfaces Guide

382 | ADO.NET Provider for TIBCO(R) Data Virtualization

QueryPassthrough

This option passes the query to the TDV server as is.

Data Type

bool

Default Value

false

Remarks

When this is set, queries are passed through directly to TDV.

Readonly

You can use this property to enforce read-only access to TDV from the provider.

Data Type

bool

Default Value

false

Remarks

If this property is set to true, the provider will allow only SELECT queries. INSERT, UPDATE,
DELETE, and stored procedure queries will cause an error to be thrown.

RegisterOutputCursors

Specifies how to handle output cursors.

Data Type

bool

Default Value

false

Remarks

Specifies how to handle output cursors.

TIBCO® Data Virtualization Client Interfaces Guide

383 | ADO.NET Provider for TIBCO(R) Data Virtualization

Valid values are:

true Bind or register output cursors as output parameters.

false Do not bind or register output cursors as output parameters; instead, use
SQLMoreResults or Statement.getMoreResults() to access the cursors.

RequestTimeout

The time-out for query commands and other requests, in seconds.

Data Type

int

Default Value

0

Remarks

The time-out for query commands and other requests, in seconds.

SessionTimeout

Session inactivity time-out, in seconds.

Data Type

int

Default Value

0

Remarks

Server session inactivity timeout, in seconds. Set to 0 (zero) for infinite time-out.

This value is submitted to the server when a session is initiated and the server controls the
session timeout.

TIBCO® Data Virtualization Client Interfaces Guide

384 | ADO.NET Provider for TIBCO(R) Data Virtualization

SessionToken

Uses the URL to set a session token value for client authorization when using TDV with a
client restricted license.

Data Type

string

Default Value

""

Remarks

Uses the URL to set a session token value for client authorization when using TDV with a
client restricted license.

StripDuplicates

Values are true or false. Default value is true. If true, the server will detect duplicate
CHAR/VARCHAR columns in subsequent rows, and will not re-transmit the data across the
wire.

Data Type

bool

Default Value

true

Remarks

Values are true or false. Default value is true. If true, the server will detect duplicate
CHAR/VARCHAR columns in subsequent rows, and will not re-transmit the data across the
wire.

The provider will submit this option to the server to identify how the response data will be
returned by the server. When true, the server will strip duplicate values to decrease the size
of the response data, thus increasing performance. This option does not affect result
output.

StripTrailingZeros

Determines whether decimal result values are to be returned with trailing zeroes removed.

TIBCO® Data Virtualization Client Interfaces Guide

385 | ADO.NET Provider for TIBCO(R) Data Virtualization

Data Type

bool

Default Value

false

Remarks

Determines whether decimal result values are to be returned with trailing zeroes removed.

TraceFolder

The absolute directory to save the trace file.

Data Type

string

Default Value

""

Remarks

The absolute directory to save the trace file.

TraceLevel

The level of information to log.

Possible Values

off, fatal, error, warn, info, debug, all

Data Type

string

Default Value

"error"

Remarks

The level of information to log. Valid values are: off, fatal, error (default), warn, info, debug,
and all.

TIBCO® Data Virtualization Client Interfaces Guide

386 | ADO.NET Provider for TIBCO(R) Data Virtualization

UseConnectionPooling

This property enables connection pooling.

Data Type

bool

Default Value

false

Remarks

This property enables connection pooling. The default is false. See Connection Pooling for
information on using connection pools.

ValidateRemoteCert

Values are true or false. Default value is false. If true, the client will validate the server's
cert.

Data Type

bool

Default Value

false

Remarks

Values are true or false. Default value is false. If true, the client will validate the server's
cert.

ValidateRemoteHostname

Values are true or false. Default value is false. If true, the client will validate the server's
hostname.

Data Type

bool

Default Value

false

TIBCO® Data Virtualization Client Interfaces Guide

387 | ADO.NET Provider for TIBCO(R) Data Virtualization

Remarks

Values are true or false. Default value is false. If true, the client will validate the server's
hostname.

EnableFastExec

Specifies whether to enable fast execution of queries.

Data Type

bool

Default Value

false

Remarks

Values are true or false (default).

Results are processed and returned immediately (instead of round trip) when a query is
submitted, potentially improving performance of low latency queries.

TIBCO® Data Virtualization Client Interfaces Guide

388 | TIBCO SSIS Components for TDV

TIBCO SSIS Components for TDV

Overview

The TIBCO SSIS Components for TIBCO(R) Data Virtualization enable you to connect SQL
Server with TDV data through SSIS workflows. The components wrap the complexity of
accessing TDV data in standard SSIS data flow components. You can then connect and
synchronize TDV tables with SQL Server tables.

The components hide the complexity of accessing data and provide additional security
features, smart caching, batching, socket management, and more.

Key Features
• Create, read, update, and delete (CRUD) support.

• Access TDV data in real time.

• Integrate TDV data without the need for custom development.

Getting Started

Getting Started covers Establishing a Connection with the Connection Manager and
selecting rows Using the Source Component, and making changes Using the Destination
Component. See the TDV integration guides for information on connecting from other
applications.

Advanced Features

Advanced Features details additional features supported by the component, such as , ssl
configuration, firewall/proxy settings, and advanced logging.

See Data Model for the available schema information.

Connection Properties

The Connection Properties describe the various options that can be used to establish a
connection.

TIBCO® Data Virtualization Client Interfaces Guide

389 | TIBCO SSIS Components for TDV

Getting Started

Connecting to TDV

Establishing a Connection shows how to authenticate to TDV and configure any necessary
connection properties from the Connection Manager window.

You can also configure component capabilities through the available Connection Properties
 , from data modeling to firewall traversal. The Advanced Settings section shows how to set
up more advanced configurations and troubleshoot connection errors.

Visual Studio Version Support

The TIBCO SSIS Components for TIBCO(R) Data Virtualization supports Visual Studio
versions 2012 and above.

SSIS Version Support

The TIBCO SSIS Components for TIBCO(R) Data Virtualization 2019 provide data flow
components that allow for straightforward integration with TDV data from SSIS data flow
tasks. SQL Server 2008 R2, 2012, 2014, 2016, 2017, and 2019 are supported including their
corresponding version of SQL Server Data Tools.

TDV Version Support

The component enables read/write SQL-92 access to TIBCO(R) Data Virtualization version
7.0.1 and above.

See Also

Using the Source Component: Pull TDV data into your data flow task.

Using the Destination Component: Push data to TDV.

Deploying to Azure: Deploy the TIBCO components to Azure from Visual Studio.

TIBCO® Data Virtualization Client Interfaces Guide

390 | TIBCO SSIS Components for TDV

Adding Items to the Toolbox: The component installation automatically adds the
components to the toolbox; if you do not see the components, follow this procedure to
add them.

Adding Items to the Toolbox

Visual Studio 2012 and Later

In Visual Studio 2012 and later, the components are automatically added to the toolbox.

If you do not see the TIBCO components, ensure you are on the Data Flow tab in the
project and check the target SQL Server version of the package. You can find the version in
the solution's properties under Configuration Properties > General >
TargetServerVersion. The components only appear for versions of SQL Server installed on
the same machine.

Establishing a Connection

Connecting with the TDV Connection Manager

Adding a new TDV connection to the SSIS package is straightforward. Right-click within the
Connection Manager window and select New Connection from the menu. Then, choose the
TDV Connection Manager from the Add SSIS Connection Manager window.

Alternatively, you can create a new connection directly using the TDV Source or the TDV
Destination. You can set the connection string options in the TDV Connection Manager
window.

Set the Host, Domain, User, Password, and DataSource connection properties to connect to
the TDV Server.

Deploying to Azure
With the release of Azure Data Factory V2 integration runtimes (ADFv2 IR), deployment to
the Azure cloud is now possible for SSIS projects that use TIBCO components. Follow the

TIBCO® Data Virtualization Client Interfaces Guide

391 | TIBCO SSIS Components for TDV

steps below to deploy the components to Azure. You can then execute SSIS projects in the
configured Azure Data Factory.

You will complete the following tasks:

• Run the AzureDeploy.ps1 script to provision an integration runtime.

• Deploy the SSIS project From Visual Studio to Azure.

• Use SSMS to manage and execute a deployed project.

Prerequisites
In addition to an Azure subscription, you will need the following to deploy the components:

• SSMS 2012 or higher

• Azure resource group

• Azure SQL database

Confirm that the SQL Server's firewall settings will allow access from the client machine:
From the SQL Server's overview page, click Set Server Firewall and add the IP address of
the client machine, or a range of IP addresses that includes the IP address of the client
machine. Additionally, ensure that the Allow access to Azure Services option is enabled in
the firewall settings.

• AzureRM PowerShell 6.2.0 or higher

You can obtain Azure PowerShell by using PowerShellGet or downloading the .msi installer.
After installing, you may need to run the following:

Set-ExecutionPolicy Unrestricted

Deploying TIBCO SSIS Components to Azure
Follow the procedure below to deploy SSIS projects using one or more TIBCO data sources:

Provision an Integration Runtime

Use the included AzureDeploy.ps1 script to provision and start an Azure SSIS integration
runtime.

TIBCO® Data Virtualization Client Interfaces Guide

392 | TIBCO SSIS Components for TDV

1. To deploy multiple TIBCO SSIS components, copy all other TIBCO SSIS2017.dll and
.Design.dll files to this component's /lib folder. By default, this is C:\Program
Files\TIBCO\TIBCO SSIS Components for TIBCO(R) Data Virtualization\lib.

2. Run the AzureDeploy.ps1 script from this /lib directory. You may specify all
parameters required parameters at once. For example:

.\AzureDeploy.ps1 -ResourceGroupName "my-resource-group" -
SubscriptionId "2d91834e-1hga-4c31-86yf-dba7b40b90u2" -
SqlServerName "my-sql-db.database.windows.net" -SqlDatabaseUser
"MySQLUser" -SqlDatabasePwd "MySQLPwd" -DataFactoryName
"MyDataFactory" -StorageAccountName "MyStorageAccount"

If your SQL Server database already has an integration runtime (and SSISDB), you can
overwrite it by first stopping it, and then specifying its name with the -
InterationRuntimeName parameter. Each SQL Server may only have one integration
runtime.

See the "Configuring the AzureDeploy.ps1 Script" section below for more information on
the available parameters.

3. Log into Azure in the dialog that is displayed.

After you log into Azure, the script creates the resources necessary for deployment and
starts the integration runtime.

Deploy the SSIS Package

You are now ready to deploy your SSIS package:

• In Visual Studio, right-click the project and select Deploy Project. The Integration
Services Deployment Wizard is displayed.

• On the Select Source page, select your SSIS project. You can select a project
deployment file or a project that resides in an SSIS catalog.

• On the Select Destination page, enter the fully qualified domain name of the logical
SQL database and enter your authentication information. Select Browse to select the
target folder in SSISDB.

After this step, your package is deployed and accessible in the Azure Data Factory web UI
at https://adf.azure.com.

TIBCO® Data Virtualization Client Interfaces Guide

393 | TIBCO SSIS Components for TDV

Managing and Running the Project in SSMS
By default, connection settings with sensitive information (passwords, security tokens, etc.)
are redacted when deploying to Azure. To be able to execute projects in the configured
Azure Data Factory, provide this information through SSMS.

1. Connect to the Azure SQL database. In Options -> Connection Properties, set the
Connect to Database field to "SSISDB".

2. Right-click the project and click Configure to configure the SSIS project in the
Integration Services Catalog.

Note: If you do not see Integration Services Catalogs, you may need to upgrade your SSMS
version or set "SSISDB" in step 1.

3. Add connection information as necessary in the Connection Manager tab. Provide
the RTK connection property.

You can then execute the project. View the results of execution by right-clicking the project
and clicking Reports -> All Executions.

Configuring the AzureDeploy.ps1 Script
The following sections provide a reference to the available options for the deployment
script:

Required Parameters
• ResourceGroupName: The name of the resource group to use or create resources

in. The resource group must exist.

• SqlServerName: The name or endpoint of the logical SQL database. Example:
ssishost.database.windows.net.

• SqlDatabaseUser: The username of the SQL Server user.

• SqlDatabasePwd: The password for the SQL Server user.

• DataFactoryName: The name of the Data Factory to use (or create). A data factory
may only have one integration runtime. To overwrite an existing IR, specify its name
with the

 -IntegrationRuntimeName parameter.

TIBCO® Data Virtualization Client Interfaces Guide

394 | TIBCO SSIS Components for TDV

• StorageAccountName: The name of the storage account to use (or create).

Other Parameters

• SubscriptionId: The Id of the subscription to use for creating additional resources.
This should match a subscription from ResourceGroupName. Example: 2r29814e-
1dba-4b11-81cf-dba7b90b74c3

• Location: The location to create additional resources. Defaults to "EastUS".

• SetupContainerName: The name of the blob container to create (or reuse). TIBCO
assembly files, main.cmd, and SSISDeployUtil.bat will be overwritten if they exist.
Defaults to "ssissetup".

• StorageAccountResourceGroup: If the storage account to be used is on a different
resource group, this parameter specifies the name of the resource group for the -
StorageAccountName to use. Defaults to -ResourceGroup otherwise.

• RuntimeNodeSize: The integration runtime node size. Defaults to "Standard_D1_
v2".

• RuntimeNodeCount: The number of target nodes of the integration runtime.
Defaults to 1.

• AzureSSISMaxParallelExecutionsPerNode: Max Parallel Executions Per Node.
Defaults to 1.

• CatalogPricingTier: The catalog database pricing tier of the integration runtime.
Defaults to "Basic".

• AzureSSISEdition: The edition of the SSIS integration runtime. Standard or
Enterprise. Defaults to Standard.

• AzureSSISDescription: A description you may provide for the Azure SSIS Runtime.
Defaults to "Azure SSIS Runtime".

• IntegrationRuntimeName: The name of the integration runtime to create (or
overwrite). Defaults to "AzureSSISIR".

Each SQL Server can have only one integration runtime. If the existing SQL Server already
has an integration runtime and SSISDB (the SSIS catalog database), then you may
overwrite it by specifying the

-InterationRuntimeName parameter.

TIBCO® Data Virtualization Client Interfaces Guide

395 | TIBCO SSIS Components for TDV

Using the AzureLogfile.ps1 Script
The AzureLogfile script assists with mounting an Azure FileShare to both your local system
and to your provisioned SSIS IR. As the name suggests, this is useful for troubleshooting
with a CData Logfile, but it can also be useful for specifying schema files with the Location
property, or for reading/writing to flat files from a deployed package.

Required Parameters

• ResourceGroupName: The name of the resource group to use or create resources
in. The resource group must exist.

• StorageAccountName: The name of the storage account to use.

• FileShareName: The name of the file share to use (or create) for mounting.

• DriveLetter: The single-character drive letter to mount the fileshare to on the local
system

• SqlServerName: The name or endpoint of the logical SQL database. Example:
ssishost.database.windows.net.

• SqlDatabaseUser: The username of the SQL Server user.

• SqlDatabasePwd: The password for the SQL Server user.

Changelog

General Changes

[7915] - 2021-09-02

Added

Added support for the STRING_SPLIT table-valued function in the CROSS APPLY clause.

[7889] - 2021-08-07

Changed

Add the KeySeq column to the sys_foreignkeys table.

TIBCO® Data Virtualization Client Interfaces Guide

396 | TIBCO SSIS Components for TDV

[7888] - 2021-08-06

Changed

Add the new sys_primarykeys system table.

[7874] - 2021-07-23

Changed

Updated the Literal Function Names for relative date/datetime functions. Previously
relative date/datetime functions resolved to a different value when used in the projection
vs te predicate. Ie: SELECT LAST_MONTH() AS lm, Col FROM Table WHERE Col > LAST_
MONTH(). Formerly the two LAST_MONTH() methods would resolve to different datetimes.
Now they will match.

As a replacement for the previous behavior, the relative date/datetime functions in the
criteria may have an 'L' appended to them. Ie: WHERE col > L_LAST_MONTH(). This will
continue to resolve to the same values that previously were calculated in the criteria. Note
that the "L_" prefix will only work in the predicate - it not available for the projection.

[7859] - 2021-07-08

Added

Added the TCP Logging Module for the logging information happening on the TCP wire
protocol. The transport bytes that are incoming and ongoing will be logged at verbosity=5.

[7785] - 2021-04-23
Added

Added support for handling client side formulas during insert / update. For example:
UPDATE Table SET Col1 = Concat(Col1, " - ", Col2) WHERE Col2 LIKE 'A%'

[7783] - 2021-04-23
Changed

Updated how display sizes are determined for varchar primary key and foreign key
columns so they will match the reported length of the column.

TIBCO® Data Virtualization Client Interfaces Guide

397 | TIBCO SSIS Components for TDV

[7776] - 2021-04-16
Added

• Non-conditional updates between two columns is now available to all drivers. For
example: UPDATE Table SET Col1=Col2

Changed

• Reduced the length to 255 for varchar primary key and foreign key columns.

• Updated implicit and metadata caching to improve performance and support for
multiple connections. Old metadata caches are not compatible - you would need to
generate new metadata caches if you are currently using CacheMetadata.

• Updated index naming convention to avoid duplicates

• Updated and standardized Getting Started connection help.

• Added the Advanced Features section to the help of all drivers.

• Categorized connection property listings in the help for all editions.

SSIS Changes

[7873] - 2021-07-22

Added

Added a UI type editor for the SQLStatement property of the SQLExecutor component.

[7816] - 2021-05-26

Added

Support semicolon separated SQL queries.

[7776] - 2021-04-16
Added

• Added a create table button for the Destination Component to make it easier to add
a new destination in SSIS.

TIBCO® Data Virtualization Client Interfaces Guide

398 | TIBCO SSIS Components for TDV

• Improved user experience for Source Component by allowing users to select which
columns to select via a new checkbox dialog.

Changed

• Improved query dialog for building parameterized statements.

Advanced Features
This section details a selection of advanced features of the component

SSL Configuration

Use SSL Configuration to adjust how certificate negotiations are handled by the
component. You can specify a specific certificate for use in SSL.

Firewall and Proxy

Configure the component for compliance with Firewall and Proxy, including Windows
proxies. You can also set up tunnel connections.

Logging

See Logging for an overview of configuration settings that can be used to refine TIBCO
logging.

SSL Configuration

Customizing the SSL Configuration

By default, the component attempts to negotiate SSL/TLS by checking the server's
certificate against the system's trusted certificate store.

To specify another certificate, see the SSLServerCert property for the available formats to
do so.

TIBCO® Data Virtualization Client Interfaces Guide

399 | TIBCO SSIS Components for TDV

Client SSL Certificates

The TDV component also supports setting client certificates. Set the following to connect
using a client certificate.

• SSLClientCert: The name of the certificate store for the client certificate.

• SSLClientCertType: The type of key store containing the TLS/SSL client certificate.

• SSLClientCertPassword: The password for the TLS/SSL client certificate.

• SSLClientCertSubject: The subject of the TLS/SSL client certificate.

Firewall and Proxy

Connecting Through a Firewall or Proxy

Set the following properties:

• To use a proxy-based firewall, set FirewallType, FirewallServer, and FirewallPort.

• To tunnel the connection, set FirewallType to TUNNEL.

• To authenticate, specify FirewallUser and FirewallPassword.

• To authenticate to a SOCKS proxy, additionally set FirewallType to SOCKS5.

Logging
Capturing component logging can be very helpful when diagnosing error messages or other
unexpected behavior.

Basic Logging

You will simply need to set two connection properties to begin capturing component
logging.

• Logfile: A filepath which designates the name and location of the log file.

• Verbosity: This is a numerical value (1-5) that determines the amount of detail in the
log. See the page in the Connection Properties section for a breakdown of the five
levels.

TIBCO® Data Virtualization Client Interfaces Guide

400 | TIBCO SSIS Components for TDV

• MaxLogFileSize: When the limit is hit, a new log is created in the same folder with
the date and time appended to the end. The default limit is 100 MB. Values lower
than 100 kB will use 100 kB as the value instead.

• MaxLogFileCount: A string specifying the maximum file count of log files. When the
limit is hit, a new log is created in the same folder with the date and time appended
to the end and the oldest log file will be deleted. Minimum supported value is 2. A
value of 0 or a negative value indicates no limit on the count.

Once this property is set, the component will populate the log file as it carries out various
tasks, such as when authentication is performed or queries are executed. If the specified
file doesn't already exist, it will be created.

Log Verbosity

The verbosity level determines the amount of detail that the component reports to the
Logfile. Verbosity levels from 1 to 5 are supported. These are described in the following list:

1. Setting Verbosity to 1 will log the query, the number of rows returned by it, the start
of execution and the time taken, and any errors.

2. Setting Verbosity to 2 will log everything included in Verbosity 1 and additional
information about the request, if applicable.

3. Setting Verbosity to 3 will additionally log the body of the request and the response.

4. Setting Verbosity to 4 will additionally log transport-level communication with the
data source. This includes SSL negotiation.

5. Setting Verbosity to 5 will additionally log communication with the data source and
additional details that may be helpful in troubleshooting problems. This includes
interface commands.

The Verbosity should not be set to greater than 1 for normal operation. Substantial
amounts of data can be logged at higher verbosities, which can delay execution times.

To refine the logged content further by showing/hiding specific categories of information,
see LogModules.

Advanced Logging

You may want to refine the exact information that is recorded to the log file. This can be
accomplished using the LogModules property.

TIBCO® Data Virtualization Client Interfaces Guide

401 | TIBCO SSIS Components for TDV

This property allows you to filter the logging using a semicolon-separated list of logging
modules.

All modules are four characters long. Please note that modules containing three letters
have a required trailing blank space. The available modules are:

• EXEC: Query Execution. Includes execution messages for original SQL queries, parsed
SQL queries, and normalized SQL queries. Query and page success/failure messages
appear here as well.

• INFO: General Information. Includes the connection string, driver version (build
number), and initial connection messages.

• HTTP: HTTP Protocol messages. Includes HTTP requests/responses (including POST
messages), as well as Kerberos related messages.

• SSL : SSL certificate messages.

• OAUTH: OAuth related failure/success messages.

• SQL : Includes SQL transactions, SQL bulk transfer messages, and SQL result set
messages.

• META: Metadata cache and schema messages.

• TCP : Incoming and Ongoing raw bytes on TCP transport layer messages.

An example value for this property would be.

LogModules=INFO;EXEC;SSL ;SQL ;META;

Note that these modules refine the information as it is pulled after taking the Verbosity
into account.

Using the SSIS Components

Reading and Writing TDV Data with the SSIS Components

The following sections show how to ETL TDV data, using the standard SSIS components to
query TDV tables just as you would SQL Server tables.

TIBCO® Data Virtualization Client Interfaces Guide

402 | TIBCO SSIS Components for TDV

Using the Source Component

Using the Source Component details how to add a source component to the package,
including defining a connection manager and selecting a data access mode.

Using the Destination Component

Using the Destination Componentdetails how to add a destination component to the
package, how to connect the source and destination components, and selecting data
operations to be done with the source data.

Using the Lookup Component

Using the Lookup Component demonstrates how to perform data lookups on a specified
set of columns from the source component in a lookup component.

Using the Execute SQL Task

Using the Execute SQL Task details the process for adding an Execute SQL task to your
project and executing SQL queries directly.

Calling Stored Procedures

Calling Stored Procedures describes the process for executing stored procedures with a
Script component.

Using the Source Component
After Establishing a Connection to the data source, you can use the TIBCO TDV source
component to pull data into your Data Flow task.

Querying TDV Data with the Source Component

Follow the procedure below to connect to TDV, retrieve data, and provide data to other
components in the workflow.

1. In the SSIS Toolbox, drag the TIBCO TDV source component into the Data Flow task.

TIBCO® Data Virtualization Client Interfaces Guide

403 | TIBCO SSIS Components for TDV

2. Double-click the TIBCO TDV source component. The TIBCO TDV Source Editor will
display.

3. In the Connection Managers menu, select an available TIBCO TDV connection
manager, or create a new instance if one is not already available.

4. Choose your Access Mode: "Table or View" or "SQL Statement". Select "Table or
View" to use the GUI to select a table or view. Select "SQL Statement" to configure a
statement of your choice.

5. Select the Columns tab and rename any output columns as desired.

When you execute the data flow, rows from your selected table or statement will be made
available to the components in the data flow.

Using Parameterized Queries

Parameterized statements provide an efficient way to execute queries dynamically and
mitigate SQL injection attacks. The Source Component provides a Parameters button that
can be used to map parameters defined in the query to variables in the data flow when
using a custom SQL Command. The component will execute these queries as
parameterized statements at runtime.

In order to use the Parameters option, your query must contain parameters, which can be
either defined positionally as a named prarameter:

• Positional parameters: When setting up the parameter mapping, the names in the
Parameter list must be the index (starting from 1) of that parameter in the query.
Example query:

SELECT * FROM Table WHERE FirstName = ? AND Date > ?

Here, the Parameter names must be set to '1' and '2' for 'FirstName' and 'Date'
respectively.

• Named parameters: When setting up the parameter mapping, the names in the
Parameter list must exactly match the names of the parameters in the query without
the preceding '@' symbol. Example query:

SELECT * FROM Table WHERE FirstName = @FirstName AND Date > @Date

Here, the Parameter names must be set to 'FirstName' and 'Date'.

TIBCO® Data Virtualization Client Interfaces Guide

404 | TIBCO SSIS Components for TDV

Building Dynamic Queries in the Expression Builder

After configuring a source component, you can then use the SSIS Expression Builder to
access the SQL statement that the source component executes at run time.

The component will execute these queries as parameterized statements. Parameterized
statements provide an efficient way to execute similar queries and mitigate SQL injection
attacks.

 1. In SSIS Designer, click the Control Flow tab.

 2. In the Properties pane, click the button in the box for the Expressions property.

 3. In the resulting Property Expressions Editor, click an empty row in the Property box
and select the SQLStatement property of the TIBCO TDV source component from the
drop-down menu. Then click the button in the row you just added. This displays the
Expression Builder.

 4. In the Expression box, you can create new SQL commands that use the variables
available at run time as input parameters. Ensure that you enclose the expression in
quotes. For example:

"SELECT * FROM Table WHERE FirstName = '" + @[User::Name] + "' AND Date
> '" + (DT_WSTR, 50) DATEADD("day", -30, GETDATE()) + "'"

Using the Destination Component
After Establishing a Connection to the data source, add the TIBCO TDV destination
component to the workflow to load data into TDV.

Writing to TDV in a Data Flow

Follow the steps below to connect to TDV and update data.

1. In the SSIS Toolbox, drag the TIBCO TDV destination component into the Data Flow
Task.

2. Connect the output of a source component to the TIBCO TDV destination
component.

3. Double-click the TIBCO TDV destination component. The TIBCO TDV Destination
Editor dialog will display.

TIBCO® Data Virtualization Client Interfaces Guide

405 | TIBCO SSIS Components for TDV

4. In the Connection Managers menu, select an available TIBCO TDV connection
manager, or create a new instance if one is not already available.

5. In the "Use a Table" option, select the table to update.

6. Select the data manipulation action. See below for more information on each action.

7. On the Mappings tab, configure the mappings from source to destination. By default,
outputs from the source component will automatically be mapped with the same
name as the columns in the table you selected. You can further update these
selections.

Note: Read-only columns will not be visible among the destination columns since they
cannot be written to.

Command Execution

When you execute the data flow, the component will execute one of the following
operations to update the destination table.

Insert

The component will take the mapped values and attempt to insert the data as new rows
into the table. By setting the OutputKey property to True in the destination component's
properties, you can retrieve the results of the insert in the error output of the component
with the 'Redirect row' error behavior.

Update

The component will attempt to update an existing row based on the primary key provided.
The primary key column must be mapped, and it must not be null. By setting the
OutputKey property to True in the destination component's properties, you can retrieve
the results of the update in the error output of the component with the 'Redirect row' error
behavior.

Upsert

The component uses the primary key to decide if a row is to be inserted or updated. If the
primary key column is mapped and it is not null, the component will attempt to update an
existing row based on the primary key provided. If the primary key is not mapped or if it is
null, the TIBCO TDV Destination Component will attempt to insert the data as a new row.

TIBCO® Data Virtualization Client Interfaces Guide

406 | TIBCO SSIS Components for TDV

By setting the OutputKey property to True in the destination component's properties, you
can retrieve the results of the upsert in the error output of the component with the
'Redirect row' error behavior.

Delete

The component will attempt to delete an existing row based on the primary key provided.
The primary key column must be mapped, and it must not be null.

Bulk Operations

The destination component will by default use bulk operations to update the data source.
This behavior is controlled by the BatchMode and BatchSize properties of the component.
The BatchSize controls the maximum size of the batches to submit to the component at
once. Depending on the volume of data being submitted, increasing the BatchSize can
improve throughput but will require a larger memory footprint.

Using the Lookup Component
After Establishing a Connection to the data source, you can use the TIBCO TDV lookup
component to do a lookup against TDV and map the matched and unmatched rows to
different outputs in your Data Flow task.

Performing a lookup to TDV Data with the Lookup Component

You can use the Lookup Component to perform a lookup on a specified set of columns in
TDV. This component takes one input and has two outputs: one for matched rows in TDV
and one for unmatched rows. The component provides two cache options which can affect
the performance of the lookup but do not change the results of the lookup operation.
These cache options are described later in this section.

1. In the SSIS Toolbox, drag the TIBCO TDV Lookup Component into the Data Flow.

2. Double-click the TIBCO TDV Lookup Component. The TIBCO TDV Lookup Component
opens.

3. Navigate to the Connection tab. In the Connection drop-down list, select an
available TIBCO TDV connection manager, or create a new instance if one is not
already available.

TIBCO® Data Virtualization Client Interfaces Guide

407 | TIBCO SSIS Components for TDV

4. Choose your Access Mode: "Table or View" or "SQL Statement". Select "Table or
View" to use the GUI to select a table or view. Select "SQL Statement" to configure a
statement of your choice.

5. Next, you need to configure fields you wish to use to perform the lookup on. Click
on a column in the Available Input Columns list and drag it to the column you want
to look up against in the Available Lookup Columns box.

6. Optionally, you can select fields you would like to include in the outputs by checking
the boxes for each column in the Available Lookup Columns section. You have the
option to add the field to your output as a new field or to overwrite one of the fields
in the input.

Full Cache

The default cache mode for the Lookup Component is Full Cache. With this mode, the
Lookup Component creates a temporary SQLite cache file as soon as the first input row is
detected. The cache is populated with all the rows in the TDV table but only the columns
that are selected in the UI. Once the cache is built, each row in the input is looked up
against this local cache. This mode is optimal when working with large sets of data that
require many lookups.

Partial Cache

Partial Cache mode is similar to Full Cache, but instead of pulling the entire table initially,
the Lookup Component batches 100 rows from the input and issue a query to the data
source in the following form and cache only those results:

SELECT ... WHERE LookupField IN ('value1', ..., 'value100')

This mode is only possible if looking up a single column. This mode can improve
performance if you're working with a small set of input data where caching the entire TDV
table is very expensive.

Using the Execute SQL Task
After Establishing a Connection to the data source, you can use the TIBCO TDV Task run
stored procedures and SQL queries at the Control Flow level.

TIBCO® Data Virtualization Client Interfaces Guide

408 | TIBCO SSIS Components for TDV

Querying TDV Data with the TDV Task

Complete the following steps to connect to TDV and execute custom SQL queries at the
Control Flow level. A common use case for this would be to truncate table data or
executing stored procedures before executing your workflow.

1. In the SSIS Toolbox, drag the TIBCO TDV Task into the Control Flow.

2. Double-click the TIBCO TDV Task. The TIBCO TDV Task opens.

3. In the Connection drop-down list, select an available TIBCO TDV connection
manager, or create a new instance if one is not already available.

4. Configure the query you want to execute. There are three properties that control
this:

• SQLSourceType: Where to source the query from, either a direct input in the TIBCO
TDV Task UI or from a variable in the package.

• CommandType: The type of command to run. The options are Table, Stored
Procedure, or Command Text. For the first two, the Task expects only the name of
the object to execute. The Command Text option allows you to execute any SQL
command you'd like.

• The last option is context-specific based on the values you set for the above two
settings.

5. Optionally, you may assign parameters and/or a result set, as described in the
following section.

Defining the Parameter Mapping

Parameters can be used with the Stored Procedure and Command Text CommandTypes.
On the Parameter Mapping tab, add as many Parameters as you need. When using the
Stored Procedure option, the Parameter Name must exactly match the name of the
parameter defined in the stored procedure. For the Command Text option, the name must
match the name used in the SQL command. You can assign a variable to either read from
or write to depending on the Direction chosen. The available Direction options are as
follows:

• Input: Indicates the value is read from an SSIS variable when executing the call.

• Output: Indicates the value is returned from the command call and stored in a local
variable for use later in the package.

TIBCO® Data Virtualization Client Interfaces Guide

409 | TIBCO SSIS Components for TDV

• InOut: A combination of the above. The value is read when the query is executed
and the returned value overwrites the existing value after execution is complete.

Configuring a Result Set

A Result Set can be configured if the query results are needed later in the package. There
are two options: Single Row and Full ResultSet. Each one affects how the values are output
by the Task and how you need to define the output on the Result Set tab in the UI. Note
that when using a Stored Procedure, defining OUT or IN/OUT parameters can be used
instead of configuring a Result Set.

• Single Row: When a single row is returned, you need to set the ResultSet Name to
the index (i.e. 0, 1, 2, etc.) of the column you are querying. The Variable Name must
be mapped to a variable in SSIS that is the correct data type as the output column.

• Full ResultSet: With the Full ResultSet option, only a single value is returned which
is a DataTable containing the full data returned from the query. The ResultSet Name
should be set to 0. The SSIS Variable Name must be set to a variable of type Object.
Note that if multiple ResultSets are returned from the query, the Task currently only
supports outputting the first.

Calling Stored Procedures
You can execute stored procedures in a source component as well as in a script
component.

Call Stored Procedures from a Source Component

Follow the steps below to execute a stored procedure with the SQL EXEC keyword:

1. Double-click the component in the Data Flow task to open the editor.

2. In the Data Access Mode menu, select SQL Command. The query syntax for stored
procedure statements follows the standard form, shown below:

EXECUTE my_proc @first = '1', @second = '2', @third = '3';

EXEC my_proc @first = '1', @second = '2', @third = '3';

TIBCO® Data Virtualization Client Interfaces Guide

410 | TIBCO SSIS Components for TDV

EXECUTE and EXEC can be used interchangeably. See Using the Source Component for how
to parameterize the query.

Call Stored Procedures from a Script Component

The following sections show how to call stored procedures in a script component.

Add the Script Component

Add a script component to the data flow from the toolbox and select the type of script
component:

• A source script component will have only outputs.

• A destination script component will accept only inputs.

• A transformation script component will accept input columns and produce output
columns.

Before Editing the Script

After adding the component to the data flow, double-click the component to open the
Script Transformation Editor and follow the steps below:

3. Configure all the input and output columns in the Inputs and Outputs tab. Be sure to
set the proper data type for each output, which can be found under the Data Type
Properties in the right-hand column.

4. Add any SSIS package variables in the ReadOnlyVariables or ReadWriteVariables lists
on the Script tab. Note that read/write variables can only be set in the PostExecute
method in the script (see the example script below).

5. Select the language you wish to code with: either C# or Visual Basic.

Now you are ready to begin editing the script. Click the Edit Script button. The Example
Script section below shows a typical stored procedure call.

After Editing the Script

After editing the code check if there are any errors in the Error List window and resolve
them as needed. The script component is now ready to use.

TIBCO® Data Virtualization Client Interfaces Guide

411 | TIBCO SSIS Components for TDV

Example Script

The example below shows how to use a script component to call the SearchSuppliers
stored procedure. You will need to add a reference to the TIBCO.SSIS2019.TDV.dll, which
can be found in the lib subfolder of the installation folder.

C#

using System.Data.TDVClient;

...

public override void CreateNewOutputRows()

{

string connectionString =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword";

using (TDVConnection connection = new TDVConnection(connectionString)) {

 TDVCommand cmd = new TDVCommand("SearchSuppliers", connection);

 cmd.CommandType = CommandType.StoredProcedure;

 cmd.Parameters.Add(new TDVParameter("@Country", "US"));

 // Add other parameters as needed ...

 TDVDataReader rdr = cmd.ExecuteReader();

TIBCO® Data Virtualization Client Interfaces Guide

412 | TIBCO SSIS Components for TDV

while (rdr.Read()) {

 Output0Buffer.AddRow();

 //Add output columns as necessary, for example:

 //Output0Buffer.Name = rdr["Name"].ToString();

 //...

 Console.WriteLine();

 }

 }

}

public override void PostExecute()

{

 //If you want to set any package variables, it must be done in this
function

 //You will need to have already added these ReadWriteVariables in the
Script Editor

 //For example:

TIBCO® Data Virtualization Client Interfaces Guide

413 | TIBCO SSIS Components for TDV

 Variables.Success = true;

}

VB.NET

Imports System.Data.TDVClient

...

Public Overrides Sub CreateNewOutputRows()

 Dim connectionString As String =
"Host=myHost;Domain=myDomain;DataSource=myDataSource;User=myUser;Passwor
d=myPassword"

 Using connection As New TDVConnection(connectionString)

 Dim cmd As New TDVCommand("SearchSuppliers", connection)

 cmd.CommandType = CommandType.StoredProcedure

 cmd.Parameters.Add(New TDVParameter("@Country", "US"))

 ' Add other parameters as needed ...

 Dim rdr As TDVDataReader = cmd.ExecuteReader()

 While rdr.Read()

TIBCO® Data Virtualization Client Interfaces Guide

414 | TIBCO SSIS Components for TDV

 Output0Buffer.AddRow()

 'Add output columns as necessary, for example:

 'Output0Buffer.Name = rdr["Name"].ToString()

 '...

 Console.WriteLine()

 End While

 End Using

End Sub

Public Overrides Sub CreateNewOutputRows()

 'If you want to set any package variables, it must be done in this
function

 'You will need to have already added these ReadWriteVariables in the
Script Editor

 'For example:

 Variables.Success = True

End Sub

TIBCO® Data Virtualization Client Interfaces Guide

415 | TIBCO SSIS Components for TDV

Connection Properties
The connection properties are the various options that can be used to establish a
connection. This section provides a complete list of the options you can configure in the
connection settings for this provider. Click the links for further details.

For more information on establishing a connection, see Establishing a Connection.

Authentication

Property Description

Host The name of the server running TDV Server.

Port The port of the TDV server.

Domain The TDV domain to which the DataSource belongs.

DataSource The name of the TDV data source.

User The username provided for authentication with TDV Server.

Password The user's password.

Encrypt Specifies whether to encrypt the connection using SSL.

SSO The single-sign-on (SSO) type to use to authenticate.

UserTokens Authentication values that can be packaged for delivery.

Kerberos

Property Description

KerberosKDC The Kerberos Key Distribution Center (KDC) service used to
authenticate the user.

TIBCO® Data Virtualization Client Interfaces Guide

416 | TIBCO SSIS Components for TDV

Property Description

KerberosRealm The Kerberos Realm used to authenticate the user with.

KerberosSPN The Service Principal Name for the Kerberos Domain Controller.

UsePlatformKerberosAPI This setting determines if the platform's Kerberos API is used.

SSL

Property Description

SSLClientCert The TLS/SSL client certificate store for SSL Client Authentication
(2-way SSL).

SSLClientCertType The type of key store containing the TLS/SSL client certificate.

SSLClientCertPassword The password for the TLS/SSL client certificate.

SSLClientCertSubject The subject of the TLS/SSL client certificate.

SSLServerCert The certificate to be accepted from the server when connecting
using TLS/SSL.

Logging

Property Description

Logfile A filepath which designates the name and location of the log file.

Verbosity The verbosity level that determines the amount of detail included in the
log file.

LogModules Core modules to be included in the log file.

TIBCO® Data Virtualization Client Interfaces Guide

417 | TIBCO SSIS Components for TDV

Property Description

MaxLogFileSize A string specifying the maximum size in bytes for a log file (for example,
10 MB).

MaxLogFileCount A string specifying the maximum file count of log files.

Schema

Property Description

Location A path to the directory that contains the schema files defining tables,
views, and stored procedures.

BrowsableSchemas This property restricts the schemas reported to a subset of the
available schemas. For example,
BrowsableSchemas=SchemaA,SchemaB,SchemaC.

Tables This property restricts the tables reported to a subset of the available
tables. For example, Tables=TableA,TableB,TableC.

Views Restricts the views reported to a subset of the available tables. For
example, Views=ViewA,ViewB,ViewC.

Miscellaneous

Property Description

Alternate Security
Credentials

Uses the URL to set an alternate security credentials value for client
authorization when using TDV with a client restricted license.

Case Sensitive Specifies case sensitivity in the request values.

Catalog The name of the catalog to use.

TIBCO® Data Virtualization Client Interfaces Guide

418 | TIBCO SSIS Components for TDV

Property Description

Commit Failure Specifies the behavior if a commit fails.

Commit Interrupt Specifies the behavior if a commit is interrupted.

Compensate The correcting behavior.

Connect Timeout The time-out for initial connection, in seconds.

Default Catalog The default catalog for a specified connection.

Default Schema The default schema for a specified connection.

Enable Flood Values are true or false. Default value is true. If true, the server will
constantly send data, filling the network buffer.Useful for larger
result sets.

Enable Reconnect On
Error

Specifies cluster reconnection behavior.

Fetch Bytes The maximum number of rows to fetch for a batch based on batch
size, in bytes.

Fetch Rows Maximum number of rows to fetch for a batch.

Ignore Trailing Spaces Specifies whether to ignore trailing spaces at the end of values.

Locale Value that defines the user's language and country.

Max Rows Limits the number of rows returned rows when no aggregation or
group by is used in the query. This helps avoid performance issues
at design time.

No Metadata Blocks return of result-set metadata during query execution.

Optimization Prepare Specifies whether to optimize prepare requests sent to TDV.

Other These hidden properties are used only in specific use cases.

TIBCO® Data Virtualization Client Interfaces Guide

419 | TIBCO SSIS Components for TDV

Property Description

Param Mode Controls the behavior of OUT parameters for stored procedures.

Query Passthrough This option passes the query to the TDV server as is.

Readonly You can use this property to enforce read-only access to TDV from
the provider.

Register Output
Cursors

Specifies how to handle output cursors.

Request Timeout The time-out for query commands and other requests, in seconds.

Session Timeout Session inactivity time-out, in seconds.

Session Token Uses the URL to set a session token value for client authorization
when using TDV with a client restricted license.

Strip Duplicates Values are true or false. Default value is true. If true, the server will
detect duplicate CHAR/VARCHAR columns in subsequent rows, and
will not re-transmit the data across the wire.

Strip Trailing Zeros Determines whether decimal result values are to be returned with
trailing zeroes removed.

Trace Folder The absolute directory to save the trace file.

Trace Level The level of information to log.

Validate Remote Cert The username provided for authentication with TDV Server.

Validate Remote
Hostname

Values are true or false. Default value is false. If true, the client will
validate the server's hostname.

TIBCO® Data Virtualization Client Interfaces Guide

420 | TIBCO SSIS Components for TDV

Other

Property Description

EnableFastExec Specifies whether to enable fast execution of queries.

Authentication
This section provides a complete list of the Authentication properties you can configure in
the connection settings for this provider.

Property Description

Host The name of the server running TDV Server.

Port The port of the TDV server.

Domain The TDV domain to which the DataSource belongs.

DataSource The name of the TDV data source.

User The username provided for authentication with TDV Server.

Password The user's password.

Encrypt Specifies whether to encrypt the connection using SSL.

SSO The single-sign-on (SSO) type to use to authenticate.

UserTokens Authentication values that can be packaged for delivery.

Host
The name of the server running TDV Server.

TIBCO® Data Virtualization Client Interfaces Guide

421 | TIBCO SSIS Components for TDV

Data Type

string

Default Value

""

Remarks

This property should be set to the name or network address of the computer running TDV
Server.

Port
The port of the TDV server.

Data Type

int

Default Value

9401

Remarks

Set this to the base (plaintext) client port configured on the server.

When Encrypt is enabled, the component will adjust the port accordingly.

Domain
The TDV domain to which the DataSource belongs.

Data Type

string

TIBCO® Data Virtualization Client Interfaces Guide

422 | TIBCO SSIS Components for TDV

Default Value

""

Remarks

The TDV domain to which the DataSource belongs.

Typically the domain is 'composite' for installations with locally defined users.

DataSource
The name of the TDV data source.

Data Type

string

Default Value

""

Remarks

Data source refers to the TDV database name published in the Data Services node.

User
The username provided for authentication with TDV Server.

Data Type

string

Default Value

""

TIBCO® Data Virtualization Client Interfaces Guide

423 | TIBCO SSIS Components for TDV

Remarks

The username provided for authentication with TDV Server.

Password
The user's password.

Data Type

string

Default Value

""

Remarks

The password provided for authentication with the TDV Server.

Encrypt
Specifies whether to encrypt the connection using SSL.

Data Type

bool

Default Value

false

Remarks

When set to true, automatically passes messages to the SSL port for processing with the
TDV SSL Certificate.

TIBCO® Data Virtualization Client Interfaces Guide

424 | TIBCO SSIS Components for TDV

SSO
The single-sign-on (SSO) type to use to authenticate.

Data Type

string

Default Value

"Disable"

Remarks

The single-sign-on (SSO) type to use to authenticate. Valid values are: Disable, Kerberos,
and NTLM.

Valid on Windows platform only.

Default is "Disable" which forces the client to provide a user and password to authenticate.

UserTokens
Authentication values that can be packaged for delivery.

Data Type

string

Default Value

""

Remarks

Authentication values that can be packaged for delivery.

The URL can pass the user_tokens property to the server at the init command, in the form:
" user_tokens=(" NAME "=" VALUE ("," NAME "=" VALUE)* ")"

TIBCO® Data Virtualization Client Interfaces Guide

425 | TIBCO SSIS Components for TDV

Kerberos
This section provides a complete list of the Kerberos properties you can configure in the
connection settings for this provider.

Property Description

KerberosKDC The Kerberos Key Distribution Center (KDC) service used to
authenticate the user.

KerberosRealm The Kerberos Realm used to authenticate the user with.

KerberosSPN The Service Principal Name for the Kerberos Domain Controller.

UsePlatformKerberosAPI This setting determines if the platform's Kerberos API is used.

KerberosKDC
The Kerberos Key Distribution Center (KDC) service used to authenticate the user.

Data Type

string

Default Value

""

Remarks

The Kerberos properties are used when using Windows Authentication. The component will
request session tickets and temporary session keys from the Kerberos Key Distribution
Center (KDC) service. The Kerberos Key Distribution Center (KDC) service is conventionally
colocated with the domain controller. If Kerberos KDC is not specified the component will
attempt to detect these properties automatically from the following locations:

TIBCO® Data Virtualization Client Interfaces Guide

426 | TIBCO SSIS Components for TDV

Java System Properties: Kerberos settings can be configured in Java using the config file
krb5.conf, or using the system properties java.security.krb5.realm and
java.security.krb5.kdc. The component will use the system settings if KerberosRealm and
KerberosKDC are not explicitly set.

Domain Name and Host: The component will infer the Kerberos Realm and Kerberos KDC
from the configured domain name and host as a last resort.

Note: Windows authentication is supported in JRE 1.6 and above only.

KerberosRealm
The Kerberos Realm used to authenticate the user with.

Data Type

string

Default Value

""

Remarks

The Kerberos properties are used when using SPNEGO or Windows Authentication. The
Kerberos Realm is used to authenticate the user with the Kerberos Key Distribution Service
(KDC). The Kerberos Realm can be configured by an administrator to be any string, but
conventionally it is based on the domain name. If Kerberos Realm is not specified the
component will attempt to detect these properties automatically from the following
locations:

Java System Properties: Kerberos settings can be configured in Java using a config file
(krb5.conf) or using the system properties java.security.krb5.realm and
java.security.krb5.kdc. The component will use the system settings if KerberosRealm and
KerberosKDC are not explicitly set.

Domain Name and Host: The component will infer the Kerberos Realm and Kerberos KDC
from the user-configured domain name and host as a last resort. This might work in some
Windows environments.

Note: Kerberos-based authentication is supported in JRE 1.6 and above only.

TIBCO® Data Virtualization Client Interfaces Guide

427 | TIBCO SSIS Components for TDV

KerberosSPN
The Service Principal Name for the Kerberos Domain Controller.

Data Type

string

Default Value

""

Remarks

If the Service Principal Name on the Kerberos Domain Controller is not the same as the
URL that you are authenticating to, set the Service Principal Name here.

UsePlatformKerberosAPI
This setting determines if the platform's Kerberos API is used.

Data Type

bool

Default Value

false

Remarks

This setting determines if the platform's Kerberos API is used. By default no platform APIs
are relied on to perform Kerberos authentication. Use of the platform API may be enabled
by setting this to True. The default value is False.

Note: This functionality is only available on Windows.

TIBCO® Data Virtualization Client Interfaces Guide

428 | TIBCO SSIS Components for TDV

SSL
This section provides a complete list of the SSL properties you can configure in the
connection settings for this provider.

Property Description

SSLClientCert The TLS/SSL client certificate store for SSL Client Authentication
(2-way SSL).

SSLClientCertType The type of key store containing the TLS/SSL client certificate.

SSLClientCertPassword The password for the TLS/SSL client certificate.

SSLClientCertSubject The subject of the TLS/SSL client certificate.

SSLServerCert The certificate to be accepted from the server when connecting
using TLS/SSL.

SSLClientCert
The TLS/SSL client certificate store for SSL Client Authentication (2-way SSL).

Data Type

string

Default Value

""

Remarks

The name of the certificate store for the client certificate.

TIBCO® Data Virtualization Client Interfaces Guide

429 | TIBCO SSIS Components for TDV

The SSLClientCertType field specifies the type of the certificate store specified by
SSLClientCert. If the store is password protected, specify the password in
SSLClientCertPassword.

SSLClientCert is used in conjunction with the SSLClientCertSubject field in order to specify
client certificates. If SSLClientCert has a value, and SSLClientCertSubject is set, a search for
a certificate is initiated. See SSLClientCertSubject for more information.

Designations of certificate stores are platform-dependent.

The following are designations of the most common User and Machine certificate stores in
Windows:

MY A certificate store holding personal certificates with their associated
private keys.

CA Certifying authority certificates.

ROOT Root certificates.

SPC Software publisher certificates.

In Java, the certificate store normally is a file containing certificates and optional private
keys.

When the certificate store type is PFXFile, this property must be set to the name of the file.
When the type is PFXBlob, the property must be set to the binary contents of a PFX file (for
example, PKCS12 certificate store).

SSLClientCertType
The type of key store containing the TLS/SSL client certificate.

Data Type

string

Default Value

"USER"

TIBCO® Data Virtualization Client Interfaces Guide

430 | TIBCO SSIS Components for TDV

Remarks

This property can take one of the following values:

USER - default For Windows, this specifies that the certificate store is a certificate store
owned by the current user. Note that this store type is not available in
Java.

MACHINE For Windows, this specifies that the certificate store is a machine store.
Note that this store type is not available in Java.

PFXFILE The certificate store is the name of a PFX (PKCS12) file containing
certificates.

PFXBLOB The certificate store is a string (base-64-encoded) representing a
certificate store in PFX (PKCS12) format.

JKSFILE The certificate store is the name of a Java key store (JKS) file
containing certificates. Note that this store type is only available in
Java.

JKSBLOB The certificate store is a string (base-64-encoded) representing a
certificate store in JKS format. Note that this store type is only available
in Java.

PEMKEY_FILE The certificate store is the name of a PEM-encoded file that contains a
private key and an optional certificate.

PEMKEY_BLOB The certificate store is a string (base64-encoded) that contains a private
key and an optional certificate.

PUBLIC_KEY_
FILE

The certificate store is the name of a file that contains a PEM- or DER-
encoded public key certificate.

PUBLIC_KEY_
BLOB

The certificate store is a string (base-64-encoded) that contains a PEM-
or DER-encoded public key certificate.

SSHPUBLIC_
KEY_FILE

The certificate store is the name of a file that contains an SSH-style
public key.

TIBCO® Data Virtualization Client Interfaces Guide

431 | TIBCO SSIS Components for TDV

SSHPUBLIC_
KEY_BLOB

The certificate store is a string (base-64-encoded) that contains an SSH-
style public key.

P7BFILE The certificate store is the name of a PKCS7 file containing certificates.

PPKFILE The certificate store is the name of a file that contains a PuTTY Private
Key (PPK).

XMLFILE The certificate store is the name of a file that contains a certificate in
XML format.

XMLBLOB The certificate store is a string that contains a certificate in XML format.

SSLClientCertPassword
The password for the TLS/SSL client certificate.

Data Type

string

Default Value

""

Remarks

If the certificate store is of a type that requires a password, this property is used to specify
that password to open the certificate store.

SSLClientCertSubject
The subject of the TLS/SSL client certificate.

TIBCO® Data Virtualization Client Interfaces Guide

432 | TIBCO SSIS Components for TDV

Data Type

string

Default Value

"*"

Remarks

When loading a certificate the subject is used to locate the certificate in the store.

If an exact match is not found, the store is searched for subjects containing the value of
the property. If a match is still not found, the property is set to an empty string, and no
certificate is selected.

The special value "*" picks the first certificate in the certificate store.

The certificate subject is a comma separated list of distinguished name fields and values.
For example, "CN=www.server.com, OU=test, C=US, E=support@company.com". The
common fields and their meanings are shown below.

Field Meaning

CN Common Name. This is commonly a host name like www.server.com.

O Organization

OU Organizational Unit

L Locality

S State

C Country

E Email Address

If a field value contains a comma, it must be quoted.

TIBCO® Data Virtualization Client Interfaces Guide

433 | TIBCO SSIS Components for TDV

SSLServerCert
The certificate to be accepted from the server when connecting using TLS/SSL.

Data Type

string

Default Value

""

Remarks

If using a TLS/SSL connection, this property can be used to specify the TLS/SSL certificate
to be accepted from the server. Any other certificate that is not trusted by the machine is
rejected.

This property can take the following forms:

Description Example

A full PEM Certificate (example shortened
for brevity)

-----BEGIN CERTIFICATE-----
MIIChTCCAe4CAQAwDQYJKoZIhv......Qw== -----
END CERTIFICATE-----

A path to a local file containing the
certificate

C:\cert.cer

The public key (example shortened for
brevity)

-----BEGIN RSA PUBLIC KEY-----
MIGfMA0GCSq......AQAB -----END RSA PUBLIC KEY-

The MD5 Thumbprint (hex values can also
be either space or colon separated)

ecadbdda5a1529c58a1e9e09828d70e4

The SHA1 Thumbprint (hex values can
also be either space or colon separated)

34a929226ae0819f2ec14b4a3d904f801cbb150d

TIBCO® Data Virtualization Client Interfaces Guide

434 | TIBCO SSIS Components for TDV

If not specified, any certificate trusted by the machine is accepted.

Use '*' to signify to accept all certificates. Note that this is not recommended due to
security concerns.

Logging
This section provides a complete list of the Logging properties you can configure in the
connection settings for this provider.

Property Description

Logfile A filepath which designates the name and location of the log file.

Verbosity The verbosity level that determines the amount of detail included in the
log file.

LogModules Core modules to be included in the log file.

MaxLogFileSize A string specifying the maximum size in bytes for a log file (for example,
10 MB).

MaxLogFileCount A string specifying the maximum file count of log files.

Logfile
A filepath which designates the name and location of the log file.

Data Type

string

Default Value

""

TIBCO® Data Virtualization Client Interfaces Guide

435 | TIBCO SSIS Components for TDV

Remarks

Once this property is set, the component will populate the log file as it carries out various
tasks, such as when authentication is performed or queries are executed. If the specified
file doesn't already exist, it will be created.

Connection strings and version information are also logged, though connection properties
containing sensitive information are masked automatically.

If a relative filepath is supplied, the location of the log file will be resolved based on the
path found in the Location connection property.

For more control over what is written to the log file, you can adjust the Verbosity property.

Log contents are categorized into several modules. You can show/hide individual modules
using the LogModules property.

To edit the maximum size of a single logfile before a new one is created, see
MaxLogFileSize.

If you would like to place a cap on the number of logfiles generated, use MaxLogFileCount.

Verbosity
The verbosity level that determines the amount of detail included in the log file.

Data Type

string

Default Value

"1"

Remarks

The verbosity level determines the amount of detail that the component reports to the
Logfile. Verbosity levels from 1 to 5 are supported. These are detailed in the Logging page.

TIBCO® Data Virtualization Client Interfaces Guide

436 | TIBCO SSIS Components for TDV

LogModules
Core modules to be included in the log file.

Data Type

string

Default Value

""

Remarks

Only the modules specified (separated by ';') will be included in the log file. By default all
modules are included.

See the Logging page for an overview.

MaxLogFileSize
A string specifying the maximum size in bytes for a log file (for example, 10 MB).

Data Type

string

Default Value

"100MB"

Remarks

When the limit is hit, a new log is created in the same folder with the date and time
appended to the end. The default limit is 100 MB. Values lower than 100 kB will use 100 kB
as the value instead.

Adjust the maximum number of logfiles generated with MaxLogFileCount.

TIBCO® Data Virtualization Client Interfaces Guide

437 | TIBCO SSIS Components for TDV

MaxLogFileCount
A string specifying the maximum file count of log files.

Data Type

int

Default Value

-1

Remarks

When the limit is hit, a new log is created in the same folder with the date and time
appended to the end and the oldest log file will be deleted.

The minimum supported value is 2. A value of 0 or a negative value indicates no limit on
the count.

Adjust the maximum size of the logfiles generated with MaxLogFileSize.

Schema
This section provides a complete list of the Schema properties you can configure in the
connection settings for this provider.

Property Description

Location A path to the directory that contains the schema files defining tables,
views, and stored procedures.

BrowsableSchemas This property restricts the schemas reported to a subset of the
available schemas. For example,
BrowsableSchemas=SchemaA,SchemaB,SchemaC.

TIBCO® Data Virtualization Client Interfaces Guide

438 | TIBCO SSIS Components for TDV

Property Description

Tables This property restricts the tables reported to a subset of the available
tables. For example, Tables=TableA,TableB,TableC.

Views Restricts the views reported to a subset of the available tables. For
example, Views=ViewA,ViewB,ViewC.

Location
A path to the directory that contains the schema files defining tables, views, and stored
procedures.

Data Type

string

Default Value

"%APPDATA%\\TIBCO\\TDV Data Provider\\Schema"

Remarks

The path to a directory which contains the schema files for the component (.rsd files for
tables and views, .rsb files for stored procedures). The folder location can be a relative
path from the location of the executable. The Location property is only needed if you want
to customize definitions (for example, change a column name, ignore a column, and so on)
or extend the data model with new tables, views, or stored procedures.

If left unspecified, the default location is "%APPDATA%\\TIBCO\\TDV Data
Provider\\Schema" with %APPDATA% being set to the user's configuration directory:

Platform %APPDATA%

Windows The value of the APPDATA environment variable

TIBCO® Data Virtualization Client Interfaces Guide

439 | TIBCO SSIS Components for TDV

Platform %APPDATA%

Mac ~/.config

Linux ~/.config

BrowsableSchemas
This property restricts the schemas reported to a subset of the available schemas. For
example, BrowsableSchemas=SchemaA,SchemaB,SchemaC.

Data Type

string

Default Value

""

Remarks

Listing the schemas from databases can be expensive. Providing a list of schemas in the
connection string improves the performance.

Tables
This property restricts the tables reported to a subset of the available tables. For example,
Tables=TableA,TableB,TableC.

Data Type

string

Default Value

""

TIBCO® Data Virtualization Client Interfaces Guide

440 | TIBCO SSIS Components for TDV

Remarks

Listing the tables from some databases can be expensive. Providing a list of tables in the
connection string improves the performance of the component.

This property can also be used as an alternative to automatically listing views if you
already know which ones you want to work with and there would otherwise be too many
to work with.

Specify the tables you want in a comma-separated list. Each table should be a valid SQL
identifier with any special characters escaped using square brackets, double-quotes or
backticks. For example, Tables=TableA,
[TableB/WithSlash],WithCatalog.WithSchema.`TableC With Space`.

Note that when connecting to a data source with multiple schemas or catalogs, you will
need to provide the fully qualified name of the table in this property, as in the last example
here, to avoid ambiguity between tables that exist in multiple catalogs or schemas.

Views
Restricts the views reported to a subset of the available tables. For example,
Views=ViewA,ViewB,ViewC.

Data Type

string

Default Value

""

Remarks

Listing the views from some databases can be expensive. Providing a list of views in the
connection string improves the performance of the component.

This property can also be used as an alternative to automatically listing views if you
already know which ones you want to work with and there would otherwise be too many
to work with.

TIBCO® Data Virtualization Client Interfaces Guide

441 | TIBCO SSIS Components for TDV

Specify the views you want in a comma-separated list. Each view should be a valid SQL
identifier with any special characters escaped using square brackets, double-quotes or
backticks. For example, Views=ViewA,[ViewB/WithSlash],WithCatalog.WithSchema.`ViewC
With Space`.

Note that when connecting to a data source with multiple schemas or catalogs, you will
need to provide the fully qualified name of the table in this property, as in the last example
here, to avoid ambiguity between tables that exist in multiple catalogs or schemas.

Miscellaneous
This section provides a complete list of the Miscellaneous properties you can configure in
the connection settings for this provider.

Alternate Security
Credentials

Uses the URL to set an alternate security credentials value for client
authorization when using TDV with a client restricted license.

Case Sensitive Specifies case sensitivity in the request values.

Catalog The name of the catalog to use.

Commit Failure Specifies the behavior if a commit fails.

Commit Interrupt Specifies the behavior if a commit is interrupted.

Compensate The correcting behavior.

Connect Timeout The time-out for initial connection, in seconds.

Default Catalog The default catalog for a specified connection.

Default Schema The default schema for a specified connection.

Enable Flood Values are true or false. Default value is true. If true, the server will
constantly send data, filling the network buffer.Useful for larger
result sets.

TIBCO® Data Virtualization Client Interfaces Guide

442 | TIBCO SSIS Components for TDV

Enable Reconnect On
Error

Specifies cluster reconnection behavior.

Fetch Bytes The maximum number of rows to fetch for a batch based on batch
size, in bytes.

Fetch Rows Maximum number of rows to fetch for a batch.

Ignore Trailing Spaces Specifies whether to ignore trailing spaces at the end of values.

Locale Value that defines the user's language and country.

Max Rows A path to the directory that contains the schema files defining
tables, views, and stored procedures.

Max Rows Limits the number of rows returned rows when no aggregation or
group by is used in the query. This helps avoid performance issues
at design time.

No Metadata Blocks return of result-set metadata during query execution.

Optimization Prepare Specifies whether to optimize prepare requests sent to TDV.

Other These hidden properties are used only in specific use cases.

Param Mode Controls the behavior of OUT parameters for stored procedures.

Query Passthrough This option passes the query to the TDV server as is.

Readonly You can use this property to enforce read-only access to TDV from
the provider.

Register Output Cursors Specifies how to handle output cursors.

Request Timeout The time-out for query commands and other requests, in seconds.

Session Timeout Session inactivity time-out, in seconds.

Session Token Uses the URL to set a session token value for client authorization

TIBCO® Data Virtualization Client Interfaces Guide

443 | TIBCO SSIS Components for TDV

when using TDV with a client restricted license.

Strip Duplicates Values are true or false. Default value is true. If true, the server will
detect duplicate CHAR/VARCHAR columns in subsequent rows, and
will not re-transmit the data across the wire.

Strip Trailing Zeros Determines whether decimal result values are to be returned with
trailing zeroes removed.

Trace Folder The absolute directory to save the trace file.

Trace Level The level of information to log.

Validate Remote Cert The username provided for authentication with TDV Server.

UserTokens Authentication values that can be packaged for delivery.

Validate Remote Cert Values are true or false. Default value is false. If true, the client will
validate the server's cert.

Validate Remote
Hostname

Values are true or false. Default value is false. If true, the client will
validate the server's hostname.

Alternate Security Credentials
Uses the URL to set an alternate security credentials value for client authorization when
using TDV with a client restricted license.

Data Type

string

Default Value

""

TIBCO® Data Virtualization Client Interfaces Guide

444 | TIBCO SSIS Components for TDV

Remarks

Uses the URL to set an alternate security credentials value for client authorization when
using TDV with a client restricted license.

Case Sensitive
Specifies case sensitivity in the request values.

Data Type

bool

Default Value

false

Remarks

Specifies case sensitivity in the request values. By default (false), requests are not case-
sensitive.

Catalog
The name of the catalog to use.

Data Type

string

Default Value

""

TIBCO® Data Virtualization Client Interfaces Guide

445 | TIBCO SSIS Components for TDV

Remarks

This field allows you to limit the Catalog to the one explicitly specified. If not set, the
component will retrieve the available catalogs from the TDV server.

Commit Failure
Specifies the behavior if a commit fails.

Data Type

string

Default Value

""

Remarks

Specifies the behavior if a commit fails. Possible values are: rollback or bestEffort.

Commit Interrupt
Specifies the behavior if a commit is interrupted.

Data Type

string

Default Value

""

Remarks

Specifies the behavior if a commit is interrupted. Possible values are: ignore, log, fail.

TIBCO® Data Virtualization Client Interfaces Guide

446 | TIBCO SSIS Components for TDV

Compensate
The correcting behavior.

Data Type

string

Default Value

"disabled"

Remarks

The correcting behavior, possible values are: disabled or enabled.

Connect Timeout
The time-out for initial connection, in seconds.

Data Type

int

Default Value

0

Remarks

This property was added for AWS Data Pipeline compatibility. This tool appends this
connection property to the URL and by adding this as a hidden property, we avoid the
validation error. Has no functional effect in the driver.

The time-out for initial connection, in seconds. Use 0 (zero) for infinite time-out.

TIBCO® Data Virtualization Client Interfaces Guide

447 | TIBCO SSIS Components for TDV

Default Catalog
The default catalog for a specified connection.

Data Type

string

Default Value

""

Remarks

The default catalog for a specified connection.

Default Schema
The default schema for a specified connection.

Data Type

string

Default Value

""

Remarks

The default schema for a specified connection.

Enable Flood
Values are true or false. Default value is true. If true, the server will constantly send data,
filling the network buffer.Useful for larger result sets.

TIBCO® Data Virtualization Client Interfaces Guide

448 | TIBCO SSIS Components for TDV

Data Type

bool

Default Value

true

Remarks

Values are true or false. Default value is true. If true, the server will constantly send data,
filling the network buffer.Useful for larger result sets.

Enable Reconnect On Error
Specifies cluster reconnection behavior.

Data Type

bool

Default Value

false

Remarks

Specifies cluster reconnection behavior.

Fetch Bytes
The maximum number of rows to fetch for a batch based on batch size, in bytes.

Data Type

int

TIBCO® Data Virtualization Client Interfaces Guide

449 | TIBCO SSIS Components for TDV

Default Value

131072

Remarks

The maximum number of rows to fetch for a batch based on batch size, in bytes.

Setting FetchBytes to a very large number can cause an Out Of Memory error in the server.
The value set for FetchBytes affects the memory used on the client and the TDV server, so
the value should be set based on the heap size configured.

Fetch Rows
Maximum number of rows to fetch for a batch.

Data Type

int

Default Value

500

Remarks

Maximum number of rows to fetch for a batch. Set to 0 (zero) to return an unlimited
number of rows.

Ignore Trailing Spaces
Specifies whether to ignore trailing spaces at the end of values.

Data Type

bool

TIBCO® Data Virtualization Client Interfaces Guide

450 | TIBCO SSIS Components for TDV

Default Value

false

Remarks

Specifies whether to ignore trailing spaces at the end of values.

Locale
Value that defines the user's language and country.

Data Type

string

Default Value

""

Remarks

Value that defines the user's language and country.

Max Rows
Limits the number of rows returned rows when no aggregation or group by is used in the
query. This helps avoid performance issues at design time.

Data Type

string

Default Value

"-1"

TIBCO® Data Virtualization Client Interfaces Guide

451 | TIBCO SSIS Components for TDV

Remarks

Limits the number of rows returned rows when no aggregation or group by is used in the
query. This helps avoid performance issues at design time.

No Metadata
Blocks return of result-set metadata during query execution.

Data Type

bool

Default Value

false

Remarks

Blocks return of result-set metadata during query execution.

Optimization Prepare
Specifies whether to optimize prepare requests sent to TDV.

Data Type

bool

Default Value

true

Remarks

When set to "True" (default), the component will submit the query in a single request to
TDV.

TIBCO® Data Virtualization Client Interfaces Guide

452 | TIBCO SSIS Components for TDV

When set to "False", the component will submit an initial prepare request to TDV.

Other
These hidden properties are used only in specific use cases.

Data Type

string

Default Value

""

Remarks

The properties listed below are available for specific use cases. Normal driver use cases
and functionality should not require these properties.

Specify multiple properties in a semicolon-separated list.

Integration and Formatting

OutputKey Setting this to True will cause the error output to include
new output columns containing the primary key values for
newly inserted records.

DefaultColumnSize Sets the default length of string fields when the data source
does not provide column length in the metadata. The default
value is 2000. Setting this value higher than 4000 will set the
SSIS data type to DT_NTEXT allowing for arbitrary length
fields.

ConvertDateTimeToGMT Determines whether to convert date-time values to GMT,
instead of the local time of the machine.

RecordToFile=filename Records the underlying socket data transfer to the specified
file.

TIBCO® Data Virtualization Client Interfaces Guide

453 | TIBCO SSIS Components for TDV

Param Mode
Controls the behavior of OUT parameters for stored procedures.

Data Type

string

Default Value

"normal"

Remarks

Controls the behavior of OUT parameters for stored procedures.

Valid values are:

normal Report OUT parameters in procedure metadata as OUT parameters.

return Report OUT parameters as return values.

omit Omit OUT parameters from metadata.

omitCursors Omit output cursors from metadata.

Query Passthrough
This option passes the query to the TDV server as is.

Data Type

bool

Default Value

false

TIBCO® Data Virtualization Client Interfaces Guide

454 | TIBCO SSIS Components for TDV

Remarks

When this is set, queries are passed through directly to TDV.

Readonly
You can use this property to enforce read-only access to TDV from the provider.

Data Type

bool

Default Value

false

Remarks

If this property is set to true, the component will allow only SELECT queries. INSERT,
UPDATE, DELETE, and stored procedure queries will cause an error to be thrown.

Register Output Cursors
Specifies how to handle output cursors.

Data Type

bool

Default Value

false

Remarks

Specifies how to handle output cursors.

Valid values are:

TIBCO® Data Virtualization Client Interfaces Guide

455 | TIBCO SSIS Components for TDV

true Bind or register output cursors as output parameters.

false Do not bind or register output cursors as output parameters; instead,
use SQLMoreResults or Statement.getMoreResults() to access the
cursors.

Request Timeout
The time-out for query commands and other requests, in seconds.

Data Type

int

Default Value

0

Remarks

The time-out for query commands and other requests, in seconds.

Session Timeout
Session inactivity time-out, in seconds.

Data Type

int

Default Value

0

TIBCO® Data Virtualization Client Interfaces Guide

456 | TIBCO SSIS Components for TDV

Remarks

Session inactivity time-out, in seconds. Set to 0 (zero) for infinite time-out.

Session Token
Uses the URL to set a session token value for client authorization when using TDV with a
client restricted license.

Data Type

string

Default Value

""

Remarks

Uses the URL to set a session token value for client authorization when using TDV with a
client restricted license.

Strip Duplicates
Values are true or false. Default value is true. If true, the server will detect duplicate
CHAR/VARCHAR columns in subsequent rows, and will not re-transmit the data across the
wire.

Data Type

bool

Default Value

true

TIBCO® Data Virtualization Client Interfaces Guide

457 | TIBCO SSIS Components for TDV

Remarks

Values are true or false. Default value is true. If true, the server will detect duplicate
CHAR/VARCHAR columns in subsequent rows, and will not re-transmit the data across the
wire.

Strip Trailing Zeros
Determines whether decimal result values are to be returned with trailing zeroes removed.

Data Type

bool

Default Value

false

Remarks

Determines whether decimal result values are to be returned with trailing zeroes removed.

Trace Folder
The absolute directory to save the trace file.

Data Type

string

Default Value

""

Remarks

The absolute directory to save the trace file.

TIBCO® Data Virtualization Client Interfaces Guide

458 | TIBCO SSIS Components for TDV

Trace Level
The level of information to log.

Data Type

string

Default Value

"error"

Remarks

The level of information to log. Valid values are: off, fatal, error (default), warn, info, debug,
and all.

Validate Remote Cert
Values are true or false. Default value is false. If true, the client will validate the server's
cert.

Data Type

bool

Default Value

false

Remarks

Values are true or false. Default value is false. If true, the client will validate the server's
cert.

TIBCO® Data Virtualization Client Interfaces Guide

459 | TIBCO SSIS Components for TDV

Validate Remote Hostname
Values are true or false. Default value is false. If true, the client will validate the server's
hostname.

Data Type

bool

Default Value

false

Remarks

Values are true or false. Default value is false. If true, the client will validate the server's
hostname.

Other
This section provides a complete list of the Other properties you can configure in the
connection settings for this provider.

EnableFastExec
Specifies whether to enable fast execution of queries.

Data Type

bool

Default Value

false

TIBCO® Data Virtualization Client Interfaces Guide

460 | TIBCO SSIS Components for TDV

Remarks

Values are true or false (default).

Results are processed and returned immediately (instead of round trip) when a query is
submitted, potentially improving performance of low latency queries.

TIBCO® Data Virtualization Client Interfaces Guide

461 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services
For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the Product Documentation website,
mainly in HTML and PDF formats.

The Product Documentation website is updated frequently and is more current than any
other documentation included with the product.

Product-Specific Documentation

The following documentation for this product is available on the TIBCO Data Virtualization
page.

Users

TDV Getting Started Guide

TDV User Guide

TDV Web UI User Guide

TDV Client Interfaces Guide

TDV Tutorial Guide

TDV Northbay Example

Administration

TDV Installation and Upgrade Guide

TDV Administration Guide

TDV Active Cluster Guide

TDV Security Features Guide

Data Sources

TDV Adapter Guides

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-data-virtualization

TIBCO® Data Virtualization Client Interfaces Guide

462 | TIBCO Documentation and Support Services

TDV Data Source Toolkit Guide (Formerly Extensibility Guide)

References

TDV Reference Guide

TDV Application Programming Interface Guide

Other

TDV Business Directory Guide

TDV Discovery Guide

TIBCO TDV and Business Directory Release Notes Read the release notes for a list
of new and changed features. This document also contains lists of known issues
and closed issues for this release.

Release Version Support

TDV 8.5 is designated as a Long Term Support (LTS) version. Some release versions of
TIBCO Data Virtualization products are selected to be long-term support (LTS) versions.
Defect corrections will typically be delivered in a new release version and as hotfixes or
service packs to one or more LTS versions. See also Long Term Support.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature
requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

https://docs.tibco.com/pub/tdv/general/LTS/tdv_LTS_releases.htm
https://ideas.tibco.com/
https://community.tibco.com/

TIBCO® Data Virtualization Client Interfaces Guide

463 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

TIBCO, TIBCO logo, TIBCO O logo, ActiveSpaces, Enterprise Messaging Service, Spotfire, TERR, S-
PLUS, and S+ are either registered trademarks or trademarks of TIBCO Software Inc. in the United
States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle
and/or its affiliates.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file

https://www.cloud.com/legal
https://scripts.sil.org/OFL

TIBCO® Data Virtualization Client Interfaces Guide

464 | Legal and Third-Party Notices

for the availability of a specific version of Cloud SG software on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.tibco.com/patents.

Copyright © 2002-2023. Cloud Software Group, Inc. All Rights Reserved.

https://www.tibco.com/patents

	Contents
	Introduction to Accessing Your Data through Client Interfaces
	About Client Interface Connections
	Connecting Client Applications to TDV Resources
	Driver Support

	TDV Port Settings for Client Connections to TDV
	TDV Data Retrieval Tuning for Client Connections to TDV

	Connecting to TDV Server through JDBC
	Installing JDBC Drivers
	Updating the JDBC Driver
	Setting the Java CLASSPATH for the JDBC Driver
	Setting Pass-Through Credentials for JDBC Clients
	Connecting to TDV Server through TIBCO Spotfire
	Connecting to TDV Server through SQuirreL
	Defining a JDBC Client using a Connection URL
	JDBC Driver Connection URL Properties

	Examples
	Example Java JDBC Client Application Code
	Examples of Accessing Data through JDBC

	Tips From an Expert on Duplicate Schema Names in a Catalog
	Unsupported JDBC Methods

	Connecting to TDV Server through ODBC
	ODBC Driver Requirements
	Installing the ODBC Driver
	Installing the ODBC Client Driver on Windows
	Uninstalling the ODBC Client Driver on Windows
	Installing the ODBC Client Driver on UNIX
	Setting the ODBC Environment Variables on UNIX
	Creating a DSN with driverConfig on UNIX
	Uninstalling the ODBC Client Driver on Unix

	Updating the ODBC Driver
	Preparing TDV Data Services for ODBC Client Connections
	Configuring Each Windows System Data Source Name
	Adding a New System DSN
	Override the Configured Settings
	Defining an ODBC Client using a Connection String
	ODBC Driver Connection String Properties

	TDV Supported Encoding Standards
	Windows
	Unix

	Connecting Cognos to TDV Using ODBC
	Connecting Oracle Database Gateway to TDV Using ODBC
	Connecting MicroStrategy to TDV Using ODBC
	Connecting Tableau to TDV Using ODBC
	Connecting PowerBI to TDV Using ODBC
	Examples Using ODBC to Connect to TDV Server
	PERL Code Sample for Connecting to TDV Server
	C++ Example using the Connection String (DSN-less connection)
	C++ UNIX Code Sample for Connecting to TDV Server
	VBA Code Sample for Connecting to TDV Server

	Power BI Connector for TIBCO(R) Data Virtualization
	Getting Started
	Installing the Connector
	Creating the Data Source Name
	Advanced Settings

	Using the Connector
	Connecting to Data
	Querying Data
	Import
	Direct Query
	Visualizing Data

	Advanced Features
	SSL Configuration
	Firewall and Proxy
	Logging

	Connection String Options
	Authentication
	Kerberos
	SSL
	Logging
	Schema
	Miscellaneous
	Other

	Connecting to TDV Server through Web Interfaces
	Connecting to TDV Server through SOAP
	SOAP Message Compression
	SOAP Message Optimization
	Connecting to TDV Server through REST
	Connecting to TDV Server through OData

	Connecting to TDV Server through ADO.NET
	Setting Up the ADO.NET Driver
	Client-Side ADO.NET Driver Support
	Installing the ADO.NET Driver
	Uninstalling and Repairing ADO.NET
	Updating the ADO.NET Driver
	Configure an ADO.NET Connection to a Client Restricted Server

	Adding and Configuring a Connection to TDV in Visual Studio
	Modifying or Deleting a Connection
	Working with the Server Explorer
	Working with the Visual ToolBox Items
	Defining an ADO.NET Client using a Connection URL
	ADO.NET Driver Connection URL Properties

	Sample Code for Testing of an ADO.NET Driver
	Create a CompositeConnection Object
	Create a CompositeCommand Object
	Select Data from a TDV Published Resource
	Select Data from a TDV Published Resource on the Server
	Getting the Column Type
	Getting Column Metadata
	Using an Update Operation in the Sample Code
	About Using Parameters
	About ADO.NET Placeholders
	Invoking a Stored Procedure Example
	Using CompositeCommandBuilder
	Example with Special Data Types
	Retrieving Metadata
	Retrieving Tables with a Named Schema

	ADO.NET Provider for TIBCO(R) Data Virtualization
	Overview
	Getting Started
	Establishing a Connection

	Using ADO.NET
	Installed Assemblies
	Connecting from Code
	Querying with the DataReader
	Querying with the DataAdapter
	Using the CompositeDataSource
	Batch Processing
	Connection Pooling
	Connection Pooling with CompositeConnection

	Calling Stored Procedures

	Using ADO.Net - Entity Framework
	Using EF 6
	Model-First Approach
	Code-First Approach

	Using ADO.Net - Entity Framework Core
	Getting Started with EFCore
	Reverse Engineering (Scaffolding)
	Code-First Approach
	EFCore Console Application
	EFCore ASP.NET Application

	Using ADO.Net SSRS
	Deploy the Provider
	Create a Data Source
	Create a Dataset
	Publish a Report

	Using DbProviderFactory
	Creating DbConnections
	Executing DbCommands

	Schema Discovery
	Tables
	Views
	Columns
	Procedures
	Procedure Parameters
	Indexes
	Index Columns
	Foreign Keys
	Databases
	Users
	Connection Properties
	Result Sets

	Advanced Features
	SSL Configuration
	Firewall and Proxy
	Logging

	Connection String Options
	Authentication
	Kerberos
	SSL
	Logging
	Schema
	Miscellaneous
	Other

	TIBCO SSIS Components for TDV
	Getting Started
	Adding Items to the Toolbox
	Establishing a Connection
	Deploying to Azure
	Prerequisites
	Deploying TIBCO SSIS Components to Azure
	Managing and Running the Project in SSMS
	Configuring the AzureDeploy.ps1 Script
	Using the AzureLogfile.ps1 Script

	Changelog
	General Changes
	SSIS Changes

	Advanced Features
	SSL Configuration
	Firewall and Proxy
	Logging

	Using the SSIS Components
	Using the Source Component
	Using the Destination Component
	Using the Lookup Component
	Using the Execute SQL Task
	Calling Stored Procedures

	Connection Properties
	Authentication
	Host
	Port
	Domain
	DataSource
	User
	Password
	Encrypt
	SSO
	UserTokens

	Kerberos
	KerberosKDC
	KerberosRealm
	KerberosSPN
	UsePlatformKerberosAPI

	SSL
	SSLClientCert
	SSLClientCertType
	SSLClientCertPassword
	SSLClientCertSubject
	SSLServerCert

	Logging
	Logfile
	Verbosity
	LogModules
	MaxLogFileSize
	MaxLogFileCount

	Schema
	Location
	BrowsableSchemas
	Tables
	Views

	Miscellaneous
	Alternate Security Credentials
	Case Sensitive
	Catalog
	Commit Failure
	Commit Interrupt
	Compensate
	Connect Timeout
	Default Catalog
	Default Schema
	Enable Flood
	Enable Reconnect On Error
	Fetch Bytes
	Fetch Rows
	Ignore Trailing Spaces
	Locale
	Max Rows
	No Metadata
	Optimization Prepare
	Other
	Param Mode
	Query Passthrough
	Readonly
	Register Output Cursors
	Request Timeout
	Session Timeout
	Session Token
	Strip Duplicates
	Strip Trailing Zeros
	Trace Folder
	Trace Level
	Validate Remote Cert
	Validate Remote Hostname

	Other
	EnableFastExec

	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

