
Copyright © 2002-2023. Cloud Software Group, Inc. All Rights Reserved.

TIBCO® Data Virtualization
Reference Guide
Version 8.7.0 | October 2023

TIBCO® Data Virtualization Reference Guide

2 | Contents

Contents
Contents 2

TDV SQL Support 28
Data Types 28

Summary of Data Types that TDV Supports 28

Binary Literals 32

BOOLEAN 34

INTERVAL DAY 35

INTERVAL YEAR 37

XML 39

Subqueries in TDV 40
Scalar Subqueries 41

Correlated Subqueries 41

Consolidated List of TDV Keywords 43

Maximum SQL Length for Data Sources 49

TDV SQL Keywords and Syntax 51
BETWEEN 52

CREATE [OR REPLACE] TABLE 53
DDL Clauses 54

CREATE [OR REPLACE] TABLE AS SELECT 60

CROSS JOIN 61

DELETE 61

DISTINCT 63

DROP 64

EXCEPT 64

FULL OUTER JOIN 66

GROUP BY 67

TIBCO® Data Virtualization Reference Guide

3 | Contents

HAVING 69

INNER JOIN 69

INSERT 70

INSERT, UPDATE, and DELETE on Views 75

INTERSECT 76

LEFT OUTER JOIN 77

OFFSET and FETCH 78

ORDER BY 80

PIVOT 82

UNPIVOT 85

RIGHT OUTER JOIN 90

SELECT 91

SELECT (Virtual Columns) 92

SELECT (with Derived Column List) 94

SEMIJOIN to a Procedure 95

UNION 97

UNION ALL 98

UPDATE 100

WHERE 103

WITH 104

TDV Support for SQL Functions 108
About SQL Functions in TDV 108

Analytical Functions 109
Window Clause 110

CONDITIONAL_CHANGE_EVENT 113

CONDITIONAL_TRUE_EVENT 114

CUME_DIST 115

DENSE_RANK 116

EXPONENTIAL_MOVING_AVERAGE 117

EXP_WEIGHTED_AVG 117

TIBCO® Data Virtualization Reference Guide

4 | Contents

FIRST_VALUE 118

FIRST_VALUE_IGNORE_NULLS 119

LAG 119

LAG_IGNORE_NULLS 119

LAST_VALUE 120

LAST_VALUE_IGNORE_NULLS 120

LEAD 120

LEAD_IGNORE_NULLS 121

NTH_VALUE 121

NTH_VALUE_FROM_LAST 121

NTH_VALUE_FROM_LAST_IGNORE_NULLS 122

NTH_VALUE_IGNORE_NULLS 122

NTILE 122

PERCENT_RANK 122

RANK 123

RATIO_TO_REPORT 124

ROW_NUMBER 124

TIMESERIES 125

Aggregate Functions 126
ANY_VALUE 129

APPROX_COUNT_DISTINCT 129

APPROX_QUANTILES 130

ARRAY_AGG 130

AVG 130

BIT_AND 132

BIT_OR 132

BIT_XOR 132

CORR 133

CORR_SPEARMAN 133

COUNT 133

COVAR_POP 134

COVAR_SAMP 135

TIBCO® Data Virtualization Reference Guide

5 | Contents

DISTINCT in Aggregate Functions 135

FIRST 136

GROUP_CONCAT 136

GROUP_CONCAT_UNQUOTED 138

LAST 139

JSON_OBJECTAGG 139

JSON_ARRAYAGG 140

LISTAGG 141

MAX 142

MEDIAN 143

MIN 144

NEST 145

NTH 145

PERCENTILE 146

PERCENTILE_APPROX 146

PERCENTILE_CONT 146

PERCENTILE_DISC 147

QUANTILES 148

REGR_AVGX 148

REGR_AVGY 149

REGR_COUNT 149

REGR_INTERCEPT 150

REGR_R2 150

REGR_SLOPE 151

REGR_SXX 151

REGR_SXY 152

REGR_SYY 152

STDDEV 153

STDDEV_POP 153

STDDEV_SAMP 154

SUM 154

SUM_FLOAT 155

TIBCO® Data Virtualization Reference Guide

6 | Contents

VAR_POP 156

VAR_SAMP 156

VARIANCE 157

XMLAGG 157

Array SQL Script Functions 159
ARRAY_APPEND 160

ARRAY_AVG 161

ARRAY_CONCAT 161

ARRAY_CONTAINS 161

ARRAY_COUNT 162

ARRAY_DISTINCT 162

ARRAY_IFNULL 163

ARRAY_LENGTH 163

ARRAY_MAX 163

ARRAY_MIN 164

ARRAY_POSITION 164

ARRAY_PREPEND 165

ARRAY_PUT 165

ARRAY_REMOVE 165

ARRAY_REPLACE 166

ARRAY_REVERSE 166

ARRAY_SORT 167

ARRAY_SUM 167

CARDINALITY 167

EXTEND 168

FIND_INDEX 168

TOARRAY 169

TOATOM 169

TOBOOLEAN 169

TONUMBERCB 170

TOOBJECT 170

TOSTRING 171

TIBCO® Data Virtualization Reference Guide

7 | Contents

TRUNCATE 171

Binary Functions 171
AND Functions 173

NOT Functions 174

OR Functions 175

SHL Functions 177

SHR Functions 178

XOR Functions 179

BYTE_SUBSTR 181

Character Functions 181
ASCII 186

BASE64 187

BITCOUNT 187

BIT_LENGTH 188

BITSTRING_TO_BINARY 189

BTRIM 189

CHAR_LENGTH 190

CHARACTER_LENGTH 190

CHARINDEX 190

CHR 191

CONCAT 192

CONTAINS 195

DLE_DST 195

ENDSWITH 196

FIND 196

FIND_IN_SET 196

GET_JSON_OBJECT 197

GREATEST 199

HEX_TO_BINARY 199

INDEXOF 200

INET_ATON 200

INET_NTOA 200

TIBCO® Data Virtualization Reference Guide

8 | Contents

INITCAP 201

INSERT 201

INSTR 202

ISOF 203

ISUTF8 204

LCASE 204

LEAST 204

LEFT 205

LENGTH 205

LE_DST 207

LOCATE 208

LOWER 208

LPAD 210

LSHIFT 212

LTRIM 212

MD5 213

OCTET_LENGTH 213

OVERLAYB 213

PARSE_URL 214

PARTIAL_STRING_MASK 214

QUOTE_IDENT 215

QUOTE_LITERAL 215

REGEXP_CONTAINS 216

REGEXP_COUNT 216

REGEXP_EXTRACT 217

REGEXP_INSTR 217

REGEXP_REPLACE 217

REGEXP_SUBSTR 218

REGEXP_LIKE 218

REGEXP_POSITION 218

REPEAT 219

REVERSE 219

TIBCO® Data Virtualization Reference Guide

9 | Contents

RIGHT 219

REPLACE 220

REGEXP 221

RLIKE 222

RPAD 222

RSHIFT 224

RTRIM 224

SPACE 225

SPLIT 226

SPLIT_PART 226

STARTSWITH 227

STATEMENT_TIMESTAMP 227

STRPOS 227

SUBSTR 228

SUBSTRING 230

SUBSTRINGOF 230

TRANSLATE 230

TRIM 231

TRIMBOTH 232

TRIMLEADING 232

TRIMTRAILING 233

TYPE 233

UCASE 233

UNICHR 234

UNICODE 234

UPPER 234

V6_ATON 235

V6_NTOA 236

V6_SUBNETA 236

V6_SUBNETN 236

V6_TYPE 237

Conditional Functions 237

TIBCO® Data Virtualization Reference Guide

10 | Contents

COALESCE 239

COMMON 240

DECODE 241

ES_MATCH 242

FILTER 243

IFINF 243

IFMISSING 243

IFMISSINGORNULL 244

IFNAN 244

IFNANORINF 245

IFNULL 245

IFNULLCB 246

ISARRAY 246

ISATOM 247

ISBOOLEAN 247

ISNUMBER 247

ISOBJECT 248

ISNULL 248

ISNUMERIC 249

ISSTRING 250

MATCH_PHRASE 251

MATCH_PHRASE_PREFIX 251

MISSINGIF 251

NANIF 252

NEGINFIF 252

NULLIF 253

NVL 254

NVL2 255

POSINFIF 257

TERM 257

TEST 257

Convert Functions 258

TIBCO® Data Virtualization Reference Guide

11 | Contents

CAST 259

FORMAT_DATE 262

PARSE_DATE 265

PARSE_TIME 266

PARSE_TIMESTAMP 266

TIMESTAMP 267

TO_BITSTRING 268

TO_CHAR 268

TO_NCHAR 270

TO_DATE 272

TO_HEX 272

TO_NUMBER 273

TO_TIMESTAMP 274

TO_TIMESTAMP_TZ 274

TRUNC 274

TRUNC (for date/time) 275

TRUNC (for numbers) 278

Cryptographic Functions 279
HASHMD2 280

HASHMD4 281

HASHMD5 281

HASHSHA 282

HASHSHA1 282

Custom Functions 283
GetClaim 283

HasClaim 284

Date Functions 284
ADD_MONTHS 291

AGE 291

AT TIME ZONE 291

CALENDAR_MONTH 292

CALENDAR_QUARTER 292

TIBCO® Data Virtualization Reference Guide

12 | Contents

CALENDAR_YEAR 293

CLOCK_MILLIS 293

CLOCK_STR 293

CLOCK_TIMESTAMP 294

CURRENT_DATE 294

CURRENT_TIME 295

CURRENT_TIMESTAMP 295

DATE 296

DATE_ADD 296

DATEADD 297

DATE_ADD_MILLIS 297

DATE_ADD_STR 298

DATE_DIFF_MILLIS 298

DATE_DIFF_STR 298

DATE_PART 299

DATENAME 300

DATEPART 300

DATE_PART_MILLIS 300

DATE_PART_STR 300

DATE_SUB 301

DATE_TRUNC 301

DATETRUNC 302

DATE_TRUNC_MILLIS 302

DATE_TRUNC_STR 302

DAY_IN_MONTH 303

DAY_IN_WEEK 303

DAY_IN_YEAR 303

DAYNAME 304

DAYOFMONTH 304

DAYOFWEEK_ISO 305

DAYOFWEEK 306

DAYOFYEAR 306

TIBCO® Data Virtualization Reference Guide

13 | Contents

DAY_ONLY 307

DATEDIFF 307

DAY,MONTH,and YEAR 309

DAYS 311

DAYS_BETWEEN 311

DBTIMEZONE 312

EXTRACT 313

EXTRACTDAY 315

EXTRACTDOW 315

EXTRACTDOY 315

EXTRACTEPOCH 316

EXTRACTHOUR 316

EXTRACTMICROSECOND 316

EXTRACTMILLISECOND 317

EXTRACTMINUTE 317

EXTRACTMONTH 317

EXTRACTQUARTER 317

EXTRACTSECOND 318

EXTRACTWEEK 318

EXTRACTYEAR 318

FISCAL_MONTH 319

FISCAL_QUARTER 319

FISCAL_YEAR 319

FRACTIONALSECONDS 320

FROM_UNIXTIME 320

GETUTCDATE 320

HOUR 321

HOUR_IN_DAY 321

ISFINITE 322

ISUTF8 322

JULIAN_DAY 322

LAST_DAY 323

TIBCO® Data Virtualization Reference Guide

14 | Contents

LOCALTIME 323

LOCALTIMESTAMP 324

MICROSECOND 324

MIDNIGHT_SECONDS 325

MILLIS 325

MILLIS_TO_STR 325

MILLIS_TO_UTC 326

MAXDATETIME 326

MINDATETIME 326

MINUTE 327

MONTHNAME 327

MONTHS_BETWEEN 328

NEW_TIME 328

NEXT_DAY 329

NOW 329

NOW_MILLIS 329

NOW_STR 330

NUMTODSINTERVAL 330

NUMTOYMINTERVAL 331

QUARTER 332

ROUND 332

SECOND 333

STR_TO_MILLIS 333

STR_TO_UTC 333

STR_TO_ZONE_NAME 334

SYSDATE 334

TIME 334

TIMESTAMP_ROUND 335

TIME_SLICE 335

TIMEOFDAY 336

TIMESTAMPADD 336

TIMESTAMPDIFF 336

TIBCO® Data Virtualization Reference Guide

15 | Contents

TIMESTAMP_TRUNC 337

TRANSACTION_TIMESTAMP 337

TOTALOFFSETMINUTES 338

TOTALSECONDS 338

TZ_OFFSET 338

TZCONVERTOR 339

UNIX_TIMESTAMP 341

UTC_TO_TIMESTAMP 341

WEEK 342

WEEK_ISO 342

WEEK_IN_MONTH 343

WEEK_IN_YEAR 343

YEAR_ISO 343

JSON Functions 344
DECODE_JSON 345

ENCODE_JSON 345

ENCODED_SIZE 346

JSON_TABLE 346

JSON_EXTRACT 373

JSON_EXTRACT_SCALAR 374

JSON_COUNT 375

JSON_SUM 375

JSON_MIN 376

JSON_MAX 376

JSON_AVG 377

JSONPATH 378

JSON_OBJECT 379

JSON_ARRAY 380

Numeric Functions 381
ABS 384

ACOS 385

ASIN 386

TIBCO® Data Virtualization Reference Guide

16 | Contents

ATAN 387

ATAN2 387

CBRT 388

CEILING 389

COS 390

COSH 390

COT 391

DECFLOAT 392

DEGREES 392

E 393

EXP 393

FLOOR 394

GEO.DISTANCE 394

GEO.INTERSECTS 395

GEO.LENGTH 395

LN 396

LOG 396

LOG10 397

MOD 397

NEGATIVE 398

NORMALIZE_DECFLOAT 398

PI 398

POW 399

POWER 399

QUANTIZE 400

RADIANS 400

RAND 401

RANDOM 401

ROUND (for date/time) 401

ROUND (for numbers) 406

ROWNUM 407

SIGN 408

TIBCO® Data Virtualization Reference Guide

17 | Contents

SIN 408

SINH 409

SQRT 410

TAN 411

TANH 412

TOTALORDER 412

Operator Functions 413
Add-Operator 413

Concatenate-Operator 414

Divide-Operator 414

Exponentiate-Operator 414

Factorial-Operator 414

FACTORIAL 414

Module-Operator 414

Multiply-Operator 414

Negate-Operator 415

Subtract-Operator 415

Phonetic Functions 415
DBL_MP 416

NYSIIS 416

PRI_MP 416

SCORE_MP 416

SEC_MP 416

SOUNDEX 416

DIFFERENCE 417

Utility Function 417

XML Functions 418
Identifier Escaping 419

Text Escaping 420

XMLATTRIBUTES 421

XMLCOMMENT 422

XMLCONCAT 422

TIBCO® Data Virtualization Reference Guide

18 | Contents

XMLDOCUMENT 423

XMLELEMENT 424

XML_EXTRACT 425

XMLFOREST 426

XMLNAMESPACES 427

XMLPI 428

XMLQUERY 428

XMLTEXT 430

XPATH 430

XSLT 432

TDV Support for SQL Operators 435
Arithmetic Operators 435

Add 436

Concatenation 442

Divide 443

Exponentiate 444

Factorial 445

Modulo 446

Multiply 447

Negate 451

Subtract 452

Comparison Operators 458
Quantified Comparisons 460

Logical Operators 463
AND 463

NOT 464

OR 465

Condition Operators 465
CASE 466

COALESCE 469

DECODE 470

TIBCO® Data Virtualization Reference Guide

19 | Contents

EXISTS and NOT EXISTS 473

IN and NOT IN 475

IS NOT NULL 478

IS NULL 479

LIKE 479

OVERLAPS 481

TDV Query Engine Options 483
DATA_SHIP_MODE Values 484

GROUP BY Options 484

INSERT, UPDATE, and DELETE Options 486

JOIN Options 489
DISABLE_PUSH (JOIN Option) 490

DISABLE_THREADS (JOIN Option) 490

FORCE_DISK (JOIN Option) 491

FORCE_ORDER (JOIN Option) 492

HASH (JOIN Option) 493

LEFT_CARDINALITY (JOIN Option) 493

NESTEDLOOP (JOIN Option) 494

PARTITION_SIZE (JOIN Option) 495

RIGHT_CARDINALITY (JOIN Option) 496

SEMIJOIN (JOIN Option) 496

SORTMERGE (JOIN Option) 497

SWAP_ORDER (JOIN Option) 498

ORDER BY Options 498
DISABLE_PUSH (ORDER BY Option) 499

DISABLE_THREADS (ORDER BY Option) 499

FORCE_DISK (ORDER BY Option) 500

SELECT Options 501
CASE_SENSITIVE (SELECT Option) 502

DISABLE_CBO (SELECT Option) 503

DISABLE_DATA_CACHE (SELECT Option) 504

TIBCO® Data Virtualization Reference Guide

20 | Contents

DISABLE_DATA_CACHE_IMMEDIATE (SELECT Option) 504

DISABLE_JOIN_PRUNER (SELECT Option) 505

DISABLE_PLAN_CACHE (SELECT Option) 506

DISABLE_PUSH (SELECT Option) 507

DISABLE_SELECTION_REWRITER (SELECT Option) 508

DISABLE_SORT_REMOVAL (SELECT Option) 508

DISABLE_STATISTICS (SELECT Option) 509

DISABLE_THREADS (SELECT Option) 510

FORCE_DISK (SELECT Option) 510

FORCE_ESTIMATION (SELECT Option) 511

IGNORE_TRAILING_SPACES (SELECT Option) 512

MAX_ROWS_LIMIT (SELECT Option) 513

ROWS_OFFSET (SELECT Option) 516

STRICT (SELECT Option) 518

PUSH_NULL_SELECTS (SELECT OPTION) 518

DISABLE_CONSTANT_FUNCTION_INLINING (SELECT OPTION) 519

DISABLE_UNION_PREAGGREGATOR (SELECT OPTION) 519

USE_COMPARABLE_ESTIMATES (SELECT OPTION) 520

UNION, INTERSECT, and EXCEPT Options 520
DISABLE_PUSH (UNION, INTERSECT, and EXCEPT Option) 520

FORCE_DISK (UNION, INTERSECT, and EXCEPT Option) 521

PARALLEL (UNION, INTERSECT, and EXCEPT Option) 522

ROUND_ROBIN (UNION, INTERSECT, and EXCEPT Option) 523

SORT_MERGE (UNION, INTERSECT, and EXCEPT Option) 524

TDV and Business Directory System Tables 526
Accessing TDV and Business Directory System Tables 529

ALL_BD_RESOURCES 530

ALL_CATALOGS 531

ALL_CATEGORIES 532

ALL_CATEGORY_VALUES 532

ALL_CLASSIFICATIONS 533

TIBCO® Data Virtualization Reference Guide

21 | Contents

ALL_COLUMNS 533

ALL_COMMENTS 536

ALL_CUSTOM_PROPERTIES 537

ALL_CUSTOM_PROPERTY_CLASSIFICATIONS 538

ALL_CUSTOM_PROPERTY_GROUPS 539

ALL_CUSTOM_PROPERTY_GROUPS_ASSOCIATIONS 539

ALL_DATASOURCES 540

ALL_DOMAINS 541

ALL_ENDPOINT_MAPPINGS 542

ALL_FOREIGN_KEYS 543

ALL_GROUPS 545

ALL_INDEXES 546

ALL_LINEAGE 548

ALL_PARAMETERS 549

ALL_PRINCIPAL_SET_MAPPINGS 551

ALL_PRIVILEGES 552

ALL_PROCEDURES 553

ALL_PUBLISHED_FOLDERS 555

ALL_RELATIONSHIP_COLUMNS 556

ALL_RELATIONSHIPS 559

ALL_RESOURCES 562

ALL_SCHEMAS 563

ALL_TABLES 564

ALL_USERS 566

ALL_USER_PROFILES 567

ALL_WATCHES 567

ALL_WSDL_OPERATIONS 568

DEPLOYMENT_PLAN_DETAIL_LOG 570

DEPLOYMENT_PLAN_LOG 571

DUAL 572

LOG_DISK 573

TIBCO® Data Virtualization Reference Guide

22 | Contents

LOG_EVENTS 573

LOG_IO 574

LOG_MEMORY 575

SYS_CACHES 576

SYS_CLUSTER 579

SYS_DATA_OBJECTS 579

SYS_DATASOURCES 580

SYS_DEPLOYMENT_PLANS 582

SYS_PRINCIPAL_SETS 583

SYS_REQUESTS 584

SYS_RESOURCE_SETS 587

SYS_SESSIONS 588

SYS_SITES 591

SYS_STATISTICS 592

SYS_TASKS 593

SYS_TRANSACTIONS 595

SYS_TRANSIENT_COLUMNS 597

SYS_TRANSIENT_SCHEMAS 599

SYS_TRANSIENT_TABLES 600

SYS_TRIGGERS 601

TEMPTABLE_LOG 603

TRANSACTION_LOG 604

USER_PROFILE 607

TDV SQL Script 608
SQL Script Overview 608

SQL Language Concepts 610
Identifiers 611

Data Types 612

Value Expressions 616

Conditional Expressions 617

TIBCO® Data Virtualization Reference Guide

23 | Contents

Literal Values 618

Noncursor Variables 619

Cursor Variables 621

Attributes of Cursors 622

Attributes of CURRENT_EXCEPTION 625

SQL Script Keywords 629

SQL Script Procedures and Structure 631
Basic Structure of a SQL Script Procedure 631

SQL Script Procedure Header 632

Compound Statements 636

Independent Transactions 638

Compensating Transactions 640

Exceptions 643

SQL Script Statement Reference 646
BEGIN...END 647

CALL 648

CASE 650

CLOSE 653

COMMIT 654

CREATE TABLE 655

CREATE TABLE AS SELECT 655

CREATE INDEX 657

DECLARE Constants 657

DECLARE CURSOR of Type Variable 658

DECLARE <cursorName> CURSOR FOR 660

DECLARE EXCEPTION 665

DECLARE TYPE 667

DECLARE Variable 669

DECLARE VECTOR 670

DELETE 681

DROP TABLE 683

DROP INDEX 683

TIBCO® Data Virtualization Reference Guide

24 | Contents

EXECUTE IMMEDIATE 684

FIND_INDEX 685

FETCH 685

FOR 687

IF 689

INSERT 691

ITERATE 692

LEAVE 694

LOOP 695

OPEN 696

PATH 698

RAISE 699

REPEAT 701

ROLLBACK 702

SELECT INTO 703

SET 704

TOP 705

UPDATE 706

WHILE 708

SQL Script Examples 708
Example 1 (Fetch All Rows) 709

Example 2 (Fetch All Categories) 710

Example 3 (User-Defined Type) 711

Example 4 (User-Defined Type) 712

Example 5 (Pipe Variable) 712

Example 6 (Dynamic SQL Extract with Individual Inserts) 713

Example 7 (Dynamic SQL Inserts by Variable Name) 714

Example 8 (Prepackaged Query) 715

Example 9 (Exception Handling) 716

Example 10 (Row Declaration) 717

Example 11 (Avoiding Division-by-Zero Errors) 718

TIBCO® Data Virtualization Reference Guide

25 | Contents

TDV Built-in Functions for XQuery 720
executeStatement 720

formatBooleanSequence 722

formatDateSequence 722

formatDecimalSequence 723

formatDoubleSequence 724

formatFloatSequence 724

formatIntegerSequence 725

formatStringSequence 725

formatTimeSequence 726

formatTimestampSequence 727

Java APIs for Custom Procedures 728
com.compositesw.extension 728

CustomCursor 729

CustomProcedure 731

CustomProcedureException 735

ExecutionEnvironment 736

ParameterInfo 741

ProcedureConstants 746

ProcedureReference 750

Function Support for Data Sources 757
Pushing or Not Pushing Functions 757

Function Support Issues when Combining Data Sources 758
ASCII Function with Empty String Argument 758

Case Sensitivity and Trailing Spaces 759

Collating Sequence 759

Data Precision 760

Decimal Digit Limitation on Functions 760

INSTR Function 761

Interval Calculations 761

TIBCO® Data Virtualization Reference Guide

26 | Contents

Mapping of Native to TDV Data Types Across TDV Versions 761

MERGE 762

ORDER BY Clause 773

SPACE Function 773

SQL Server Sorting Order 774

Time Functions 774

Truncation vs. Rounding 775

TDV Native Function Support 775
TDV Aggregate Function Support 775

TDV Character Function Support 776

TDV Conditional Function Support 777

TDV Conversion Function Support 777

TDV Date Function Support 778

TDV Numeric Function Support 778

File Function Support 779
File Aggregate Function Support 779

File Character Function Support 780

File Conversion Function Support 780

File Date Function Support 781

File Numeric Function Support 781

XML Function Support 783
XML Aggregate Function Support 783

XML Character Function Support 783

XML Conversion Function Support 784

XML Date Function Support 784

XML Numeric Function Support 785

Custom Procedure Examples 787
About the Custom Procedure Examples Syntax 787

Example 1: Simple Query 788

Example 2: Simple Update 797

Example 3: External Update without Compensation 805

TIBCO® Data Virtualization Reference Guide

27 | Contents

Example 4: Nontransactional External Update without Compensation 819

Example 5: Expression Evaluator 833

Example 6: Output Cursor 846

Example 7: Simple Procedure that Invokes Another Procedure 858

Time Zones 867

TIBCO Documentation and Support Services 879

Legal and Third-Party Notices 881

TIBCO® Data Virtualization Reference Guide

28 | TDV SQL Support

TDV SQL Support
TDV allows query specification and data updates using standard SQL. TDV supports a
subset of ANSI SQL-92 and ANSI SQL-99.

• Data Types

• Subqueries in TDV

• Consolidated List of TDV Keywords

Data Types
This section summarizes the SQL data types that TDV supports, and provides detailed
sections about data types with complex implementations.

• Summary of Data Types that TDV Supports

• Binary Literals

• BOOLEAN

• INTERVAL DAY

• INTERVAL YEAR

• XML

Summary of Data Types that TDV Supports
The following table discusses special considerations when using data types with TDV.
Where more detailed discussion is required, separate sections are cross-referenced from
the Special Notes column of the table.

TIBCO® Data Virtualization Reference Guide

29 | TDV SQL Support

Data Types Variants
Supported

Special Notes

BINARY BINARY,
VARBINARY

• Behaves in a manner similar to STRING,
but it is right-padded with zeroes rather
than spaces.

• Minimum length is 1.

• Maximum length is 255.

• BINARY or VARBINARY with length >255 is
a BLOB.

BIT

BLOB BLOB • You can project (SELECT) BLOB columns.

• You can use BLOB only in the CAST
function.

BOOLEAN DATETIME For more information, see BOOLEAN.

CLOB CLOB • You can project (SELECT) CLOB columns.

• You can use CLOB only in the CAST
function.

DATE DATETIME • Month, day, year.

DECIMAL DECIMAL,
NUMERIC

 l TDV DECIMAL has a default precision/scale
of 32/2. TDV Numeric has a default
precision/scale of 32/0.

 l An error is thrown if the number of digits
to the left of the decimal point exceeds the
precision specified for the type. For
example, 12345.00 exceeds the limits of
DECIMAL(4,2) and so throws an error.

 l Its scale (the digits to the right of the
decimal point) is rounded if necessary to
match the scale of the type designation.

TIBCO® Data Virtualization Reference Guide

30 | TDV SQL Support

Data Types Variants
Supported

Special Notes

For example, 1.425 is rounded to 1.43 for
DECIMAL(4,2).

 l DECIMAL and NUMERIC data types are
zero-padded on the right if the number of
digits to the right of the decimal point is
smaller than the scale of the type
designation. For example, 1.425 becomes
1.42500 for DECIMAL(4,5).

 l NUMERIC and DECIMAL declaration without
specifying precision and scale will result in
an arbitrary value. This is not ANSI defined
behavior. Refer to the User Guide section
TDV Configuration Parameters Common to
Multiple Datasources for details about
changing the Arbitrary Numeric property.

DOUBLE

FLOAT

INTEGER TINYINT,
SMALLINT,
INTEGER,
BIGINT

• A runtime error is thrown if a value is out
of the valid range for the integer type.

INTERVAL DAY • Represents a duration of time.

• Intervals can be positive or negative.

• Not directly compatible with INTERVAL
MONTH and INTERVAL YEAR.

• Can be used in arithmetic operations
(addition, subtraction, division, and
multiplication), and functions such as ABS,
CAST, and EXTRACT.

TIBCO® Data Virtualization Reference Guide

31 | TDV SQL Support

Data Types Variants
Supported

Special Notes

• For more information, see INTERVAL DAY.

INTERVAL MONTH • Represents a duration of time.

• Can be positive or negative.

• Not directly compatible with INTERVAL
DAY and INTERVAL YEAR.

• Can be used in arithmetic operations
(addition, subtraction, division, and
multiplication), and functions such as ABS,
CAST, and EXTRACT.

INTERVAL YEAR • Represents a duration of time.

• Intervals can be positive or negative.

• Not directly compatible with INTERVAL
DAY and INTERVAL MONTH.

• Can be used in arithmetic operations
(addition, subtraction, division, and
multiplication), and functions such as ABS,
CAST, and EXTRACT.

• For more information, see INTERVAL YEAR.

LONGVARCHAR

NUMBER NUMBER (p, s)

p is precision. s
is scale.

Precision and scale are optional. When provided,
NUMBER is the same as DECIMAL/NUMERIC.

REAL

STRING CHAR,
VARCHAR

• Minimum length is 1.

• If a CHAR is less than minimum length, it
is right-padded with spaces.

TIBCO® Data Virtualization Reference Guide

32 | TDV SQL Support

Data Types Variants
Supported

Special Notes

• Maximum length is 255.

• CHAR or VARCHAR with length >255 is a
CLOB.

• Operations might pad a CHAR, even if it
was not padded originally. So CONCAT
(char10, char10) might return "A B
" instead of "AB" as the result.

TIME TIMESTAMP • Hours, minutes, seconds.

TIMESTAMP • Month, day, year and hours, minutes,
seconds.

• Depending on formatting, may contain
fractional seconds.

XML • TDV support for the XML data type
complies with the ANSI INCIT/ISO/IEC 9075
part 14 XML-related specifications.

• For more information, see XML.

Binary Literals
TDV supports the following literals:

• Binary <bit string literal>

• Hexadecimal <bit string literal>

Base 2 Binary Literal

Binary bit strings are arbitrary sequences of zero or more binary digits (bits), each having a
value of 0 or 1.

TIBCO® Data Virtualization Reference Guide

33 | TDV SQL Support

Base 2 Binary Literal is a SQL literal that starts with a case insensitive “b”, immediately
followed by a delimited string containing zero or one. For example - B'10101' or b’’ (where
the string is empty).

Binary Length

The binary length will be the length of the string divided by 8. If string's length is less than
8, then the binary length is 1.

Note: The base 2 contents will be internally converted to base 16.

Base 16 Hexadecimal Literal

Hexadecimal bit strings are arbitrary sequences of zero or more hexadecimal digits (hexits).
A hexit can be any of the digits (0-9) or any of the letters A-F (case insensitive).

Base 16 Hexadecimal is a SQL literal that starts with a case insensitive "x", immediately
followed by a case insensitive delimited string 0-9a-z. For example - X'ABF' or x’’ (where the
string is empty).

Binary Length

The binary length will be the length of the string divided by 2. If the string's length 1, then
the binary length is 1.

0x Style

Binary literal can also start with a zero immediately followed by a x (case insensitive). For
example:

0xBEEFDEAD

0XBADDAD

0X

Comparison of Literals

Binary literals can be compared. For example:

1. x'0A' = B'00001011' – Returns TRUE.

TIBCO® Data Virtualization Reference Guide

34 | TDV SQL Support

2. x'000A' = B'00001011' – Returns FALSE.

Note: TDV does not trim the leading zeros and hence x’000A’ is equivalent to BINARY(1)
whereas x’0A’ is equivalent to BINARY(2).

BOOLEAN
BOOLEAN data type complies with ANSI/ISO 2011 (draft), with the exceptions noted in the
remarks below. Previous behavior is deprecated, although you can force the old behavior
using a server configuration parameter, as described in Overriding Standard-Compliant
BOOLEAN Behavior.

• Character string literals “true” “false” and “unknown” can be CAST to BOOLEAN
values TRUE, FALSE and UNKNOWN (NULL), respectively. The literal values are case-
insensitive.

• Any other input values raise an error. Specifically, implicit conversion of non-zero
numeric values to TRUE, and numeric values of zero to FALSE, raises an error.

• BOOLEAN types cannot be compared with other types without a CAST.

• Values of non-BOOLEAN types cannot be assigned to BOOLEAN targets directly.
without a CAST. You must use a CASE to convert values of other types to TRUE,
FALSE, or UNKNOWN, and then CAST those values to BOOLEAN. For example, you
cannot directly CAST(1 as BOOLEAN) to TRUE.

• Cannot Convert from BOOLEAN to non-BOOLEAN types or vice versa.

• BOOLEAN values cannot be function arguments. Specifically, the previous behavior
of allowing BOOLEAN arguments to the following functions raises an error: CONCAT,
DLE_DST, LE_DST, POSITION, REPEAT, TRIM, TS_FIRST_VALUE, and XMLTEXT.

• BOOLEAN types and values cannot be mixed with non-BOOLEAN types without a
suitable CAST.

• Exception to the standard: TDV does not support {IS | IS NOT} {TRUE | FALSE |
UNKNOWN} on BOOLEAN arguments.

Overriding Standard-Compliant BOOLEAN Behavior

You can use a configuration parameter to suppress the new, ANSI-compliant behavior and
enable legacy BOOLEAN support. Legacy BOOLEAN support consists of mixing of BOOLEAN
and non-BOOLEAN types without a CAST.

TIBCO® Data Virtualization Reference Guide

35 | TDV SQL Support

Legacy BOOLEAN support is deprecated as of TDV version 7.0.2.

The default value of this parameter is False.

To override standard-compliant BOOLEAN behavior
1. Select Administration > Configuration from the main Studio menu.

2. Navigate to Server > SQL Engine > SQL Language.

3. Set the parameter Allow Numeric Boolean Comparisons Assignments to True.

Changing the value has no effect until the next server restart.

INTERVAL DAY
INTERVAL DAY represents a duration of time that can be measured in days, hours, minutes,
seconds, and fractions of seconds. INTERVAL can specify individual time units (for example,
days only), pairs of time units (for example, days and hours), or mapping of units (for
example, days to seconds). All INTERVAL DAY expressions are compatible with all other
INTERVAL DAY expressions.

Syntax

INTERVAL 'dd hh:mm:ss.ff' DAY TO SECOND

INTERVAL 'dd hh:mm' DAY TO MINUTE

INTERVAL 'dd hh' DAY TO HOUR

INTERVAL 'dd' DAY

INTERVAL 'hh' HOUR

INTERVAL 'mm' MINUTE

TIBCO® Data Virtualization Reference Guide

36 | TDV SQL Support

INTERVAL 'ss.ff' SECOND

Remarks
• In the format of date and time content:

— A space separates the day value from the hour value.

— A colon separates hour values from minute values, and minute values from
seconds values.

— A decimal point separates fractional seconds from seconds.

• For all time units, the default leading precision is 2. For example, the following pairs
of expressions are equivalent:

INTERVAL '3' DAY

INTERVAL '3' DAY(2)

INTERVAL '3' MONTH

INTERVAL '3' MONTH(2)

• For all time units, the maximum leading precision is 9 digits. An error is thrown if the
number of digits to the left of the decimal point exceeds the leading precision.

• For seconds:

— If only one precision value is specified, it designates fractional precision, which
sets the maximum number of decimal places to the right of the decimal point.

— If the fractional precision is exceeded, the extra digits are automatically
truncated.

— The default fractional precision for seconds is 6, so the following two expressions
are equivalent:

INTERVAL '3' MINUTE(3) TO SECOND

TIBCO® Data Virtualization Reference Guide

37 | TDV SQL Support

INTERVAL '3' MINUTE(3) to SECOND(6)

— The maximum fractional precision is 9 digits.

— To specify leading precision as well as fractional precision, enclose both in
parentheses, separated by a comma:

INTERVAL '3.99' SECOND(2,6)

— Zero (0) is a valid fractional precision. For example, the following expression
truncates fractional seconds to whole seconds:

INTERVAL '9:59' minutes to second(0)

• For details on using INTERVAL DAY in arithmetic operations and functions, see:

— Arithmetic Operators

— CAST

— EXTRACT

— ABS

INTERVAL YEAR
INTERVAL YEAR represents a unit of time that is measured in months and years. It can be
expressed in years only, months only, or both year and months.

INTERVAL YEAR (which includes months) is not compatible with INTERVAL DAY, because a
year can have 365 or 366 days, and a month can have 28, 29, 30, or 31 days.

Syntax

INTERVAL 'yy' YEAR [TO MONTH]

INTERVAL 'mm' MONTH

INTERVAL 'yy-mm' YEAR TO MONTH

TIBCO® Data Virtualization Reference Guide

38 | TDV SQL Support

Negative intervals can be represented in any of three formats:

-INTERVAL 'mm' MONTH

INTERVAL '-mm' MONTH

INTERVAL -'mm' MONTH

Remarks
• A dash separates the year and month values.

• In a year-month interval, the month value must not be greater than 11.

• The three formats for negative intervals can be intermixed. For example, the
following resolves to an interval of -3 months:

-INTERVAL -'-3' MONTH

• Default precision is 2. For example, the following expressions are equivalent:

INTERVAL '99' YEAR

INTERVAL '99' YEAR(2)

• The precision indicates the maximum number of digits in the leading number. For
example, the expression below is invalid because its length exceeds the 2-digit
precision in the year value.

INTERVAL '2001' YEAR(2)

• In a year-month interval, the precision applies only to the year:

INTERVAL '2001-09' YEAR(4) TO MONTH

• The maximum precision for years is 9 digits.

• For details on using INTERVAL YEAR in arithmetic operations and functions, see:

— Arithmetic Operators

TIBCO® Data Virtualization Reference Guide

39 | TDV SQL Support

— CAST

— EXTRACT

— ABS

XML
TDV support for the XML data type complies with the ANSI 9075 section 14 XML
specification.

Syntax

XML [({ DOCUMENT | CONTENT | SEQUENCE }

[(ANY | UNTYPED | XMLSCHEMA schema-details)]

)]

Remarks
• schema-details is of the following form:

URI target-namespace-uri [LOCATION schema-location] [{ ELEMENT
element-name | NAMESPACE namespace-uri [ELEMENT element-name] }
]

| NO NAMESPACE [LOCATION schema-location] [{ ELEMENT element-name |
NAMESPACE namespace-uri [ELEMENT element-name] }]

• target-namespace-uri, schema-location, and namespace-uri are STRING literals that
represent valid URIs.

• element-name is any valid identifier.

TIBCO® Data Virtualization Reference Guide

40 | TDV SQL Support

Examples

CAST ('<item></item>' as XML (SEQUENCE))

CAST ('<entity></entity>' as XML (SEQUENCE(ANY)))

PROCEDURE item()

BEGIN

 DECLARE item XML (SEQUENCE(XMLSCHEMA URI
'http://www.w3.org/2001/XMLSchema-instance' LOCATION
'http://www.w3.org/2001/XMLSchema-instance' ELEMENT xsi));

END

Subqueries in TDV
You can embed one SELECT statement within another SELECT statement. The embedded
SQL statement is referred to as a subquery.

TDV supports using subqueries as values. See the section EXISTS and NOT EXISTS.

Two types of subqueries are recognized: scalar subqueries and correlated subqueries.

Some subqueries reach row returned limitations before the query that you have written is
complete. In cases where the data source allows a limit larger than 10,000 rows returned
for subqueries, you can use the TDV In Clause Limit For SubQuery In Update And Delete
configuration parameter to increase the subquery limit. There are many data source types
that have limitations on the number of rows:

• returned from a subquery

• stored in memory

• stored in a cache

that cannot be modified. You must test your specific configuration and definitions to
determine what is possible.

TIBCO® Data Virtualization Reference Guide

41 | TDV SQL Support

Scalar Subqueries
A scalar subquery is a subquery that returns a single value. It can be used anywhere a
single column value or literal is valid.

A subquery can reside within a WHERE clause, a FROM clause, or a SELECT clause.

Example

SELECT *

FROM table1

WHERE column1 = (SELECT column1 FROM table2);

Correlated Subqueries
A correlated subquery is a subquery that contains a reference to a table that also appears
in the outer query.

Syntax

SELECT outer_column

FROM outer_table

WHERE outer_column_value IN

 (SELECT inner_column FROM inner_table

WHERE inner_column = outer_column)

TIBCO® Data Virtualization Reference Guide

42 | TDV SQL Support

Remarks
• In the syntax above, outer_column is called the correlation variable, because it

references the outer query from the inner query.

• A correlated subquery is used if a statement needs to process a table in the inner
query for each row in the outer query.

• A correlated subquery cannot be evaluated independent of its outer query. The inner
query is dependent on the data from the outer query.

• Correlated subqueries differ from simple queries because of their order of execution
and the number of times they are executed. A correlated subquery is executed
repeatedly, once for each candidate row selected by the outer query. It always refers
to the table mentioned in the FROM clause of the outer query.

Example

The query lists the managers who are over 40 and who manage a sales person who is over
quota and who does not work in the same sales office as the manager.

SELECT name

FROM salesreps mgrs

WHERE age > 40 AND mgrs.EMP_NO IN

(SELECT manager

 FROM salesreps emps

 WHERE emps.quota > emps.sales

 AND emps.rep_office <> mgrs.rep_office)

TIBCO® Data Virtualization Reference Guide

43 | TDV SQL Support

Consolidated List of TDV Keywords
The following table is a consolidated list of TDV keywords; that is, character strings that
have special meaning for the TDV parser. The table lists both reserved and nonreserved
keywords.

Reserved Keywords

Reserved keywords are listed in bold font in the table.

• You cannot use reserved keywords as identifiers.

• Reserved keywords are not case-sensitive.

• If you want SQL statements to be portable across data sources, consult data source
documentation for any additional reserved keywords they might have.

Nonreserved Keywords

Nonreserved keywords are listed in regular (nonbold) font in the table.

• It is advisable not to use nonreserved keywords as identifiers.

• If you choose to use a nonreserved keyword as an identifier, enclose it in double-
quotes.

• Nonreserved keywords used as identifiers are case-sensitive; for example, “Absent”
and “absent” are considered different identifiers.

• Nonreserved keywords used as keywords are not case-sensitive.

TDV Parser Keywords

ABSENT ABSOLUTE ACCORDING ACTION

ADD ALL ALLOCATE ALTER

AND ANY ARE AS

ASC ASSERTION AT AUTHORIZATION

TIBCO® Data Virtualization Reference Guide

44 | TDV SQL Support

TDV Parser Keywords

AVG BASE64 BEGIN BETWEEN

BINARY BIT BIT_LENGTH BOOLEAN

BOTH BREADTH BY CALL

CASCADE CASCADED CASE CAST

CATALOG CHAR CHAR_LENGTH CHARACTER

CHARACTER_
LENGTH

CHECK CLOSE COALESCE

COLLATE COLLATION COLLECTION COLUMN

COLUMNS COMMIT CONNECT CONNECTION

CONSTANT CONSTRAINT CONSTRAINTS CONTENT

CONTINUE CONVERT CORRESPONDING COUNT

CREATE CROSS CURRENT CURRENT_DATE

CURRENT_TIME CURRENT_
TIMESTAMP

CURRENT_USER CURSOR

CYCLE D DATE DAY

DAYS DEALLOCATE DEC DECIMAL

DECLARE DEFAULT DEFERRABLE DEFERRED

DELETE DENSE_RANK DEPTH DESC

DESCRIBE DESCRIPTOR DIAGNOSTICS DISCONNECT

DISTINCT DO DOCUMENT DOMAIN

TIBCO® Data Virtualization Reference Guide

45 | TDV SQL Support

TDV Parser Keywords

DOUBLE DOW DOY DROP

ELEMENT ELSE ELSEIF EMPTY

END END-EXEC EPOCH ESCAPE

EXCEPT EXCEPTION EXCLUDE EXEC

EXECUTE EXISTS EXPLAIN EXTERNAL

EXTRACT FALSE FETCH FIRST

FLOAT FN FOLLOWING FOR

FOREIGN FROM FULL GET

GLOBAL GO GOTO GRANT

GROUP HAVING HEX HOUR

HOURS ID IDENTITY IF

IGNORE IMMEDIATE IN INDEPENDENT

INDEX INDICATOR INITIALLY INNER

INOUT INPUT INSENSITIVE INSERT

INT INTEGER INTERSECT INTERVAL

INTO IS ISOLATION ITERATE

JOIN KEEP KEY LANGUAGE

LAST LATEST LEADING LEAVE

LEFT LEVEL LIKE LOCAL

TIBCO® Data Virtualization Reference Guide

46 | TDV SQL Support

TDV Parser Keywords

LOCATION LONGVARCHAR LOOP LOWER

MATCH MAX MICROSECOND MICROSECONDS

MILLISECOND MILLISECONDS MIN MINUTE

MINUTES MODULE MONTH MONTHS

NAME NAMES NAMESPACE NATIONAL

NATURAL NCHAR NEXT NIL

NO NOT NULL NULLIF

NULLS NUMERIC OCTET_LENGTH OF

OFFSET OJ ON ONLY

OPEN OPTION OR ORDER

OTHERS OUT OUTER OUTPUT

OVER OVERLAPS PAD PARTIAL

PARTITION PASSING PATH PIPE

POSITION PRECEDING PRECISION PREPARE

PRESERVE PRIMARY PRIOR PRIVILEGES

PROCEDURE PUBLIC QUARTER RAISE

RANGE READ REAL RECURSIVE

REF REFERENCES RELATIVE REPEAT

REPLACE RESTRICT RETURNING REVOKE

TIBCO® Data Virtualization Reference Guide

47 | TDV SQL Support

TDV Parser Keywords

RIGHT ROLLBACK ROW ROWS

SCHEMA SCROLL SEARCH SECOND

SECONDS SECTION SELECT SEQUENCE

SESSION SESSION_USER SET SIZE

SMALLINT SOME SOURCE SPACE

SQL SQL_BIGINT SQL_BINARY SQL_BIT

SQL_CHAR SQL_DATE SQL_DECIMAL SQL_DOUBLE

SQL_FLOAT SQL_GUID SQL_INTEGER SQL_INTERVAL_DAY

SQL_INTERVAL_
DAY_TO_HOUR

SQL_INTERVAL_
DAY_TO_MINUTE

SQL_INTERVAL_
DAY_TO_SECOND

SQL_INTERVAL_
HOUR

SQL_INTERVAL_
HOUR_TO_MINUTE

SQL_INTERVAL_
HOUR_TO_SECOND

SQL_INTERVAL_
MINUTE

SQL_INTERVAL_
MINUTE_TO_
SECOND

SQL_INTERVAL_
MONTH

SQL_INTERVAL_
SECOND

SQL_INTERVAL_YEAR SQL_INTERVAL_
YEAR_TO_MONTH

SQL_
LONGVARBINARY

SQL_LONGVARCHAR SQL_NUMERIC SQL_REAL

SQL_SMALLINT SQL_TIME SQL_TIMESTAMP SQL_TINYINT

SQL_TSI_DAY SQL_TSI_FRAC_
SECOND

SQL_TSI_HOUR SQL_TSI_MINUTE

SQL_TSI_MONTH SQL_TSI_QUARTER SQL_TSI_SECOND SQL_TSI_WEEK

SQL_TSI_YEAR SQL_VARBINARY SQL_VARCHAR SQL_WCHAR

TIBCO® Data Virtualization Reference Guide

48 | TDV SQL Support

TDV Parser Keywords

SQL_
WLONGVARCHAR

SQL_WVARCHAR SQLCODE SQLERROR

SQLSTATE STRIP SUBSTRING SUM

SYSTEM_USER T TABLE TEMPORARY

THEN TIES TIME TIMESERIES

TIMESTAMP TIMESTAMPADD TIMESTAMPDIFF TIMEZONE_HOUR

TIMEZONE_MINUTE TO TOP TRAILING

TRANSACTION TRANSLATE TRANSLATION TRIM

TRUE TS TYPE UNBOUNDED

UNION UNIQUE UNKNOWN UNTIL

UNTYPED UPDATE UPPER URI

USAGE USE USER USING

VALUE VALUES VARBINARY VARCHAR

VARYING VECTOR VIEW WEEK

WHEN WHENEVER WHERE WHILE

WHITESPACE WITH WITHIN WORK

WRITE XML XMLAGG XMLATTRIBUTES

XMLBINARY XMLCAST XMLCOMMENT XMLCONCAT

XMLDOCUMENT XMLELEMENT XMLEXISTS XMLFOREST

TIBCO® Data Virtualization Reference Guide

49 | TDV SQL Support

TDV Parser Keywords

XMLITERATE XMLNAMESPACES XMLPARSE XMLPI

XMLQUERY XMLSCHEMA XMLSERIALIZE XMLTABLE

XMLTEXT XMLVALIDATE YEAR YEARS

ZONE

Maximum SQL Length for Data Sources
The maximum SQL command lengths for each data source in different versions of TDV are
as follows.

Data Source Type Maximum SQL Length
Prior to 6.2 SP4

Maximum SQL Length,
6.2 SP4 and Later

TDV 16000 unchanged

DataDirect Mainframe 1000 unchanged

Greenplum 4000 65536

Hive, Hive2 8000 32768

IBM DB2 8000 unchanged

IBM DB2 Type 2 8000 131072

IBM DB2 Mainframe 2097152 unchanged

Informix 1024 65536

JDBC 1024 unchanged

TIBCO® Data Virtualization Reference Guide

50 | TDV SQL Support

Data Source Type Maximum SQL Length
Prior to 6.2 SP4

Maximum SQL Length,
6.2 SP4 and Later

Microsoft Access 1000 32768

Microsoft Excel 1024 unchanged

MySQL 4000 65536

Netezza 4000 (v3.0: 1024) 65536

Oracle 9i 64000 unchanged

Oracle 10g, 11g 64000 131072

Oracle Type 2 64000 unchanged

PostgreSQL 32768 65536

REST 1024 unchanged

SOAP 1024 unchanged

SQL Server 8000 32768

Sybase, Sybase IQ 4000 65536

Sybase IQ Type 2 4000 unchanged

 32768 65536

Web Services 1024 unchanged

XMLFILE 16000 unchanged

XMLHTTP 1024 unchanged

TIBCO® Data Virtualization Reference Guide

51 | TDV SQL Keywords and Syntax

TDV SQL Keywords and Syntax
This topic describes the syntax for the SQL keywords supported by TDV:

• BETWEEN

• CREATE [OR REPLACE] TABLE

• CREATE [OR REPLACE] TABLE AS SELECT

• CROSS JOIN

• DELETE

• DISTINCT

• DROP

• EXCEPT

• FULL OUTER JOIN

• GROUP BY

• HAVING

• INNER JOIN

• INSERT

• INSERT, UPDATE, and DELETE on Views

• INTERSECT

• LEFT OUTER JOIN

• OFFSET and FETCH

• ORDER BY

• PIVOT

• UNPIVOT

• RIGHT OUTER JOIN

• SELECT

• SELECT (Virtual Columns)

TIBCO® Data Virtualization Reference Guide

52 | TDV SQL Keywords and Syntax

• SEMIJOIN to a Procedure

• UNION

• UNION ALL

• UPDATE

• WHERE

• WITH

BETWEEN
BETWEEN is a filter that chooses values within a specified range. When used with the
optional keyword NOT, BETWEEN chooses values outside of a specified range.

Syntax

[NOT] BETWEEN low_value AND high_value

Remarks
• The BETWEEN range contains a low value and a high value. The low value must be

less than or equal to the high value.

• Both low and high values are included in the search.

• BETWEEN can be used in both WHERE and HAVING clauses.

• BETWEEN works with character strings, numbers, and date-times. Only the values
that are identical to the search values are returned.

• BETWEEN is equivalent to using <= and >= with this syntax:

WHERE test_column >= low_value AND test_column <= high_value

Example (Between Values)

SELECT ProductID, ProductName

TIBCO® Data Virtualization Reference Guide

53 | TDV SQL Keywords and Syntax

FROM /shared/examples/ds_orders/products

WHERE UnitPrice BETWEEN 50 and 100

This query returns the product ID and name for all products whose unit price is between 50
and 100, inclusive.

Example (Between Dates)

SELECT OrderID

FROM /shared/examples/ds_orders/orders

WHERE OrderDate BETWEEN DATE '2012-05-03' AND DATE '2012-05-04'

This query returns the order ID for all orders with an order date of May 3 or May 4, 2012.

CREATE [OR REPLACE] TABLE
Creates a new table or replaces the table in the database.

Syntax

CREATE [OR REPLACE} TABLE table_name (

 column1 datatype,

 column2 datatype,

 column3 datatype,

TIBCO® Data Virtualization Reference Guide

54 | TDV SQL Keywords and Syntax

);

DDL Clauses
TDV supports the following DDL Clauses for certain data sources such as Vertica, Teradata
and ComputeDB. Refer to the datasource specific documentation for details about the
semantics and usage of these DDL clauses.

BROADCAST

Specifying the BROADCAST clause in the DDL will replicate the table across all nodes in the
cluster.

Note: TDV currently supports this DDL clause for Vertica.

Syntax

CREATE TABLE database_name.table_name

 (column1 data_type,

 column2 data_type,

 column3 data_type,

...)

BROADCAST;

Example

CREATE TABLE /shared/test/myorder

TIBCO® Data Virtualization Reference Guide

55 | TDV SQL Keywords and Syntax

 (order_id INTEGER,

 order_name CHAR(25),

 order_date DATE,

 reorder_lvl INTEGER)

BROADCAST;

The above DDL creates a table “myorder” in the specified location and this table is
replicated across all the nodes in the cluster.

PARTITION BY

Specifying the PARTITION BY clause restricts the table data storage in the partition
specified in the clause. Note that this clause is mutually exclusive to the BROADCAST
clause.

Note: TDV currently supports this DDL clause for Vertica and ComputeDB.

Syntax

CREATE TABLE database_name.table_name

 (column1 data_type,

 column2 data_type,

 column3 data_type,

...)

PARTITION BY column_name1(, column2);

TIBCO® Data Virtualization Reference Guide

56 | TDV SQL Keywords and Syntax

Example

CREATE TABLE /shared/test/myorder

 (order_id INTEGER,

 order_name CHAR(25),

 order_date DATE,

 reorder_lvl INTEGER)

PARTITION BY order_id;

CLUSTER BY

Specifying the CLUSTER BY clause in the DDL will group the data according to the column
specified in the CLUSTER BY clause.

Note: TDV currently supports this DDL clause for Vertica.

Syntax

CREATE TABLE database_name.table_name

 (column1 data_type,

 column2 data_type,

 column3 data_type,

...)

TIBCO® Data Virtualization Reference Guide

57 | TDV SQL Keywords and Syntax

CLUSTER BY(column_column);

Example

CREATE TABLE /shared/test/myorder

 (order_id INTEGER,

 order_name CHAR(25),

 order_date DATE,

 reorder_lvl INTEGER)

CLUSTER BY (order_id);

In the above example, a table “myorder” is created in the specified location. The dataset is
divided into clusters of the column order_id. Specifying CLUSTER BY clause helps improve
query performance.

ORDER BY

Indicating the ORDER BY clause in the DDL will order and group the data according to the
column specified in the ORDER BY clause.

Note: TDV currently supports this DDL clause for Vertica.

Syntax

CREATE TABLE database_name.table_name

 (column1 data_type,

TIBCO® Data Virtualization Reference Guide

58 | TDV SQL Keywords and Syntax

 column2 data_type,

 column3 data_type,

...)

ORDER BY(column_column);

Example

CREATE TABLE /shared/test/myorder

 (order_id INTEGER,

 order_name CHAR(25),

 order_date DATE,

 reorder_lvl INTEGER)

ORDER BY (order_id);

In the above example, a table “myorder” is created in the specified location. The dataset is
ordered by the column order_id. Specifying ORDER BY clause improves query performance.

[UNIQUE|NO] PRIMARY INDEX

Use this clause to specify the primary index. A table can have no more than one primary
index. If you do not explicitly assign a primary index, TDV will choose a default primary
index (unless you specify NO INDEX).

Note: TDV currently supports this DDL clause for Teradata.

TIBCO® Data Virtualization Reference Guide

59 | TDV SQL Keywords and Syntax

Syntax

CREATE TABLE database_name.table_name

 (column1 data_type,

 column2 data_type,

 column3 data_type,

...)

UNIQUE PRIMARY|NO INDEX (primary_index_column);

Example

CREATE TABLE /shared/test/myorder

 (order_id INTEGER,

 order_name CHAR(25),

 order_date DATE,

 reorder_lvl INTEGER)

UNIQUE PRIMARY INDEX (order_id);

The above example creates a table called “myorder” in the folder “/shared/test” with a
primary index of order_id.

TIBCO® Data Virtualization Reference Guide

60 | TDV SQL Keywords and Syntax

CREATE [OR REPLACE] TABLE AS SELECT
Create a table from an existing table by copying the existing table's columns. The new
table is populated with the records from the existing table.

Creates a TEMPORARY table as a copy of an existing table.

Syntax

CREATE [OR REPLACE] [TEMPORARY] TABLE table-name AS QUERY_EXPRESSION

CREATE [OR REPLACE] [TEMPORARY] TABLE new_table

 AS (SELECT * FROM old_table);

Remarks
• The QUERY_EXPRESSION can be any select query without an ORDER BY or LIMIT

clause.

• The temporary table will be empty on first access, can optionally be returned to
empty state at every COMMIT by using the ON COMMIT clause. The temporary tables
are automatically cleaned up by the server at the end of the user session. You can
also explicitly drop them if needed in between the session.

• If most of the queries are going against a particular database, the performance of
the joins on temporary table with the persisted table might be better with a specific
temporary table storage location. The privileges associated with the Temporary
Table Container affect the user who can create and use temporary tables if the DDL
Container is set. The temporary table storage location can be changed by editing the
Temporary Table Container configuration parameter through Studio.

Examples

CREATE TABLE queenbee

 AS (SELECT * FROM babybee);

TIBCO® Data Virtualization Reference Guide

61 | TDV SQL Keywords and Syntax

OR

CREATE TEMPORARY TABLE queenbee

 AS (SELECT * FROM babybee);

CROSS JOIN
CROSS JOIN takes the Cartesian product—that is, all combinations of each table in the join.

Syntax

table1 CROSS JOIN table2

Example

SELECT *

FROM city CROSS JOIN attraction;

If city has 4 rows and attraction has 5 rows, CROSS JOIN returns 20 rows.

DELETE
TDV supports the regular SQL DELETE statement.

See also INSERT, UPDATE, and DELETE on Views.

Syntax

DELETE FROM <table>

TIBCO® Data Virtualization Reference Guide

62 | TDV SQL Keywords and Syntax

[WHERE <criteria>]

Remarks
• The WHERE clause can have a subquery.

• All database objects referenced in the subquery must be from the same data source
as the target of the DELETE.

• IN subqueries can be scalar or not.

• Depending on the relational operator, quantified subqueries may need to be scalar.

• If the subquery references incorrect rows, unexpected target rows might be affected.

• If the underlying data source has the truncate_table capability set, then the hints
use_truncate and try_truncate can be used with the DELETE keyword.

Example (Deleting All Rows)

The following example deletes all the rows in the orders table:

DELETE FROM /shared/examples/ds_orders/orders

Example (Deleting Specific Rows)

The following example deletes the row where the product ID is 44 in the orders table:

DELETE FROM /shared/examples/ds_orders/orders

WHERE ProductID = 44

Example (Using a Subquery)

The following example uses a subquery:

DELETE FROM /shared/examples/ds_orders/orders

TIBCO® Data Virtualization Reference Guide

63 | TDV SQL Keywords and Syntax

WHERE ProductID IN (SELECT ProductID FROM /shared/examples/ds_
orders2/orderdetails)

Example (Using hints for Truncate)

The following example uses a subquery:

DELETE {option use_truncate} FROM /shared/examples/ds_orders/orders

In this case, the query engine will run TRUNCATE TABLE, if the truncate
capability is set for the data source in the capabilities file. If not,
an error will be displayed.

DELETE {option try_truncate} FROM /shared/examples/ds_orders/orders

In this case, the query engine will run TRUNCATE TABLE, if the truncate
capability is set for the data source in the capabilities file. If not,
DELETE statement will be executed.

DISTINCT
DISTINCT eliminates duplicate rows from the result set.

Syntax

DISTINCT columnX

Remarks
• If any column has a NULL value, it is treated like any other value.

• If you have DISTINCT and GROUP BY in the SELECT clause, the GROUP BY is applied
first before DISTINCT.

• DISTINCT supports all data types, including: BLOB, CLOB, and XML.

TIBCO® Data Virtualization Reference Guide

64 | TDV SQL Keywords and Syntax

• DISTINCT in the SELECT clause and DISTINCT in an aggregate function do not return
the same result.

Example

SELECT DISTINCT StateOrProvince

FROM /shared/examples/ds_orders/customers customers

DROP
Removes a table definition and all the data, indexes, triggers, constraints and permission
specifications for that table.

Syntax

DROP TABLE [IF EXISTS] table_name;

Remarks
• DROP TABLE throws an error if the table does not exist, or if other database objects

depend on it.

• DROP TABLE IF EXISTS does not throw an error if the table does not exist. It throws
an error if other database objects depend on the table.

EXCEPT
EXCEPT is like the UNION statement, except that EXCEPT produces rows that result from
the first query but not the second.

Note: EXCEPT is known as MINUS in Oracle.

TIBCO® Data Virtualization Reference Guide

65 | TDV SQL Keywords and Syntax

Syntax

<query_expression>

EXCEPT [ALL]

<query_expression>

Remarks
• Unlike UNION and INTERSECT, EXCEPT is not commutative. That is, A EXCEPT B is

not the same as B EXCEPT A. Otherwise, the rules are the same as for UNION.

• When you use EXCEPT ALL, if a row appears x times in the first table and y times in
the second table, it appears z times in the result table, where z is x - y or 0 (zero),
whichever is greater.

• EXCEPT is similar to EXCEPT ALL and eliminates the duplicates.

• Using only EXCEPT provides results that have no duplicates in their result set.

• Using EXCEPT ALL includes rows that have duplicate values.

Example (EXCEPT)

The following query on a file in the Studio resource tree lists the cities where suppliers live
but no customers live.

SELECT City

FROM /shared/examples/ds_inventory/suppliers

EXCEPT

SELECT City

FROM /shared/examples/ds_orders/customers

TIBCO® Data Virtualization Reference Guide

66 | TDV SQL Keywords and Syntax

Oakland is the only city in the supplier’s result set that is not in the customers result set.

Example (EXCEPT ALL)

SELECT City

FROM /shared/examples/ds_inventory/suppliers

EXCEPT ALL

SELECT City

FROM /shared/examples/ds_orders/customers

Adding ALL returns rows that have duplicates in the suppliers result set.

FULL OUTER JOIN
FULL OUTER JOIN merges two streams of incoming rows and produces one stream
containing the SQL FULL OUTER JOIN of both streams.

Syntax

Select *

FROM table1

FULL OUTER JOIN table2

ON table1.column_name = table2.column_name;

TIBCO® Data Virtualization Reference Guide

67 | TDV SQL Keywords and Syntax

Remarks
• The FULL OUTER JOIN combines the results of both left and right outer joins.

• When no matching rows exist for rows on the left side of the JOIN key word, NULL
values are returned from the result set on the right.

• When no matching rows exist for rows on the right side of the JOIN key word, NULL
values are returned from the result set on the left.

• The query engine hashes the lesser side and streams the greater side over it.

Example

SELECT *

FROM /shared/examples/ds_orders/orderdetails orderdetails

FULL OUTER JOIN /shared/examples/ds_orders/products products

ON orderdetails.ProductID = products.ProductID;

GROUP BY
GROUP BY is used when multiple columns from one or more tables are selected and at
least one aggregate function appears in the SELECT statement. In that case, you need to
GROUP BY all the selected columns except the ones operated on by the aggregate function.

All data types (including: BLOB, CLOB, and XML) are supported by GROUP BY.

Syntax

SELECT column1, ... column_n, aggregate_function (expression)

FROM table

TIBCO® Data Virtualization Reference Guide

68 | TDV SQL Keywords and Syntax

GROUP BY column1, ... column_n;

Example (GROUP BY with Multiple Inner Joins)

SELECT orderdetails.Status, count (orderdetails.Status) as Item_Count

FROM /shared/examples/ds_orders/orderdetails Orderdetails

INNER JOIN /shared/examples/ds_inventory/products Products

ON orderdetails.ProductID = products.ProductID

INNER JOIN /shared/examples/ds_orders/orders Orders

ON orders.OrderID = orderdetails.OrderID

GROUP BY orderdetails.Status

Example (GROUP BY with Columns Specified by Ordinal Position)

Columns that are to be used for grouping can be defined by the integer that represents the
ordinal position in which the SELECT occurred. If all columns of a table are selected
(SELECT *), you can use the column position in the table (expressed as an integer).

SELECT ProductId, UnitsSold, UnitPrice

FROM /shared/examples/ds_inventory/inventorytransactions
InventoryTransactions

GROUP BY 2 DESC, 1, 3

TIBCO® Data Virtualization Reference Guide

69 | TDV SQL Keywords and Syntax

This sample query selects the three columns ProductId, UnitsSold, and UnitPrice from the
inventorytransactions table and groups the results first by UnitsSold (in descending order),
then by ProductId (in ascending order), and then by UnitPrice (in ascending order).

HAVING
The HAVING clause is used in combination with GROUP BY. You can use HAVING in a
SELECT statement to filter the records that a GROUP BY returns.

Syntax

GROUP BY column1, ... column_n

HAVING condition1 ... condition_n;

Example

SELECT OrderID, SUM (orderdetails.Quantity) sumQuantity

FROM /shared/examples/ds_orders/orderdetails

GROUP BY OrderID

HAVING SUM (orderdetails.Quantity) > 10

The example has 50 unique OrderID values. SUM (orderdetails.Quantity) returns 296, but
adding the GROUP BY clause causes the results to have a separate SUM (quantity) value.
HAVING SUM adds a filter to that result set.

INNER JOIN
INNER JOIN return rows when there is at least one match in both tables.

TIBCO® Data Virtualization Reference Guide

70 | TDV SQL Keywords and Syntax

Syntax

SELECT columnA, ... columnX

FROM table1

INNER JOIN table2

ON table1.columnA = table2.columnA

Example

SELECT products.ProductName, products.ProductID

FROM /shared/examples/ds_inventory/products products

INNER JOIN /shared/examples/ds_inventory/products products_1

ON products.ProductID = products_1.ProductID

INSERT
The INSERT statement adds rows to a table. You can insert a single row or multiple rows
with one statement.

You can use an INSERT statement only in a SQL script or from a JDBC/ODBC call. See also
INSERT, UPDATE, and DELETE on Views.

The INSERT INTO statement can also be used to insert a complete row of values without
specifying the column names. Values must be specified for every column in the table, in the
order specified by the DDL. If the number of values is not the same as the number of
columns in the table, or if a value is not allowed for a particular data type, an exception is
thrown.

TIBCO® Data Virtualization Reference Guide

71 | TDV SQL Keywords and Syntax

The INSERT statement itself does not return a result, but the database system returns a
message indicating how many rows have been affected. You can then verify the insertion
by querying the data source.

Warning: If a network connection is dropped while data is being moved through TDV using
INSERT statements, queries are likely to fail. The TDV Server cannot reconcile the data
when the connection is re-established. You will need to determine when the failure
occurred, how much data might have moved, and the best way to resolve the failure.

TDV supports INSERT only for the following data sources.

• TDV • Oracle

• DataDirect—Mainframe • PostgreSQL

• File—Delimited • REST

• Informix • SOAP

• Microsoft Access (Windows
platform only)

• Sybase ASE

• Microsoft Excel • Sybase IQ

• Microsoft SQL Server • Teradata

• MySQL •

• Netezza

Note: For add-ons such as adapters, consult the documentation to find out if INSERT is
supported.

Three forms of INSERT syntax are supported for TDV as a data source.

Syntax 1

INSERT INTO <table_name> DEFAULT VALUES

TIBCO® Data Virtualization Reference Guide

72 | TDV SQL Keywords and Syntax

Syntax 2

INSERT INTO <table_name> [(<columnA, ... columnX>)]

VALUES (<valueList>)[,(<valueList>)]*

Syntax 3

INSERT INTO <table_name> [(<columnA, ... columnX>)]

<queryExpression>

Opening and closing parentheses are used for grouping; <queryExpression> indicates a
SELECT statement.

Listing of the columns is optional. In all cases, the number and type of the values must be
equal and consistent with the number of columns in the row or as specified. See Example
(Multi-Row INSERT with <queryExpression>).

Remarks
• The system automatically discards any ORDER BY in the subqueries, because it is not

useful to sort the subquery.

• In a multi-row INSERT, the query result must contain the same number of columns
in the same order as the column list in the INSERT statement, and the data types
must be compatible, column by column.

• If a non-nullable column is set to NULL, the data source throws a runtime exception.

• INSERT statements should include all non-nullable columns.

• Derived columns cannot be present in an INSERT statement.

Example (Single-Row INSERT)

PROCEDURE sc2()

TIBCO® Data Virtualization Reference Guide

73 | TDV SQL Keywords and Syntax

 BEGIN

 INSERT INTO

 /shared/examples/ds_inventory/products (ProductID, ProductName,
UnitPrice)

 VALUES (23, 'monitor', 500.00);

 END

Example (Multi-Row INSERT)

PROCEDURE sc2()

 BEGIN

 INSERT INTO

 /shared/examples/ds_inventory/products (ProductID, ProductName,

 UnitPrice)

 VALUES

 (41, 'monitor', 1000/10 * 1),

 (42, 'monitor', 1000/10 * 1),

 (43, 'monitor', 1000/10 * 1);

TIBCO® Data Virtualization Reference Guide

74 | TDV SQL Keywords and Syntax

 END

Example (Multi-Row INSERT with <queryExpression>)

PROCEDURE get_open_orders(OUT numOpen INTEGER)

BEGIN

 -- Clear the table

 DELETE FROM /users/composite/test/sources/mysql/updates;

 -- Get all open orders

INSERT INTO /users/composite/test/sources/mysql/updates

 (c_bigint, c_varchar)

 SELECT OrderID, Status

 FROM /shared/tutorial/sources/ds_orders/orderdetails

 WHERE Status = 'Open';

 -- Return number of open orders

 SELECT count(*) INTO numOpen

 FROM /users/composite/test/sources/mysql/updates;

TIBCO® Data Virtualization Reference Guide

75 | TDV SQL Keywords and Syntax

END

Example (INSERT with DEFAULT)

INSERT INTO Customers (FirstName, LastName, Country)

VALUES ('joe','Ely', DEFAULT)

An exception is thrown if the target database does not support the DEFAULT keyword.

A runtime exception is thrown if the column does not have a default defined and is non-
nullable.

Example (INSERT with DEFAULT VALUES)

INSERT INTO Customers DEFAULT VALUES

If a DEFAULT VALUES clause is specified, a single row is inserted into a table containing the
appropriate defaults (possibly null) in every column. It is an error if any column has no
default.

INSERT, UPDATE, and DELETE on Views
INSERT, UPDATE, and DELETE on views are supported as defined by SQL standards, under
the following conditions:

• A view is updatable only if:

— It is defined to be a direct row and column subset of some base table, or a direct
row and column subset of some other updatable view.

— The SQL of the view does not include DISTINCT, GROUP BY, or HAVING.

— The FROM clause of the view refers to exactly one table reference, and that table
reference identifies either a base table or an updatable view.

• Derived columns are not updatable.

TIBCO® Data Virtualization Reference Guide

76 | TDV SQL Keywords and Syntax

• A view with an aggregate expression in projection is not updatable whether GROUP
BY is present or not.

INTERSECT
INTERSECT returns only rows that appear in both queries. The rules are the same as those
listed for UNION.

Syntax

<query_expression>

INTERSECT [ALL]

<query_expression>

Remarks
• According to SQL standards, INTERSECT takes precedence over UNION and EXCEPT.

• With INTERSECT ALL, if a row appears x times in the first table and y times in the
second table, the row appears z times in the result table, where z is the lesser of x
and y.

• INTERSECT is similar to INTERSECT ALL, plus INTERSECT eliminates duplicate rows.

Example (INTERSECT)

The following query lists the cities where suppliers and customers are found, and
eliminates duplicate rows.

SELECT City

FROM /shared/examples/ds_inventory/suppliers

TIBCO® Data Virtualization Reference Guide

77 | TDV SQL Keywords and Syntax

INTERSECT

SELECT City

FROM /shared/examples/ds_orders/customers

Example (INTERSECT ALL)

The following query lists the cities where suppliers and customers are found, but does not
eliminate duplicate rows.

SELECT City

FROM /shared/examples/ds_inventory/suppliers

INTERSECT ALL

SELECT City

FROM /shared/examples/ds_orders/customers

LEFT OUTER JOIN
LEFT OUTER JOIN returns all records of the left table even if the join-condition does not
find any matching record in the right table.

Remarks
• A left outer join (or left join) closely resembles a right outer join, except with the

treatment of the tables reversed.

• Every row from the left table appears in the joined table at least once.

TIBCO® Data Virtualization Reference Guide

78 | TDV SQL Keywords and Syntax

• If no matching row from the right table exists, NULL appears in columns from the
right table for those records that have no match in the left table.

• A left outer join returns all the values from the left table and matched values from
the right table (NULL in case of no matching join predicate).

• The query engine hashes the lesser side and streams the greater side over it.

Syntax

SELECT columns

FROM tableA

LEFT OUTER JOIN tableB

ON tableA.columnX = tableB.columnX

Example

SELECT *

FROM /shared/examples/ds_orders/products products

LEFT OUTER JOIN /shared/examples/ds_orders/orderdetails orderdetails

ON products.ProductID = orderdetails.ProductID

OFFSET and FETCH
When a table is sorted (preferably using ORDER BY on a primary key), OFFSET can be used
to skip a specified number of rows. OFFSET is usually combined with FETCH NEXT value
ROWS ONLY to support pagination, selecting a specific subset of rows in a table sorted on a
primary key.

TIBCO® Data Virtualization Reference Guide

79 | TDV SQL Keywords and Syntax

Note: For a discussion of how this option, MAX_ROWS_LIMIT, OFFSET, FETCH and the
maxRows JDBC/ODBC parameter work together, see MAX_ROWS_LIMIT (SELECT Option).

Syntax

SELECT *

FROM /table_path/table_name

ORDER BY column_name_PK

OFFSET value1 ROWS FETCH NEXT value2 ROWS ONLY

In the syntax, column_name_PK is a primary key that ensures consistent table ordering,
value1 is the number of rows to skip, and value2 is the number of rows to fetch from the
source.

Remarks

It is recommended that OFFSET be used with ORDER BY on a primary key to ensure
repeatability for display of reliable subsets for paginated display of desired rows. The
sorting with ORDER BY can be performed on any column, but if the table is changing
rapidly, the ordering cannot be guaranteed. Tables that change in a more predictable
manner might be safe to sort on any column with acceptably consistent output.

This function only applies to the top-level SELECT, and the result set from a query
specifying OFFSET and FETCH is executed independently of other invocations.

Note: OFFSET and FETCH should not be used in a TDV view.

Example

SELECT orderdetails.OrderDetailID,

 orderdetails.OrderID,

TIBCO® Data Virtualization Reference Guide

80 | TDV SQL Keywords and Syntax

 orderdetails.ProductID,

 orderdetails.Status,

FROM /shared/examples/ds_orders/orderdetails

ORDER BY OrderDetailID

OFFSET 10 ROWS FETCH NEXT 10 ROWS ONLY

In this example, OrderDetailID is a primary key, and the OFFSET line tells the query engine
to skip the first 10 rows and return the next 10.

ORDER BY
This function sorts columns in ascending order (the default) or descending order (if
specified, as shown in the example below).

Syntax

ORDER BY columnA [ASC | DESC] [NULLS FIRST | NULLS LAST] [, columnB [ASC
| DESC] [NULLS FIRST | NULLS LAST], ...]]

Remarks
• If you do not specify ORDER BY, the order is undefined. Without ORDER BY, the sort

order can be different with two runs of the same SQL query.

• When you specify multiple columns, the results are sorted by the first column
specified, then by the second column within the first column, and so on.

• By default, the TDV Server returns NULLs first for ASC and NULLs last for DESC.

— Microsoft, Sybase, SQL Server, MySQL and Informix data sources also use these
default values.

TIBCO® Data Virtualization Reference Guide

81 | TDV SQL Keywords and Syntax

— Oracle and DB2 data sources use opposite defaults.

• TDV supports ORDER BY in analytical functions as well as SELECT clauses.

Note: Oracle and Netezza also support ORDER BY in analytical functions. Microsoft
data sources do not.

Example (ORDER BY without a Function)

SELECT *

FROM /shared/examples/ds_inventory/inventorytransactions
InventoryTransactions

ORDER BY ProductID, UnitsSold DESC

This example selects all columns from the inventorytransactions table, sorts them by
ProductID (in ascending order), and within each ProductID sorts them by UnitsSold (in
descending order).

Example (ORDER BY with Columns Specified by Ordinal Position)

The order that the columns are selected can be replaced by the integer that represents the
ordinal position where the SELECT occurred. If all columns of a table are selected by
SELECT *, the column position in the table (expressed as an integer) can be used.

SELECT ProductId, UnitsSold, UnitPrice

FROM /shared/examples/ds_inventory/inventorytransactions
InventoryTransactions

ORDER BY 2 DESC, 1

This example selects the three columns ProductId, UnitsSold, and UnitPrice from the
inventorytransactions table, and orders the results first by UnitsSold, in descending order,
and then by ProductId, in ascending order.

TIBCO® Data Virtualization Reference Guide

82 | TDV SQL Keywords and Syntax

Example (ORDER BY with a Multiplication Function)

SELECT ProductId, UnitsSold * UnitPrice

FROM /shared/examples/ds_inventory/inventorytransactions

ORDER BY ProductID, UnitsSold * UnitPrice DESC

This example selects ProductId, UnitsSold, and UnitPrice from inventorytransactions and
sorts them by ProductID in ascending order, and within each ProductID sorts them in
descending order of the results obtained by multiplying UnitsSold by UnitPrice.

PIVOT
PIVOT operator rotates a table-valued expression by turning the unique values from one
column in the expression into multiple columns in the output, and performs aggregations
where they are required on any remaining column values that are wanted in the final
output.

Syntax

pivot_clause : table_reference

 PIVOT LEFT_PAREN aggregate_function (AS alias)? (COMMA aggregate_
function (AS alias)?)*

 pivot_for_clause

 pivot_in_clause

 RIGHT_PAREN

pivot_for_clause : FOR (column

TIBCO® Data Virtualization Reference Guide

83 | TDV SQL Keywords and Syntax

 | LEFT_PAREN column (COMMA column)* RIGHT_PAREN

)

pivot_in_clause : IN LEFT_PAREN (expression (AS identifier)? (COMMA
expression (AS identifier)?)*

 | pivot_multiple_columns (COMMA pivot_
multiple_columns)*

 | subquery

 | ANY

)

 RIGHT_PAREN

pivot_multiple_columns : LEFT_PAREN expression (COMMA expression)*
RIGHT_PAREN

 (AS identifier)?

Remarks
• The pivot operator will take the left side table_reference's projections as inputs. The

argument to the aggregate_function must be a projection from the table_reference.

• The column specified in the pivot_for_clause clause must be a projection from
table_reference. And will be matched against the expressions in the IN clause.

TIBCO® Data Virtualization Reference Guide

84 | TDV SQL Keywords and Syntax

• All other projections in the table_referenced will be GROUP'ed BY.

Example

SELECT VendorID, Emp1, Emp2, Emp3, Emp4, Emp4

FROM

(SELECT PurchaseOrderID, EmployeeID, VendorID

FROM Purchasing.PurchaseOrderHeader) p

PIVOT

(COUNT (PurchaseOrderID)

FOR EmployeeID IN

(250 as Emp1, 251 as Emp2, 256 as Emp3, 257 as Emp4, 260 as Emp5)

) AS pvt

The PIVOT operator essentially invokes the following SQL

select VendorID, COUNT (PurchaseOrderID), EmployeeID

FROM Purchasing.PurchaseOrderHeader

WHERE EmployeeID IN 250, 251, 256, 257, 260)

GROUP BY VendorID, EmployeeID

An example result set of the above SQL is:

TIBCO® Data Virtualization Reference Guide

85 | TDV SQL Keywords and Syntax

PIVOT

(

COUNT (PurchaseOrderID)

FOR EmployeeID IN

(250 as Emp1, 251 as Emp2, 256 as Emp3, 257 as Emp4, 260 as Emp5)

)

VendorID Emp1 Emp2 Emp3 Emp4 Emp5

1492 2 5 4 4 4

1494 2 5 4 5 4

1496 2 4 4 5 5

1498 2 5 4 4 4

1500 3 4 4 5 4

UNPIVOT
The UNPIVOT operator takes a table expression (table, procedure, or JOIN) and rotates
columns into rows.

TIBCO® Data Virtualization Reference Guide

86 | TDV SQL Keywords and Syntax

Syntax

unpivot_clause : table_reference UNPIVOT ((INCLUDE | EXCLUDE) NULLS
)?

 LEFT_PAREN (identifier | LEFT_PAREN identifier (COMMA identifier
)+ RIGHT_PAREN)

 unpivot_for_clause

 unpivot_in_clause

 RIGHT_PAREN (AS)? identifier

unpivot_for_clause : FOR identifier

unpivot_in_clause : IN LEFT_PAREN (column (AS string_constant)? (
COMMA column (AS string_constant)?)*

 | unpivot_multiple_columns (COMMA
unpivot_multiple_columns)*

)

 RIGHT_PAREN

unpivot_multiple_columns : LEFT_PAREN column (COMMA column)* RIGHT_
PAREN

TIBCO® Data Virtualization Reference Guide

87 | TDV SQL Keywords and Syntax

 (AS string_constant)?

Remarks
• The table expression can be a table, procedure, or JOIN.

• The result of the table expression will be fed into the UNPIVOT operator

Example for Projections

The UNPIVOT operator introduces new projections specified by the identifiers immediately
following the UNPIVOT and FOR keyword

UNPIVOT (LabelOldColumnValues FOR LabeOldColumnNames

LabelOldColumnValues and LabeOldColumnNames will become the two new columns.
LabeOldColumnNames will contain the names of the unpivoted columns.
LabelOldColumnValues will contain the unpivoted column's values.

UNPIVOT (LabelOldColumnValues FOR LabeOldColumnNames IN (columnA,
columnB)

Example for Renaming Columns

Old column names can be renamed by specifing the new name as a string constant in the
IN clause.

In the example below, instead of the strings 'columnA' and 'columnB', we will see the
strings 'rename1' and 'rename2'

UNPIVOT ... FOR LabeOldColumnNames IN (columnA as 'rename1', columnB as
'rename2')

O LabeOldColumnNames LabelOldColumnValues

1 rename1 a1

TIBCO® Data Virtualization Reference Guide

88 | TDV SQL Keywords and Syntax

1 rename2 a2

2 rename1 b1

2 rename2b2

3 rename1 c1

3 rename2 c2

Example for Multiple Column Sets

UNPIVOT ((LabelOldColumnValues1, LabelOldColumnValues2,
LabelOldColumnValues3) FOR

LabeOldColumnNames IN ((columnA, columnB, columnC), (columnD, columnE,
columnF))

O columnA columnB columnC columnD columnE columnF

1 a1 b1 c1 d1 e1 f1

2 a2 b2 c2 d2 e2 f2

3 b3 c3 d3 e3 f3

will be rotated to

O LabeOldColumnNames LabelOldColumnValues1 LabelOldColumnValues2
LabelOldColumnValues3

TIBCO® Data Virtualization Reference Guide

89 | TDV SQL Keywords and Syntax

- ------------ ------ ------

1 columnA_columnB_columnC a1 b1 c1

1 columnD_columnE_columnF d1 e1 f1

2 columnA_columnB_columnC a2 b2 c2

2 columnD_columnE_columnF d2 e2 f2

3 columnA_columnB_columnC a3 b3 c3

3 columnD_columnE_columnF d3 e3 f3

Example for Renaming Multiple Column Sets

UNPIVOT ((LabelOldColumnValues1, LabelOldColumnValues2,
LabelOldColumnValues3) FOR

LabeOldColumnNames IN ((columnA, columnB, columnC) as 'gold', (columnD,
columnE, columnF) as 'silver')

O LabeOldColumnNames LabelOldColumnValues1 LabelOldColumnValues2
LabelOldColumnValues3

1 gold a1 b1 c1

1 silver d1 e1 f1

2 gold a2 b2 c2

TIBCO® Data Virtualization Reference Guide

90 | TDV SQL Keywords and Syntax

2 silver d2 e2 f2

3 gold a3 b3 c3

3 silver d3 e3 f3

RIGHT OUTER JOIN
RIGHT OUTER JOIN returns all records of the right table even if the join-condition does not
find any matching record in the left table.

Syntax

SELECT columns

FROM tableA

RIGHT OUTER JOIN tableB

ON tableA.columnX = tableB.columnX

Remarks
• A right outer join (or right join) closely resembles a left outer join, except with the

treatment of the tables reversed.

• Every row from the right table appears in the joined table at least once.

• If no matching row from the left table exists, NULL appears in columns from the left
table for those records that have no match in the right table.

• A right outer join returns all the values from the right table and matched values from
the left table (NULL in case of no matching join predicate).

• The query engine hashes the lesser side and streams the greater side over it.

TIBCO® Data Virtualization Reference Guide

91 | TDV SQL Keywords and Syntax

Example

SELECT *

FROM /shared/examples/ds_orders/products products

RIGHT OUTER JOIN /shared/examples/ds_orders/orderdetails orderdetails

ON products.ProductID = orderdetails.ProductID

SELECT
The SELECT statement selects rows from a table.

Syntax

TDV supports the SELECT statement in various forms:

• With a FROM clause and a table

• With a FROM clause and a system table named DUAL for queries that do not require
a table of actual data

• Without a FROM clause

• With the syntax SELECT <expression> [,<expression>]; for example:

SELECT 2+2

Remarks
• If a network connection is dropped while data is being moved through the TDV

Server using SELECT statements, queries are likely to fail. The TDV Serv er cannot
reconcile the data when the connection is re-established. You will need to determine
when the failure occurred, how much data might have moved, and the best way to
resolve the failure.

TIBCO® Data Virtualization Reference Guide

92 | TDV SQL Keywords and Syntax

Overriding SELECT Option Behavior

You can use a configuration parameter to revert the TDV Server default behavior for how
SELECTs propagate between the parent and child. The SELECT in TDV will behave in the
following manner unless the old SELECT option compatibility mode is enabled:

• Joining views that have conflicting select options results in an exception.

• Selecting options in joined tables are merged.

• Select options in derived tables, scalar subqueries, quantified comparisons will not
affect its parent query

To revert the SELECT option behavior
1. Select Administration > Configuration from the main Studio menu.

2. Locate the Enable Old Select Option Compatibility Mode configuration parameter.

3. Set the parameter to True.

• Changing the value has no effect until the next server restart.

SELECT (Virtual Columns)
Besides supporting standard SQL SELECT statements, TDV supports the definition of
“virtual columns” in the projection list for a view. After virtual columns are declared, you
can use them in a query anywhere that you can use a literal.

The primary use of a virtual column is in procedures included in the FROM clause of a
query. However, you can also use virtual columns in WHERE, HAVING, and JOIN ON clauses.
Including them in the GROUP BY and ORDER BY clauses is acceptable, but it has no effect
(like literals).

Syntax

{DECLARE columnName columnType [DEFAULT literalValue]}

The virtual column is declared in the SELECT clause, as follows:

SELECT c1, {DECLARE columnNameA columnTypeA,

TIBCO® Data Virtualization Reference Guide

93 | TDV SQL Keywords and Syntax

 c2, {DECLARE columnNameB columnTypeB DEFAULT xx} ...

Remarks
• Virtual columns are unqualified, so their names must be unique and different from

the names of items in the FROM clause.

For example, if you select FROM a table with a column named ColumnOne, the
virtual column should not be named ColumnOne.

• When a query using virtual columns is executed, the query engine analyzes the
predicates (such as a WHERE clause) to look for columnName = literal expressions.
These clauses are removed from the query and the literal is replaced, much like a ?
(question mark) is replaced in a prepared statement.

For example, the following statement

SELECT * FROM V1 WHERE columnName = 99

would become

SELECT T1.column1, 99, T1.column2

FROM /some/table T1, Procedure1 (5,99) P1, Procedure2 (concat(99,'abc'))
P2

WHERE (99 > T1.column1) AND (T1.someKey = P2.someKey)

• The use of columnName = literal is important. Other types of comparison operators
do not result in setting the value. The literal can be a single literal or an expression
containing only functions and literals, like concat('abc','def').

• Relationship optimization applies to virtual columns. This means that if the query
has columnName = otherColumn and there is a predicate for otherColumn = 5, the
query engine figures out that columnName = 5 is also true and set that for you.

• It is possible when using outer joins for the WHERE clause to be illegally applied to
the inner side of the join. When this happens, the query engine is unable to do the
replacement, resulting in an error message that may or may not be easy to
understand.

TIBCO® Data Virtualization Reference Guide

94 | TDV SQL Keywords and Syntax

• If no DEFAULT value is specified for a virtual column, the column’s value must be
specified in the WHERE clause; otherwise, an error occurs.

• If a DEFAULT value is specified, it is used if no WHERE clause setting is found.

• If a virtual column is set to more than one value, you get an error.

Example

The following SELECT statement defines view V1:

SELECT T1.column1, {DECLARE columnName INTEGER DEFAULT 50}, T1.column2

FROM /some/table T1, Procedure1 (5, columnName) P1, Procedure2 (concat
(columnName,'abc')) P2

WHERE (columnName > T1.column1) AND (T1.someKey = P2.someKey)

SELECT (with Derived Column List)
TDV supports a derived column list in the SELECT statements.

Syntax

<table primary> ::=

 <table or query name> [[AS] <correlation name>

 [<left paren> <derived column list> <right paren>]]

<derived column list> ::= <column name list>

<column name list> ::= <column name> [{ <comma> <column name> }...]

TIBCO® Data Virtualization Reference Guide

95 | TDV SQL Keywords and Syntax

Example 1 (Derived Column List in Tables)

select * from /shared/examples/ds_inventory/tutorial/employees sub (a,
b, c) where a = 2

The above query returns the following:

a b c title extension workphone

2 AnnMarie Catcher Systems\ Support 23 (650)\ 929-3000

Notice that the first 3 columns from the table (Employee Id, First Name and Last Name)
displays as “a”, “b” and “c” as specified in the derived column list.

Example 2 (Derived Column List in Procedures)

SELECT x, y FROM LookupProcedure(2) AS alias01 (x, y)

Example 3 (Derived Column List in Derived Tables)

SELECT x, y FROM (select blue, clue, red FROM bar) as alias02 (x, y)

Remarks
• There will be an exception thrown when the no. of table column projections and the

number of columns defined in the “alias” do not match.

• There will be an exception thrown when there are duplicate columns defined in the
alias.

SEMIJOIN to a Procedure
A SEMIJOIN to a procedure is the logical equivalent of a semijoin to a table.

TIBCO® Data Virtualization Reference Guide

96 | TDV SQL Keywords and Syntax

Syntax

<table_expression>

[LEFT OUTER | RIGHT OUTER |INNER |FULL OUTER] PROCEDURE JOIN

<procedure> ProcedureAlias

ON <condition_expression>

This syntax conveys that for each unique-value set of procedure inputs, the procedure on
the right is called once. The results from each call are combined and treated as a row that
is fed into the join. The join operates like a nonprocedure-join of the same type.

Remarks
• The special syntax given here always has a procedure on the right side and allows

you to deviate from the normal rule that a procedure’s input parameters must be
literal expressions.

• When using this syntax, the procedure’s input parameters can include references to
any item from the table expression on the left, and only from that context. That is,
only values from inside the left-side subquery can be used. The values from other
scopes cannot be used.

• All the input value combinations are tracked and are not repeated to call the
procedure again.

• Regarding using the PROCEDURE keyword:

— Without the PROCEDURE keyword, your procedure is called exactly once.

— With the keyword, your procedure is called zero or more times, depending on the
left side of the join.

Example

(T1 LEFT OUTER JOIN T2 ON T1.x = T2.x)

TIBCO® Data Virtualization Reference Guide

97 | TDV SQL Keywords and Syntax

INNER PROCEDURE JOIN

MyProc(T1.y+T2.y) P1 ON (T1.z = P1.z)

UNION
UNION works like UNION ALL, except that it does not produce duplicate rows.

Syntax

<query_expression>

UNION

<query_expression>

Remarks
• The SELECT clause lists in the two queries must have the same number of

projections.

• Corresponding columns in the two queries must be listed in the same order.

• Corresponding columns must have the same data type or must be implicitly
convertible to the same data type.

• An ORDER BY clause can appear in only the final query of the UNION statement. The
sort is applied to the final combined result.

• GROUP BY and HAVING can be specified in the individual queries only. They cannot
be used to affect the final result.

• For the purposes of a SET operation, two NULLs are duplicates of each other.

TIBCO® Data Virtualization Reference Guide

98 | TDV SQL Keywords and Syntax

Example

The following sample query lists the states where authors and publishers are located in the
authors table and publishers table, respectively.

SELECT state FROM authors

UNION

SELECT state FROM publishers

UNION ALL
UNION ALL combines two tables, row by row. Implement UNION ALL by using the SQL
panel of Studio Modeler.

Syntax

SELECT columnA [, columnB, ...]

FROM table1

UNION ALL

SELECT columnA [, columnB, ...]

FROM table2

Remarks

Multiple column selections can be made, but the number of columns and the column data
types should match. All queries in a SQL statement containing the UNION ALL function

TIBCO® Data Virtualization Reference Guide

99 | TDV SQL Keywords and Syntax

must have an equal number of expressions in their target lists, as shown in the following
example.

Example

SELECT ProductID, ProductName, UnitPrice

FROM /shared/examples/ds_inventory/products products

UNION ALL

SELECT ProductID, ProductName, UnitPrice

FROM /shared/examples/ds_inventory/products products_1

Example (To Contrast with Results of UNION)

Suppose that table T1 has columns C1, C2, and C3, and table T2 has columns Ca, Cb, Cc.

Table T1 has these values.

C1 C2 C3

001 Hello Goodbye

002 Hola Adios

003 Aloha Aloha

Table T2 has these values.

Ca Cb Cc

003 Aloha Aloha

TIBCO® Data Virtualization Reference Guide

100 | TDV SQL Keywords and Syntax

004 Alo Adieu

007 Ciao Arrivederci

You execute the following query:

SELECT C1 C2 C3 FROM T1

UNION ALL

SELECT Ci Cii Ciii FROM T2

The results returned are shown in the table below.

001 Hello Goodbye

002 Hola Adios

003 Aloha Aloha

003 Aloha Aloha

004 Alo Adieu

007 Ciao Arrivederci

This result set from UNION ALL contrasts with the output of the UNION function, which
omits the repeated value of 003.

UPDATE
You can update a physical table view based on a single physical table. See INSERT,
UPDATE, and DELETE on Views for rules on updating views.

TIBCO® Data Virtualization Reference Guide

101 | TDV SQL Keywords and Syntax

Syntax

UPDATE <table>

SET <column> = <expression [, <column> = <expression>]*

[WHERE <criteria>]

Remarks
• If a non-nullable column is set to NULL, the data source layer throws a runtime

exception.

• If the column is set to an invalid value, the data source layer throws an runtime
exception.

• The WHERE clause can have a subquery.

— All database objects referenced in the subquery must be from the same data
source as the target of the UPDATE.

— IN subqueries can be scalar or not.

— Depending on the relational operator, quantified subqueries may need to be
scalar.

— If the subquery references incorrect rows, unexpected target rows might be
affected.

• The SET clause can have a subquery.

— All database objects referenced in the subquery must be from the same data
source as the target of the UPDATE.

— Subqueries of SET clauses must be scalar (that is, return one value as one row).

Example (Using UPDATE with SET)

PROCEDURE sc5()

 BEGIN

TIBCO® Data Virtualization Reference Guide

102 | TDV SQL Keywords and Syntax

 UPDATE

 /shared/examples/ds_inventory/products

 SET

 ProductName = 'Apple';

 END

Example (Using UPDATE with SET and WHERE)

PROCEDURE sc6()

 BEGIN

 UPDATE

 /shared/examples/ds_inventory/products

 SET

 ProductName = 'Lexington Z24'

 WHERE

ProductID = 5;

 END

TIBCO® Data Virtualization Reference Guide

103 | TDV SQL Keywords and Syntax

Example (Using UPDATE with SET and a Subquery)

PROCEDURE sc8()

 BEGIN

 UPDATE /shared/examples/ds_orders2/products

 SET

 ProductName = 'abc'

 WHERE

 ProductID IN

 (SELECT ProductID FROM /shared/examples/ds_
orders2/orderdetails);

 END

WHERE
The WHERE clause extracts only those records that meet some criterion.

Syntax

SELECT columnA [, columnB, ...]

FROM tableX

TIBCO® Data Virtualization Reference Guide

104 | TDV SQL Keywords and Syntax

WHERE columnY <expression>

Example

SELECT ProductID, ProductName, ProductDescription

FROM /shared/examples/ds_inventory/products Products

WHERE ReorderLevel > 5

WITH
A WITH clause, used at the beginning of a SQL query, defines aggregations that in turn can
be referred to in the main query and in other WITH statements as if they were physical
tables.

A WITH statement can be used to create a common table expression (CTE). A CTE can be
thought of as a temporary result set that is defined within the execution scope of a single
SELECT, INSERT, UPDATE, DELETE, or CREATE VIEW statement. A CTE is not stored as an
object, and persists only for the duration of the query.

Syntax

WITH queryName AS (query expression)

[, ...]

mainQueryExpression

Remarks
• A WITH clause can also refer to a sibling WITH definition (second example below).

TIBCO® Data Virtualization Reference Guide

105 | TDV SQL Keywords and Syntax

• You can first name a query expression and use it within the main query expression
by referring to it. If an expression occurs more than once or is complex, moving it
out provides clarity.

• The WITH query is run once and the results are stored in the equivalent of a
temporary table, which is scanned whenever the results are used. For certain types
of queries, this scanning can reduce the burden on the data source.

Example

Suppose that you have a Web service that returns employee data with the following
columns:

• employeeNo (the employee’s number)

• employeeName (the employee’s name)

• manager (the employee number of the employee’s manager)

The following query lists all the employees with the details on their respective managers:

WITH us_employees AS

(SELECT employeeNo, emplyeeName, manager FROM employee_webservice WHERE
country = 'US')

SELECT e.employeeNo, e.employeeName, 'works for', e.manager,
'who is', m.employeeNo, m.employeeName

FROM us_employees e, us_employees m

WHERE e.manager = m.employeeNo

The advantage of using WITH in this scenario is that it invokes the Web service only once,
which in turn enhances query execution performance.

Example (Two WITH Clauses that Do Not Refer to Each Other)

In the following example, X and Y are unique names that do not refer to each other (that is,
the value of X is not the same as the value of Y).

TIBCO® Data Virtualization Reference Guide

106 | TDV SQL Keywords and Syntax

WITH

X as (SELECT * From Foo),
Y as (SELECT * From X)
Select * From Y

Example (WITH Statement for Common Table Expressions)

The following example shows the components of the CTE structure: expression name,
column list, and query.

WITH Sales_CTE (PersonID, OrderID, Year)

AS

-- Define the CTE query.

(

 SELECT PersonID, OrderID, OYEAR(OrderDate) AS Year

 FROM Sales.OrderHeader

 WHERE PersonID IS NOT NULL

)

-- Define the outer query referencing the CTE name.

SELECT PersonID, COUNT(OrderID) AS Total, Year

FROM Sales_CTE

TIBCO® Data Virtualization Reference Guide

107 | TDV SQL Keywords and Syntax

GROUP BY Year, PersonID

ORDER BY PersonID, Year

TIBCO® Data Virtualization Reference Guide

108 | TDV Support for SQL Functions

TDV Support for SQL Functions
TDV supports SQL functions that manipulate alphabetical, numeric, date, time, and XML
data types.

This topic provides usage, syntax, and examples for the SQL functions supported in TDV.
After a brief introduction, the functions are presented in groups by type:

• About SQL Functions in TDV

• Analytical Functions

• Aggregate Functions

• Array SQL Script Functions

• Binary Functions

• Character Functions

• Conditional Functions

• Convert Functions

• Cryptographic Functions

• Date Functions

• Syntax

• Numeric Functions

• Operator Functions

• Phonetic Functions

• Utility Function

• XML Functions

About SQL Functions in TDV
When you design a query in the Model panel of the view editor in the Studio Modeler, the
SQL of the query is automatically generated and displayed in the SQL panel for the view.

TIBCO® Data Virtualization Reference Guide

109 | TDV Support for SQL Functions

You can also use the SQL panel to type SQL statements directly.

Note: Do not use keywords (function names, operator names, and so on) as the names of
TDV resources.

In DECIMAL and NUMERIC arguments, p refers to the precision (the combined maximum
number of digits that can be stored to the left and the right of the decimal point) and s
refers to the scale (the maximum number of digits that can be stored to the right of the
decimal point). Scale can be specified only if precision is specified.

Analytical Functions
Analytical functions produce summaries, reports, and statistics on large amounts of static
data. TDV supports more than three dozen such functions.

Analytical functions are OLAP (on-line analytic processing) functions that operate on large
amounts of static data. Most SQL functions are OLTP (on-line transaction processing)
functions that operate as quickly as possible on discrete amounts of dynamic, transactional
data.

Analytical functions are generally characterized by an OVER keyword and a window clause.
(See Window Clause.)

Limitation
• Large data sets can be very slow when using analytical functions.

• Teradata does not support the RANGE keyword. It only supports the ROWS keyword.

• For analytical functions that support the windowing clause, TDV does not push to
Teradata without you explicitly suppling the windowing clause. Teradata implicitly
adds ROWS BETWEEN UNBOUNDED PRECEEDING AND UNBOUNDED FOLLOWING for
analytical functions that do not supply a windowing clause. In TDV and ANSI SQL,
RANGE UNBOUNDED PRECEDING is supplied.

• Teradata (version 16) does not support the RANGE keyword.

TDV supports the following analytical functions:

• CONDITIONAL_CHANGE_EVENT

• CONDITIONAL_TRUE_EVENT

• CUME_DIST

TIBCO® Data Virtualization Reference Guide

110 | TDV Support for SQL Functions

• DENSE_RANK

• EXPONENTIAL_MOVING_AVERAGE

• EXP_WEIGHTED_AVG

• FIRST_VALUE

• FIRST_VALUE_IGNORE_NULLS

• LAG

• LAG_IGNORE_NULLS

• LAST_VALUE

• LAST_VALUE_IGNORE_NULLS

• LEAD

• LEAD_IGNORE_NULLS

• NTH_VALUE

• NTH_VALUE_FROM_LAST

• NTH_VALUE_FROM_LAST_IGNORE_NULLS

• NTH_VALUE_IGNORE_NULLS

• NTILE

• PERCENT_RANK

• RANK

• RATIO_TO_REPORT

• ROW_NUMBER

Window Clause
More than a dozen analytical functions accept a window clause as part of ORDER BY. That
capability is so noted in the sections that describe those functions. COUNT is used to
illustrate how the window clause works.

The window clause has the following syntax:

{ {ROWS | RANGE}

TIBCO® Data Virtualization Reference Guide

111 | TDV Support for SQL Functions

{ {BETWEEN {UNBOUNDED PRECEDING | CURRENT ROW | value_expr {PRECEDING |
FOLLOWING} }

 AND {UNBOUNDED FOLLOWING | CURRENT ROW | value_expr {PRECEDING |
FOLLOWING} }

 |

{UNBOUNDED PRECEDING | CURRENT ROW | value_expr PRECEDING} }

}

The following sections describe details of the window clause:

• Default Assumptions

• RANGE and the Current Row

• RANGE as a Logical Offset

• ROWS and the Current Row

• ROWS and the Frame’s Maximum Size

• AVG

Default Assumptions

RANGE UNBOUNDED PRECEDING is assumed by default when ORDER BY is present but no
window clause is supplied. For example, the following three are equivalent:

COUNT(*) OVER (ORDER BY hire_date)

COUNT(*) OVER (ORDER BY hire_date RANGE UNBOUNDED PRECEDING)

COUNT(*) OVER (ORDER BY hire_date RANGE BETWEEN UNBOUNDED PRECEDING AND
CURRENT ROW)

Similarly, the following two COUNT functions involving ROWS are equivalent:

TIBCO® Data Virtualization Reference Guide

112 | TDV Support for SQL Functions

COUNT(*) OVER (ORDER BY hire_date ROWS 1 PRECEDING)

COUNT(*) OVER (ORDER BY hire_date ROWS BETWEEN 1 PRECEDING AND CURRENT
ROW)

RANGE and the Current Row

In the COUNT example below, the window frame contains the current row, all rows before
it, and all ties. If the first three employees were hired on the same date, the count returned
would be 3.

COUNT(*) OVER (ORDER BY hire_date RANGE BETWEEN UNBOUNDED PRECEDING AND
CURRENT ROW)

Likewise, when the current row moves to the second and third employees as sorted by hire
date, the window frame still contains three rows, and so the result of the function is 3 in
both of those cases.

As the current row advances, the resulting counts continue to track the number of
employees, but if another hire-date tie occurs—for example, the ninth and tenth
employees—the resulting count would be 10 for both of them.

RANGE as a Logical Offset

Because RANGE is a logical offset, the following two functions are equivalent. The frame
includes rows that are within three days of the hire date:

COUNT(*) OVER (ORDER BY hire_date RANGE BETWEEN 3 PRECEDING AND 3
FOLLOWING)

COUNT(*) OVER (ORDER BY hire_date RANGE BETWEEN INTERVAL ‘3’ days
PRECEDING AND INTERVAL ‘3’ days FOLLOWING)

The “interval” syntax allows an expanded range of units (for example, years), and
introduces more criteria for the frame size beyond row count.

TIBCO® Data Virtualization Reference Guide

113 | TDV Support for SQL Functions

ROWS and the Current Row

If ROWS is specified instead of RANGE, COUNT behaves the same as ROW_NUMBER; that is,
ROWS handles only offsets of the current row. An example of such a COUNT is:

COUNT(*) OVER (ORDER BY hire_date ROWS BETWEEN UNBOUNDED PRECEDING AND
CURRENT ROW)

ROWS and the Frame’s Maximum Size

An example of a COUNT function that limits the frame size is:

COUNT(*) OVER (ORDER BY hire_date ROWS BETWEEN 3 PRECEDING AND 3
FOLLOWING)

When the current row is the first employee, the frame size is 4 (current plus 3 following). As
the current row moves through the table, the frame size can grow to 7. As the current row
approaches the end of the table, the frame size goes back down to 4. With ROWS, ties have
no effect on the frame size, or the resulting count.

ROWS can point outside of the data set and return results of zero. For example, the
following function returns 0 when the current row is the first row of the table, because the
frame is empty:

COUNT(*) OVER (ORDER BY hire_date ROWS BETWEEN 3 PRECEDING AND 1
PRECEDING)

Note: In this example, even when the current row is far enough into the table to return a
nonzero count, the current row is not included, because the rows all precede the current
row.

CONDITIONAL_CHANGE_EVENT
This function assigns an event window number to each row, starting from 0, and
increments by 1 when the result of evaluating the argument expression on the current row
differs from that on the previous row.

TIBCO® Data Virtualization Reference Guide

114 | TDV Support for SQL Functions

Syntax

CONDITIONAL_CHANGE_EVENT (expression) OVER (

... [window-partition-clause]

... window-order-clause)

Example

SELECT orderid,

EMPLOYEEID,

SHIPNAME,

CONDITIONAL_CHANGE_EVENT(EMPLOYEEID)

 OVER (ORDER BY EMPLOYEEID)

 FROM /shared/examples/ds_orders/tutorial/orders

Remarks

CONDITIONAL_CHANGE_EVENT must contain an ORDER BY clause within its analytic clause

CONDITIONAL_TRUE_EVENT
This function assigns an event window number to each row, starting from 0, and
increments the number by 1 when the result of the boolean argument expression evaluates
true.

TIBCO® Data Virtualization Reference Guide

115 | TDV Support for SQL Functions

Syntax

CONDITIONAL_TRUE_EVENT (boolean-expression) OVER

... ([window-partition-clause]

... window-order-clause)

Example

Given a sequence of values for column x, as follows:

(10, 7, 11, 8, 12 ,9)

CONDITIONAL_TRUE_EVENT(x > 3)

returns 1,0,2,0,3,0.

CUME_DIST
CUME_DIST calculates the cumulative distribution of a value in a group of values.

Syntax

CUME_DIST () OVER ([PARTITION BY expression [, ...]]

 ORDER BY expression [ASC | DESC] [NULLS { FIRST | LAST } [, ...])

Remarks
• CUME_DIST can be rewritten using COUNT. For example:

CUME_DIST() OVER (partition_by_order_by)

TIBCO® Data Virtualization Reference Guide

116 | TDV Support for SQL Functions

This is equivalent to either of the following COUNT expressions:

COUNT (*) OVER (partition_by_order_by RANGE UNBOUNDED PRECEDING
)

COUNT (*) OVER (partition_by_order_by RANGE BETWEEN UNBOUNDED PRECEDING
AND UNBOUNDED FOLLOWING))

• The range of values returned by CUME_DIST is (0, 1]; that is, greater than zero, and
less than or equal to 1.

• Tie values always evaluate to the same cumulative distribution value.

• PARTITION BY is optional.

• ORDER BY is required.

• The window clause is not allowed.

DENSE_RANK
DENSE_RANK computes the rank of each row returned from a query with respect to the
other rows, based on the values in the ORDER BY clause.

Syntax

DENSE_RANK () OVER ([PARTITION BY expression [, ...]]

 ORDER BY expression [ASC | DESC] [NULLS { FIRST | LAST } [, ...])

Remarks
• PARTITION BY is optional.

• ORDER BY is required.

• The window clause is not allowed.

TIBCO® Data Virtualization Reference Guide

117 | TDV Support for SQL Functions

EXPONENTIAL_MOVING_AVERAGE
Calculates the exponential moving average (EMA) of expression E with smoothing factor X.
An EMA differs from a simple moving average in that it provides a more stable picture of
changes to data over time.

The EMA is calculated by adding the previous EMA value to the current data point scaled by
the smoothing factor, as in the following formula:

EMA = EMA0 + (X * (E - EMA0))

where:

E is the current data point

EMA0 is the previous row's EMA value.

X is the smoothing factor.

Syntax

EXPONENTIAL_MOVING_AVERAGE (E, X) OVER (

... [window-partition-clause]

... window-order-clause)

where

E - The value whose average is calculated over a set of rows. Can be INTEGER, FLOAT or
NUMERIC type and must be a constant.

X - The value whose average is calculated over a set of rows. Can be INTEGER, FLOAT or
NUMERIC type and must be a constant.

EXP_WEIGHTED_AVG
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

TIBCO® Data Virtualization Reference Guide

118 | TDV Support for SQL Functions

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

FIRST_VALUE
FIRST_VALUE returns the first value in a partition.

Syntax

FIRST_VALUE (expression) [(RESPECT | IGNORE) NULLS] OVER (analytic_
clause)

Remarks
• If the first value in the set is NULL, the function returns NULL unless you specify the

optional IGNORE NULLS.

• IGNORE NULLS is useful for data densification.

Example

You want to find the most senior employee for each manager in an employee table. Use a
query like the following:

FIRST_VALUE (name) OVER (PARTITION BY manager ORDER BY hire_date)

This query first partitions the employees by manager, then orders employees in each
partition by hire date, and then applies the FIRST_VALUE function. However, because
multiple employees might have been hired on the same date, repeated execution of this
query could return a different ordering of same-day hires. To make sure the returned order
is consistent, add a second expression to the ORDER BY clause:

TIBCO® Data Virtualization Reference Guide

119 | TDV Support for SQL Functions

FIRST_VALUE (name) OVER (PARTITION BY manager ORDER BY hire_date, ID)

FIRST_VALUE_IGNORE_NULLS
This is the same as the FIRST VALUE function with the optional IGNORE NULLS. Refer
FIRST_VALUE

LAG
LAG provides access to more than one row of a table at the same time without a self-join.
Given a series of rows returned from a query and a position of the cursor, LAG provides
access to a row at a given physical offset prior to that position.

Syntax

LAG (expression [, offset_expression [, default_expression]]) [IGNORE
NULLS] OVER ([PARTITION BY expression [, ...]]

 ORDER BY expression [ASC | DESC] [NULLS { FIRST | LAST } [, ...])

Remarks
• IGNORE NULLS is optional.

• PARTITION BY is optional.

• ORDER BY is required.

• The window clause is not allowed.

LAG_IGNORE_NULLS
This is the same as the LAG function with the optional IGNORE NULLS. Refer LAG_IGNORE_
NULLS

TIBCO® Data Virtualization Reference Guide

120 | TDV Support for SQL Functions

LAST_VALUE
LAST_VALUE returns the last value in an ordered set of values.

Syntax

LAST_VALUE (expression) [IGNORE NULLS] OVER (window_clause)

Remarks
• If the last value in the set is NULL, the function returns NULL unless you specify

IGNORE NULLS.

• IGNORE NULLS is useful for data densification.

LAST_VALUE_IGNORE_NULLS
This is the same as the LAST VALUE function with the optional IGNORE NULLS. Refer LAST_
VALUE_IGNORE_NULLS

LEAD
LEAD provides access to more than one row of a table at the same time without a self-join.
Given a series of rows returned from a query and a position of the cursor, LEAD provides
access to a row at a given physical offset beyond that position.

Syntax

LEAD (expression [, offset_expression [, default_expression]])
[IGNORE NULLS] OVER ([PARTITION BY expression [, ...]]

 ORDER BY expression [ASC | DESC] [NULLS { FIRST | LAST } [, ...])

TIBCO® Data Virtualization Reference Guide

121 | TDV Support for SQL Functions

Remarks
• IGNORE NULLS and PARTITION BY are optional.

• ORDER BY is required.

• The window clause is not allowed.

LEAD_IGNORE_NULLS
This is the same as the LEAD function with the optional IGNORE NULLS. Refer LEAD

NTH_VALUE
NTH_VALUE returns the expression value of the nth row in the window defined by the
window clause. The returned value has the data type of the expression.

Syntax

NTH_VALUE (expression, nth_row) [FROM FIRST | FROM LAST] [IGNORE NULLS]
OVER (window_clause)

Remarks
• FROM LAST is optional.

• If FROM LAST is not specified, FROM FIRST is the default.

NTH_VALUE_FROM_LAST
This is the same as the NTH VALUE function with the optional FROM LAST option. Refer
NTH_VALUE

TIBCO® Data Virtualization Reference Guide

122 | TDV Support for SQL Functions

NTH_VALUE_FROM_LAST_IGNORE_NULLS
This is the same as the NTH VALUE function with the optional FROM LAST and IGNORE
NULLS options. Refer NTH_VALUE

NTH_VALUE_IGNORE_NULLS
This is the same as the NTH VALUE function with the optional IGNORE NULLS. Refer NTH_
VALUE

NTILE
NTILE divides an ordered data set into a number of buckets indicated by expression and
assigns the appropriate bucket number to each row.

Syntax

NTILE (expression1) OVER ([PARTITION BY expression [, ...]]

 ORDER BY expression [ASC | DESC] [NULLS { FIRST | LAST }] [, ...])

Remarks
• The buckets are numbered 1 through expression1.

• The expression1 value must resolve to a positive constant for each partition.

• PARTITION BY is optional.

• ORDER BY is required.

• The window clause is not allowed.

PERCENT_RANK
PERCENT_RANK is similar to the CUME_DIST (cumulative distribution) function.

TIBCO® Data Virtualization Reference Guide

123 | TDV Support for SQL Functions

Syntax

PERCENT_RANK () OVER ([PARTITION BY expression [, ...]]

 ORDER BY expression [ASC | DESC] [NULLS { FIRST | LAST }] [, ...])

Remarks
• The first row in any set has a PERCENT_RANK of 0.

• The range of values returned by PERCENT_RANK is 0 to 1, inclusive.

• PARTITION BY is optional.

• ORDER BY is required.

• The window clause is not allowed.

RANK
RANK calculates the rank of a value in a group of values.

Syntax

RANK () OVER ([PARTITION BY expression [, ...]]

 ORDER BY expression [ASC | DESC] [NULLS { FIRST | LAST }] [, ...])

Remarks
• PARTITION BY is optional.

• ORDER BY is required.

• The window clause is not allowed.

TIBCO® Data Virtualization Reference Guide

124 | TDV Support for SQL Functions

RATIO_TO_REPORT
RATIO_TO_REPORT computes the ratio of a value to the sum of a set of values. If
expression1 evaluates to NULL, the ratio-to-report value also evaluates to NULL.

Syntax

RATIO_TO_REPORT (expression1) OVER ([PARTITION BY expression2 [, ...]
])

Remarks
• PARTITION BY is optional.

• The window clause is not allowed.

ROW_NUMBER
ROW_NUMBER assigns a unique number to each row to which it is applied (either each row
in the partition or each row returned by the query), in the ordered sequence of rows
specified in the ORDER BY clause, beginning with 1.

Syntax

ROW_NUMBER () OVER ([PARTITION BY expression [, ...]]

 ORDER BY expression [ASC | DESC] [NULLS { FIRST | LAST }] [, ...])

Remarks
• PARTITION BY is optional.

• ORDER BY is required.

• The window clause is not allowed.

TIBCO® Data Virtualization Reference Guide

125 | TDV Support for SQL Functions

• If ROW_NUMBER appears in a subquery, its behavior may not be the same as the
Oracle ROWNUM function.

Examples

You want to number each manager’s employees by hire date. Use a query like the
following:

SELECT

ROW_NUMBER() OVER (PARTITION BY manager ORDER BY hire_date)

FROM EMPLOYEES

This query first partitions the employees by manager, then orders employees in each
partition by hire date, and then applies the ROW_NUMBER function. However, because
multiple employees might have been hired on the same date, repeated execution of this
query could return a different ordering of same-day employees. To make sure the returned
order is consistent, add a second expression to the ORDER BY clause:

SELECT

ROW_NUMBER() OVER (PARTITION BY manager ORDER BY hire_date, ID)

FROM EMPLOYEES

TIMESERIES
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that

TIBCO® Data Virtualization Reference Guide

126 | TDV Support for SQL Functions

is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

Aggregate Functions
Aggregate functions compare or combine values in a column and return a single result
based on those values.

Certain restrictions apply to the use of aggregate functions with the DISTINCT clause. See
DISTINCT in Aggregate Functions.

If any column in the SELECT clause is outside of an aggregate function, you must also
include the column in the GROUP BY clause. See the example given for AVG.

TDV supports the aggregate functions listed in the table below.

TDV Supported Aggregate
Function

Comments

ANY_VALUE ANY_VALUE

APPROX COUNT DISTINCT APPROX_COUNT_DISTINCT

APPROX QUANTILES APPROX_QUANTILES

ARRAG_AGG ARRAY_AGG

AVG AVG.

BIT_AND BIT_AND

BIT_OR BIT_OR

BIT_XOR BIT_XOR

CORR CORR.

TIBCO® Data Virtualization Reference Guide

127 | TDV Support for SQL Functions

TDV Supported Aggregate
Function

Comments

CORR_SPEARMAN CORR_SPEARMAN

COUNT COUNT.

COVAR_POP COVAR_POP

COVAR_SAMP COVAR_SAMP.

FIRST FIRST

GROUP CONCAT GROUP_CONCAT

GROUP CONCAT UNQUOTED GROUP_CONCAT_UNQUOTED

LAST LAST

JSON ARRAYAGG JSON_ARRAYAGG

JSON OBJECTAGG JSON_OBJECTAGG

LISTAGG LISTAGGLISTAGG.

MAX MAX

MEDIAN MEDIAN

MIN MIN.

NEST NEST

NTH NTH

PERCENTILE PERCENTILE

PERCENTILE_APPROX PERCENTILE_APPROX

TIBCO® Data Virtualization Reference Guide

128 | TDV Support for SQL Functions

TDV Supported Aggregate
Function

Comments

PERCENTILE_CONT PERCENTILE_CONT.

PERCENTILE_DISC PERCENTILE_DISC.

QUANTILES QUANTILES

REGR_AVGX REGR_AVGX.

REGR_AVGY REGR_AVGY.

REGR_COUNT REGR_COUNT.

REGR_INTERCEPT REGR_INTERCEPT.

REGR_R2 REGR_R2.

REGR_SLOPE REGR_SLOPE.

REGR_SXX REGR_SXX.

REGR_SXY REGR_SXY.

REGR_SYY REGR_SYY.

STDDEV STDDEV.

STDDEV_POP STDDEV_POP.

STDDEV_SAMP STDDEV_SAMP.

SUM SUM.

SUM_FLOAT SUM_FLOAT

VARIANCE VARIANCE.

TIBCO® Data Virtualization Reference Guide

129 | TDV Support for SQL Functions

TDV Supported Aggregate
Function

Comments

VARIANCE_POP VAR_POP.

VARIANCE_SAMP VAR_SAMP.

XMLAGG XMLAGG.

ANY_VALUE
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

APPROX_COUNT_DISTINCT
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

TIBCO® Data Virtualization Reference Guide

130 | TDV Support for SQL Functions

APPROX_QUANTILES
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

ARRAY_AGG
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

AVG
Given a set of numeric values, AVG calculates and returns the average of the input values,
as FLOAT, DECIMAL, or NULL.

Syntax

AVG (expression)

TIBCO® Data Virtualization Reference Guide

131 | TDV Support for SQL Functions

Remarks
• The expression is a numeric expression.

• AVG works only with numeric data types.

• If you want to exclude a specific row from the calculation of the average, make any
column value in the row NULL.

• See About SQL Functions in TDV for an explanation of the DECIMAL(p,s) notation.

The following table lists the input types and their corresponding output types.

Data Type of expression Output Type

BIGINT, DOUBLE, FLOAT,
INTEGER, INTERVAL_DAY,
INTERVAL_YEAR, REAL,
SMALLINT, TINYINT

Same type as that of the input. For example, if the
input is of type TINYINT, the output is also of type
TINYINT.

DECIMAL(p,s)
NUMERIC(p,s)

DECIMAL(p,s)

VARCHAR DECIMAL(p,s)
Runtime exception if expression cannot be
converted to a numeric value.

NULL NULL

Example

SELECT AVG (UnitPrice) Price, ProductID

FROM /shared/examples/ds_inventory/products products

GROUP BY ProductID

TIBCO® Data Virtualization Reference Guide

132 | TDV Support for SQL Functions

BIT_AND
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

BIT_OR
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

BIT_XOR
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

TIBCO® Data Virtualization Reference Guide

133 | TDV Support for SQL Functions

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

CORR
CORR returns the coefficient of correlation of a set of number pairs.

Syntax

CORR (expression1, expression2)

Remarks
• This function can also be used with a window clause. Refer Window Clause

CORR_SPEARMAN
Returns the Spearman's rank correlation coefficient of the values found in the
corresponding rows of <column1> and <column2>.

Syntax

CORR_SPEARMAN(column1,column2)

COUNT
COUNT counts the number of rows in a specified column or table.

Syntax

COUNT (expression)

TIBCO® Data Virtualization Reference Guide

134 | TDV Support for SQL Functions

COUNT (*)

Remarks
• The COUNT (expression) syntax specifies a column.

• The values in the specified column can be of any data type.

• The COUNT (*) syntax returns the count of all rows in a table, including NULL rows.

• If the input is a non-NULL set of values, the output is a positive integer.

• If the input is NULL, the output is zero.

The following table lists the input types that you can use in COUNT, and their
corresponding output types.

Data Type of expression Output Type

BIGINT, BINARY, BLOB, BOOLEAN, CHAR,
CLOB, DATE, DECIMAL, DOUBLE, FLOAT,
INTEGER, INTERVAL_DAY, INTERVAL_YEAR,
LONGVARCHAR, NUMERIC, REAL, SMALLINT,
TIME, TIMESTAMP, TINYINT, VARBINARY,
VARCHAR

INTEGER

NULL INTEGER with a value of
0

Example

SELECT COUNT (products.ProductID) CountColumn

FROM /shared/examples/ds_inventory/products products

COVAR_POP
COVAR_POP returns the population covariance of a set of number pairs.

TIBCO® Data Virtualization Reference Guide

135 | TDV Support for SQL Functions

Syntax

COVAR_POP (expression1, expression2) [OVER (window_clause)]

Remarks
• This function takes as arguments any numeric datatype, or any nonnumeric data

type that can be implicitly converted to a numeric data type.

• This function determines the argument with the highest numeric precedence,
implicitly converts the remaining arguments to that datatype, and returns that
datatype.

• This function follows the ANSI SQL rules for data type precedence.

• This function can also be used with a Window clause. See Window Clause

COVAR_SAMP
COVAR_SAMP returns the covariance of a sample set of number pairs.

Syntax

COVAR_SAMP (expression1, expression2) OVER (window_clause)

Remarks
• This function can also be used with a Window clause. See Window Clause

DISTINCT in Aggregate Functions
By default, aggregate functions operate on all values supplied. You can use the DISTINCT
keyword to eliminate duplicate values in aggregate function calculations.

Note: DISTINCT in the SELECT clause and DISTINCT in an aggregate function do not return
the same result.

TIBCO® Data Virtualization Reference Guide

136 | TDV Support for SQL Functions

To avoid misleading results from a given SELECT statement, do not mix aggregate
functions that include a DISTINCT clause and aggregate functions that do not include a
DISTINCT clause. Either all of the aggregate functions in a SELECT statement, or none of
them, should be used with a DISTINCT clause.

Syntax

aggregate-function ([ALL | DISTINCT] expression)

Example

SELECT COUNT (DISTINCT customer_id) FROM orders

FIRST
The FIRST() function returns the first value of the selected column.

Syntax

“FIRST”(COLUMN_NAME)

Example

SELECT “FIRST”(“ProductNaame”) FROM Products;

GROUP_CONCAT
The GROUP_CONCAT function concatenates strings from a group into a single string with
various options.

TIBCO® Data Virtualization Reference Guide

137 | TDV Support for SQL Functions

Syntax

GROUP_CONCAT(

 DISTINCT expression

 ORDER BY expression

 SEPARATOR sep

);

Example

SELECT

 GROUP_CONCAT(DISTINCT v

 ORDER BY v ASC

 SEPARATOR ';')

FROM

 t;

The result is:

GROUP_CONCAT(DISTINCT v

 ORDER BY v ASC

TIBCO® Data Virtualization Reference Guide

138 | TDV Support for SQL Functions

 SEPARATOR ';')

A;B;C

GROUP_CONCAT_UNQUOTED
This function concatenates multiple strings into a single string, where each value is
separated by the optional separator parameter. If separator is omitted, then this function
returns a comma-separated string.

Syntax

GROUP_CONCAT_UNQUOTED('str' [, separator])

Example

SELECT

 GROUP_CONCAT_UNQUOTED(x)

FROM (

 SELECT

 'a"b' AS x),

 (

 SELECT

TIBCO® Data Virtualization Reference Guide

139 | TDV Support for SQL Functions

 'cd' AS x);

Unlike GROUP_CONCAT, this function will not add double quotes to returned values that
include a double quote character. In the example above, the string a"b would return as
a"b.

LAST
The LAST() function returns the last value of the selected column.

Syntax

“LAST”(COLUMN_NAME)

Example

SELECT “LAST”(“ProductName”) FROM Products;

JSON_OBJECTAGG
Constructs an aggregation object member for each key-value pair and returns a single
JSON object that contains those object members

Syntax

<JSON object aggregate constructor> ::= “JSON_OBJECTAGG” “(“ <JSON name>
 “,” <JSON value expression> ["NULL ON NULL" | "ABSENT ON NULL"]]
“)”

Rules
1. Return type is String;

2. NULL ON NULL is implicit;

TIBCO® Data Virtualization Reference Guide

140 | TDV Support for SQL Functions

3. Return null if cardinality of output is 0;

4. Add option to control, whether to throw exception if name is null, or replace the
name with empty string, or ignore null keys, should not throw exception by default.
(Using the same option with 2.3.1.1);

5. Add option to control whether to handle duplicate key. (RFC7159 do not allow
duplicate keys) (Using the same option with 2.3.1.1);

6. Besides numeric, boolean, null types, JSON values should be string or cast as string.

Examples

SELECT JSON_OBJECTAGG(customerid, 'ID') a1 FROM /shared/examples/ds_
orders/tutorial/customers GROUP BY customerid HAVING JSON_OBJECTAGG
(customerid, 'ID')='{}'

JSON_ARRAYAGG
Converts aggregation of each input SQL expression to a JSON value, and returns a single
JSON array that contains those JSON values.

Syntax

<JSON array aggregate constructor> ::= “JSON_ARRAYAGG” “(“ <JSON value
expression>

["ORDER BY" <sort specification list>] ["NULL ON NULL" | "ABSENT ON
NULL"] “)”

<sort specification list> ::= <sort specification> [{ "," <sort
specification> }...]

<sort specification> ::= <sort key> ["ASC" | "DESC"] [NULLS FIRST |
NULLS LAST]

TIBCO® Data Virtualization Reference Guide

141 | TDV Support for SQL Functions

Rules
1. Return type is String;

2. ABSENT ON NULL is implicit;

3. Besides numeric, boolean, null types, JSON values should be string or cast as string.

4. Return null if rows obtained by the function is 0.

Examples

SELECT JSON_ARRAYAGG(customerid) a1 FROM /shared/examples/ds_
orders/tutorial/customers GROUP BY customerid HAVING JSON_ARRAYAGG
(customerid)='[]'

LISTAGG
LISTAGG orders data within each group specified in the ORDER BY clause, and then
concatenates the values of the measure column.

Syntax

LISTAGG (expression [, delimiter_expression]) WITHIN GROUP (ORDER BY
expression [ASC | DESC] [NULLS { FIRST | LAST } [, ...]) OVER
(PARTITION BY expression [, ...])

Remarks
• Without an OVER clause, LISTAGG is a simple aggregate function.

• PARTITION BY is required if an OVER clause is used.

Example

SELECT

TIBCO® Data Virtualization Reference Guide

142 | TDV Support for SQL Functions

LISTAGG(categoryname,',') WITHIN GROUP (ORDER BY categoryid) AS ALIAS

FROM

 /shared/examples/ds_inventory/tutorial/categories

The result is:

alias

Data Storage,External Drives,Internal
Drives,Memory,Models,Printers,Networking,Processors,Video Cards

MAX
Given an input set of values, MAX returns the maximum value in that set.

Syntax

MAX (expression)

Remarks
• Expression can be numeric, string, or date-time.

• The output type is the same as the input type.

• If the input is a CHAR, the output is the highest string in the sorting order.

• If the input is date/time, the output is the latest date/time.

• If the input is a literal, the output is the same literal.

• If the input is a numeric expression, MAX compares the values in algebraic order;
that is, large negative numbers are less than small negative numbers, which are less
than zero.

TIBCO® Data Virtualization Reference Guide

143 | TDV Support for SQL Functions

The following table lists the input types that you can use in MAX, and their corresponding
output types.

Data Type of expression Output Type

BIGINT, CHAR, DATE, DECIMAL, DOUBLE, FLOAT,
INTEGER, INTERVAL_DAY, INTERVAL_YEAR,
LONGVARCHAR, NULL, NUMERIC, REAL, SMALLINT,
TIME, TIMESTAMP, TINYINT, VARCHAR

Same type as the input type.
For example, if the input is of
type CHAR, the output is also of
type CHAR.

Example

SELECT MAX (products.UnitPrice) Price,
MAX (orders.OrderDate) Date

FROM /shared/examples/ds_inventory/products products,

 /shared/examples/ds_orders/orders orders

MEDIAN
It takes a numeric or datetime value and returns the middle value or an interpolated value
that would be the middle value once the values are sorted. Nulls are ignored in the
calculation.

Syntax

MEDIAN(expression)

Example

SELECT department_id, MEDIAN(salary)

TIBCO® Data Virtualization Reference Guide

144 | TDV Support for SQL Functions

 FROM employees

 GROUP BY department_id;

MIN
Given an input set of values, MIN returns the minimum value in that set.

Syntax

MIN (expression)

Remarks
• The expression can be numeric, string, or date/time.

• The output type is the same as the input type.

• If the input is a CHAR, the output is the lowest string in the sorting order.

• If the input is date/time, the output is the earliest date/time.

• If the input is a literal, the output is the same literal.

• If the input is a numeric expression, MIN compares the values in algebraic order; that
is, large negative numbers are less than small negative numbers, which are less than
zero.

The following table lists the input types that you can use in MIN, and their corresponding
output types.

Data Type of expression Output Type

BIGINT, CHAR, DATE, DECIMAL, DOUBLE, FLOAT,
INTEGER, INTERVAL_DAY, INTERVAL_YEAR,
LONGVARCHAR, NULL, NUMERIC, REAL, SMALLINT,
TIME, TIMESTAMP, TINYINT, VARCHAR

Same as the input type. For
example, if the input is of type
TINYINT, the output is also of type
TINYINT.

TIBCO® Data Virtualization Reference Guide

145 | TDV Support for SQL Functions

Example

SELECT MIN (products.UnitPrice) Expr1,
MIN (orders.OrderDate) Expr2

FROM /shared/examples/ds_inventory/products products,
/shared/examples/ds_orders/orders orders

NEST
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

NTH
Returns the nth sequential value in the scope of the function, where n is a constant. The
NTH function starts counting at 1, so there is no zeroth term. If the scope of the function
has less than n values, the function returns NULL.

Syntax

NTH(int_value, expression)

TIBCO® Data Virtualization Reference Guide

146 | TDV Support for SQL Functions

PERCENTILE
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

PERCENTILE_APPROX
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

PERCENTILE_CONT
PERCENTILE_CONT is an inverse distribution function that assumes a continuous
distribution model. It takes a percentile value and a sort specification, and returns an
interpolated value that would fall into that percentile value with respect to the sort
specification.

TIBCO® Data Virtualization Reference Guide

147 | TDV Support for SQL Functions

Syntax

PERCENTILE_CONT (expression) WITHIN GROUP (ORDER BY expression [ASC |
DESC] [NULLS { FIRST | LAST }] [, ...]) OVER (PARTITION BY
expression [, ...])

Remarks
• NULLs are ignored in the calculation.

• PARTITION BY is required if an OVER clause is used.

• Without an OVER clause, PERCENTILE_CONT is a simple aggregate function. Refer
Window Clause

PERCENTILE_DISC
PERCENTILE_DISC is an inverse distribution function that assumes a discrete distribution
model. It takes a percentile value and a sort specification and returns an element from the
set.

Syntax

PERCENTILE_DISC (expression) WITHIN GROUP (ORDER BY expression [ASC |
DESC] [NULLS { FIRST | LAST }] [, ...]) OVER (PARTITION BY
expression [, ...])

Remarks
• Nulls are ignored in the calculation.

• PARTITION BY is required if an OVER clause is used.

• Without an OVER clause, PERCENTILE_DISC is a simple aggregate function.Refer
Window Clause

TIBCO® Data Virtualization Reference Guide

148 | TDV Support for SQL Functions

QUANTILES
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

REGR_AVGX
REGR_AVGX evaluates the average of the independent variable of the regression line.

Syntax

REGR_AVGX (expression1, expression2) OVER (window_clause)

Remarks
• The dependent variable is expression1. The independent variable is expression2.

• REGR_AVGX makes the following computation after the elimination of NULL
expression1-expression2 pairs:

AVG (expression2)

• Without a window clause, REGR-AVGX is a simple aggregate function. Refer Window
Clause

TIBCO® Data Virtualization Reference Guide

149 | TDV Support for SQL Functions

REGR_AVGY
REGR_AVGY evaluates the average of the dependent variable of the regression line.

Syntax

REGR_AVGY (expression1, expression2) OVER (window_clause)

Remarks
• The dependent variable is expression1. The independent variable is expression2.

• REGR_AVGY makes the following computation after the elimination of NULL
expression1-expression2 pairs:

AVG (expression2)

• Without a window clause, REGR_AVGY is a simple aggregate function. Refer Window
Clause

REGR_COUNT
REGR_COUNT returns an integer that is the number of non-NULL number pairs used to fit
the regression line.

Syntax

REGR_COUNT (expression1, expression2) OVER (window_clause)

Remarks
• Without a window clause, REGR_COUNT is a simple aggregate function. Refer

Window Clause

TIBCO® Data Virtualization Reference Guide

150 | TDV Support for SQL Functions

REGR_INTERCEPT
REGR_INTERCEPT returns the y-intercept of the regression line.

Syntax

REGR_INTERCEPT (expression1, expression2) OVER (window_clause)

Remarks
• The return value is a numeric data type and can be NULL.

• After the elimination of NULL expression1-expression2 pairs, REGR_INTERCEPT
makes the following computation:

AVG (expression1) - REGR_SLOPE (expression1, expression2) * AVG
(expression2)

• Without a window clause, REGR_INTERCEPT is a simple aggregate function.Refer
Window Clause

REGR_R2
REGR_R2 returns the coefficient of determination (also called R-squared or goodness of fit)
for the regression.

Syntax

REGR_R2 (expression1, expression2) OVER (window_clause)

Remarks
• The return value is a numeric data type and can be NULL.

• VAR_POP (expression1) and VAR_POP (expression2) are evaluated after the
elimination of NULL pairs. The return values are:

TIBCO® Data Virtualization Reference Guide

151 | TDV Support for SQL Functions

— NULL if VAR_POP (expression2) = 0

— 1 if VAR_POP (expression1) = 0 and VAR_POP (expression2) != 0

— POWER (CORR (expression1,expression2) if VAR_POP (expression1) > 0 and VAR_
POP (expression2) != 0

• Without a window clause, REGR_R2 is a simple aggregate function. Refer Window
Clause

REGR_SLOPE
REGR_SLOPE returns the slope of a line.

Syntax

REGR_SLOPE (expression1, expression2) OVER (window_clause)

Remarks
• The return value is a numeric data type and can be NULL.

• After the elimination of NULL expression1-expression2 pairs, REGR_SLOPE makes the
following computation:

COVAR_POP (expression1, expression2) / VAR_POP (expression2)

• Without a window clause, REGR_SLOPE is a simple aggregate function. Refer
Window Clause

REGR_SXX
REGR_SXX makes the following computation after the elimination of NULL expression1-
expression2 pairs:

REGR_COUNT (expression1, expression2) * VAR_POP (expression2)

TIBCO® Data Virtualization Reference Guide

152 | TDV Support for SQL Functions

Syntax

REGR_SXX (expression1, expression2) OVER (window_clause)

Remarks
• Without a window clause, REGR_SXX is a simple aggregate function. Refer Window

Clause

REGR_SXY
REGR_SXY makes the following computation after the elimination of NULL expression1-
expression2 pairs:

REGR_COUNT (expression1, expression2) * COVAR_POP (expression1,
expression2)

Syntax

REGR_SXY (expression, expression) OVER (window_clause)

Remarks
• Without a window clause, REGR_SXY is a simple aggregate function. Refer Window

Clause

REGR_SYY
REGR_SYY makes the following computation after the elimination of NULL expression1-
expression2 pairs:

REGR_COUNT (expression1, expression2) * VAR_POP (expression1)

TIBCO® Data Virtualization Reference Guide

153 | TDV Support for SQL Functions

Syntax

REGR_SYY (expression, expression) OVER (window_clause)

Remarks
• Without a window clause, REGR_SYY is a simple aggregate function. Refer Window

Clause

STDDEV
STDDEV returns the sample standard deviation of expression, a set of numbers.

Syntax

STDDEV ([DISTINCT | ALL] expression) OVER (window_clause)

Remarks
• STDDEV differs from STDDEV_SAMP in that STDDEV returns zero when it has only 1

row of input data, whereas STDDEV_SAMP returns NULL.

• Without a window clause, STDDEV is a simple aggregate function. Refer Window
Clause

STDDEV_POP
STDDEV_POP computes the population standard deviation and returns the square root of
the population variance.

Syntax

STDDEV_POP ([DISTINCT | ALL] expression) OVER (window_clause)

TIBCO® Data Virtualization Reference Guide

154 | TDV Support for SQL Functions

Remarks
• Without a window clause, STDDEV_POP is a simple aggregate function. Refer

Window Clause

STDDEV_SAMP
STDDEV_SAMP computes the cumulative sample standard deviation and returns the square
root of the sample variance.

Syntax

STDDEV_SAMP ([DISTINCT | ALL] expression) OVER (window_clause)

Remarks
• Without a window clause, STDDEV_SAMP is a simple aggregate function. Refer

Window Clause

SUM
Given a set of numeric values, SUM returns the total of all values in the input set.

Syntax

SUM (expression)

Remarks
• The expression is a numeric expression.

• SUM works only with numeric data types and data types that can be converted to
numeric.

• The sum of a table with empty rows or no rows is NULL.

• See About SQL Functions in TDV for an explanation of the DECIMAL(p,s) notation.

TIBCO® Data Virtualization Reference Guide

155 | TDV Support for SQL Functions

The following table lists the input types that you can use in SUM, and their corresponding
INTEGER output types.

Data Type of expression Output Type

BIGINT, DOUBLE, INTERVAL_DAY,
INTERVAL_YEAR, SMALLINT, TINYINT

BIGINT

VARCHAR DECIMAL(41,2)

FLOAT, REAL FLOAT

DECIMAL(p,s), NUMERIC(p,s) DECIMAL (p+6, s)
For example, the output of SUM(DECIMAL
(4, 2) would be SUM(DECIMAL (10, 2)

NULL NULL

Example

SELECT SUM (products.UnitPrice) Total

FROM /shared/examples/ds_inventory/products products

SUM_FLOAT
Computes the sum of an expression over a group of rows and returns a DOUBLE PRECISION
value.

Syntax

SUM_FLOAT ([ALL | DISTINCT] expression)

TIBCO® Data Virtualization Reference Guide

156 | TDV Support for SQL Functions

Example

SELECT SUM_FLOAT(unitprice) AS cost FROM /shared/examples/ds_
inventory/tutorial/products

VAR_POP
VAR_POP returns the population variance of a set of numbers after discarding the NULLs in
this set.

Syntax

VAR_POP ([DISTINCT | ALL] expression) OVER (window_clause)

Remarks
• Without a window clause, VAR_POP is a simple aggregate function.

VAR_SAMP
VAR_SAMP returns the sample variance of a set of numbers after discarding the NULLs in
this set.

Syntax

VAR_SAMP ([DISTINCT | ALL] expression) OVER (window_clause)

Remarks
• Without a window clause, VAR_SAMP is a simple aggregate function.

TIBCO® Data Virtualization Reference Guide

157 | TDV Support for SQL Functions

VARIANCE
VARIANCE returns the variance of expression.

Syntax

VARIANCE ([DISTINCT | ALL] expression) OVER (window_clause)

Remarks
• Without a window clause, VARIANCE is a simple aggregate function.

XMLAGG
The XML aggregate function XMLAGG works on columns. This function is valid where other
aggregate functions are valid.

This function accepts one argument, which is aggregated across the groups specified in the
GROUP BY clause if that clause is specified.

Syntax

XMLAGG (<XML_value_expression>

 [ORDER BY <sort_specification_list>]

 [<XML_returning_clause>]

)

Remarks
• The aggregation can be ordered with an ORDER BY clause specific to the XML

aggregate function. This is independent of the SELECT ORDER BY clause.

TIBCO® Data Virtualization Reference Guide

158 | TDV Support for SQL Functions

• If the argument evaluates to NULL, the result is NULL.

Example (Without ORDER BY)

SELECT CAST (XMLAGG (XMLELEMENT (name Name, ContactLastName))

AS VARCHAR(10000)) "Last Name"

FROM /shared/examples/ds_orders/customers CUSTOMER

WHERE CustomerID < 23

Example (With ORDER BY)

SELECT XMLAGG ((XMLELEMENT(name Details,

XMLATTRIBUTES (ProductID as product),

XMLELEMENT (name orderno, OrderID),

XMLELEMENT (name status, Status),

XMLELEMENT (name price, UnitPrice)))

ORDER BY ProductID ASC, Status ASC, OrderID DESC, UnitPrice ASC)

myOutput

FROM /shared/examples/ds_orders/orderdetails

WHERE ProductID < 20

TIBCO® Data Virtualization Reference Guide

159 | TDV Support for SQL Functions

Array SQL Script Functions
TDV supports the array functions listed in the table. These functions are supported in SQL
scripts only and are documented in DECLARE VECTOR.

TDV-Supported Array
Function

Comments

ARRAY APPEND ARRAY_APPEND

ARRRAY AVG ARRAY_AVG

ARRAY CONCAT ARRAY_CONCAT

ARRAY CONTAINS ARRAY_CONTAINS

ARRAY COUNT ARRAY_COUNT

ARRAY DISTINCT ARRAY_DISTINCT

ARRAY IFNULL ARRAY_IFNULL

ARRAY LENGTH ARRAY_LENGTH

ARRAY MAX ARRAY_MAX

ARRAY MIN ARRAY_MIN

ARRAY POSITION ARRAY_POSITION

ARRAY PREPEND ARRAY_PREPEND

ARRAY PUT ARRAY_PUT

ARRAY REMOVE ARRAY_REMOVE

ARRAY REPLACE ARRAY_REPLACE

ARRAY REVERSE ARRAY_REVERSE

TIBCO® Data Virtualization Reference Guide

160 | TDV Support for SQL Functions

TDV-Supported Array
Function

Comments

ARRAY SORT ARRAY_SORT

ARRAY SUM ARRAY_SUM

CARDINALITY CARDINALITY

EXTEND EXTEND

FIND_INDEX FIND_INDEX

TOARRAY TOARRAY

TOATOM TOATOM

TOBOOLEAN TOBOOLEAN

TONUMBERCB TONUMBERCB

TOOBJECT TOOBJECT

TOSTRING TOSTRING

TRUNCATE TRUNCATE

ARRAY_APPEND
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated

TIBCO® Data Virtualization Reference Guide

161 | TDV Support for SQL Functions

query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

ARRAY_AVG
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

ARRAY_CONCAT
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

ARRAY_CONTAINS
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

TIBCO® Data Virtualization Reference Guide

162 | TDV Support for SQL Functions

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

ARRAY_COUNT
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

ARRAY_DISTINCT
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

TIBCO® Data Virtualization Reference Guide

163 | TDV Support for SQL Functions

ARRAY_IFNULL
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

ARRAY_LENGTH
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

ARRAY_MAX
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

TIBCO® Data Virtualization Reference Guide

164 | TDV Support for SQL Functions

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

ARRAY_MIN
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

ARRAY_POSITION
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

TIBCO® Data Virtualization Reference Guide

165 | TDV Support for SQL Functions

ARRAY_PREPEND
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

ARRAY_PUT
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

ARRAY_REMOVE
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

TIBCO® Data Virtualization Reference Guide

166 | TDV Support for SQL Functions

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

ARRAY_REPLACE
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

ARRAY_REVERSE
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

TIBCO® Data Virtualization Reference Guide

167 | TDV Support for SQL Functions

ARRAY_SORT
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

ARRAY_SUM
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

CARDINALITY
This function returns the number of elements allocated in the vector.

Refer to the TDV Reference Guide Chapter TDV SQL Script for more information about
Vectors and Functions.

TIBCO® Data Virtualization Reference Guide

168 | TDV Support for SQL Functions

EXTEND
This function appends the specified number of elements to a vector. The appended
number of elements are assigned a NULL value, and the syntax is as follows:

SET vectorX = EXTEND (vectorX, 2);

• If the number of elements specified to be appended evaluates to NULL, this function
returns NULL.

• If the vector is NULL, an error occurs, indicating that the vector is NULL.

• If the specified number is a negative number, an error occurs.

Refer to the TDV Reference Guide Chapter TDV SQL Script for more information about
Vectors and Functions.

FIND_INDEX
The function searches a vector for the first occurrence of a specified value. It accepts two
arguments. The first argument is any scalar value. The second argument is the vector that
is searched. The index starts at 1.

• The base type of the vector and the supplied argument’s data type must be
comparable or implicitly castable.

• If the searched value is not found in the vector, the result is zero.

• If either the vector or the supplied argument is NULL, the result of the function is
NULL.

The following example returns a value of 3:

DECLARE v VECTOR(INT) DEFAULT VECTOR [5, 10, 50, 100];

SET i = FIND_INDEX(50, v);

Refer to the TDV Reference Guide Chapter TDV SQL Script for more information about
Vectors and Functions.

TIBCO® Data Virtualization Reference Guide

169 | TDV Support for SQL Functions

TOARRAY
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

TOATOM
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

TOBOOLEAN
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

TIBCO® Data Virtualization Reference Guide

170 | TDV Support for SQL Functions

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

TONUMBERCB
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

TOOBJECT
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

TIBCO® Data Virtualization Reference Guide

171 | TDV Support for SQL Functions

TOSTRING
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

TRUNCATE
This function removes a specified number of elements (the “chop count”) from the end of a
vector. The syntax is as follows:

SET vector1 = TRUNCATE (vector1, chop_count)

• If the chop count evaluates to NULL, this function returns NULL.

• If the chop count is negative, or exceeds the initial size of the vector, an error
occurs.

• If the vector is NULL, an error occurs.

• TRUNCATE is also a TDV-supported SQL function. Refer to TRUNC, for a description.

Binary Functions
TDV supports a family of binary functions that perform bitwise logic on signed integers of
length 1, 2, 4, and 8 bytes.

TIBCO® Data Virtualization Reference Guide

172 | TDV Support for SQL Functions

Name SQL Name Length
(bits)

Minimum Maximum

INT1 TINYINT 8 -128 127

INT2 SMALLINT 16 -32,768 32,767

INT4 INTEGER 32 -2,147,483,648 2,147,483,647

INT8 BIGINT 64 -9,223,312,036,854,776 9,223,312,036,854,775

For these functions, TDV represents values as signed integers. The leftmost bit has a value
of -128; it has the dual role of designating 128 and the negative sign. All of the other bits
have their customary positive value.

To determine the arithmetic value of an integer in this notation, add the values of all of the
bits, with their signs:

• 1000 0000 is -128

• 1000 0001 is -127 (1x-128 + 1x1)

• 1111 1110 is -2 (1x-128 + 1x64 + 1x32 + 1x16 + 1x8 + 1x4 + 1x2)

TDV supports the binary functions listed in the table.

TDV-Supported Binary Function Comments

INT1AND, INT2AND, INT4AND, INT8AND See AND Functions

INT1NOT, INT2NOT, INT4NOT, INT8NOT See NOT Functions

INT1OR, INT2OR, INT4OR, INT8OR See OR Functions

INT1SHL, INT2SHL, INT4SHL, INT8SHL See SHL Functions

INT1SHR, INT2SHR, INT4SHR, INT8SHR See SHR Functions

INT1XOR, INT2XOR, INT4XOR, INT8XOR See XOR Functions

TIBCO® Data Virtualization Reference Guide

173 | TDV Support for SQL Functions

AND Functions
The AND functions create a result by combining each bit of one number with the
corresponding bit of the other number. If a pair of corresponding bits are both 1, the result
for that bit position is 1; otherwise the result is 0, as shown in the table.

AND arg1

0 1

arg2 0 0 0

1 0 1

Sample Syntax

INT1AND(arg1, arg2)

Remarks
• The AND functions are commutative; that is, the order of the arguments does not

affect the outcome.

Examples

Function Input Result Comments

INT1AND(0,x) 0 0 ANDed with any integer returns 0.

INT1AND(-0,x) 0 -0 is mapped to 0 before ANDing it with the other
argument.

INT1AND(-64,64) 64

INT1AND(-64,66) 64

TIBCO® Data Virtualization Reference Guide

174 | TDV Support for SQL Functions

Function Input Result Comments

INT1AND(-1,127) 127 -1 is represented by all 1-bits, so it returns any number it
is ANDed with.

INT1AND(-128,-x) -128 -128 ANDed with any negative integer (except -0) returns -
128.

NOT Functions
The NOT functions change each 1 to a 0 and each 0 to a 1 in the binary representation of
the argument.

Sample Syntax

INT1NOT(arg)

Remarks
• As long as the argument value is in range of the function, the returned value is the

same for INT1NOT, INT2NOT, INT4NOT, and INT8NOT. For example, INT1NOT(-127) =
INT2NOT(-127) = INT4NOT(-127) = INT8NOT(-127).

• Both 0 and -0 inputs return -1, but -1 input returns only 0.

Examples

The table shows representative input and output values for the INT1NOT function.

Function Input Result

INT1NOT(0) -1

INT1NOT(1) -2

TIBCO® Data Virtualization Reference Guide

175 | TDV Support for SQL Functions

Function Input Result

INT1NOT(2) -3

. . .

INT1NOT(126) -127

INT1NOT(127) -128

INT1NOT(-128) 127

INT1NOT(-127) 126

. . .

INT1NOT(-2) 1

INT1NOT(-1) 0

INT1NOT(-0) -1

OR Functions
The OR functions create a result by combining each bit of one number with the
corresponding bit of the other number. If a pair of corresponding bits are both 0, the result
for that bit position is 0; otherwise the result is 1, as shown in the table.

OR arg1

0 1

arg2 0 0 1

1 1 1

TIBCO® Data Virtualization Reference Guide

176 | TDV Support for SQL Functions

Sample Syntax

INT1OR(arg1, arg2)

Remarks
• The OR functions are commutative; that is, the order of the arguments does not

affect the outcome.

Examples

Function Input Result Comments

INT1OR(0,x) x 0 ORed with any number returns the same number,
regardless of sign.

INT1OR(-0,x) x -0 is mapped to 0 before being ORed with the other
argument.

INT1OR(64,-64) -64

INT1OR(64,-66) -2

INT1OR(66,-64) -62

INT1OR(-66,-64) -2

INT1OR(-1,x) -1 -1 ORed with any positive number results in -1.

INT1OR(-128,1) -127

. . .

INT1OR(-128,127) -1

INT1OR(-128,-x) -x -128 ORed with any negative number results in the same
negative number.

TIBCO® Data Virtualization Reference Guide

177 | TDV Support for SQL Functions

SHL Functions
The SHL functions left-shift the bits of the binary representation of a number.

Sample Syntax

INT1SHL(arg1, arg2[, arg3])

Remarks
• Shifts arg1 left by arg2 bits, filling with zeros on the right.

• If arg3 is present, arg1 is ANDed with arg3 before being shifted.

• Each left bit-shift doubles the number.

Examples

The table below shows examples of SHL. Most of the examples use INT1.

Function Input Result Comments

INT1SHL(1,0) 1 Arg2 is 0, so no shift takes place.

INT1SHL(1,1) 2

INT1SHL(3,2) 12

INT1SHL(3,10) 12 Arg2 is 10, the same as 2 mod 8 (the number of bits in
INT1), so the result is the same as INT1SHL(3,2).

INT1SHL(27,1,14) 20 Arg3 is present. 27 (0001 1011) is ANDed with 14 (0000
1110), with result 10 (0000 1010). Shifted left 1, it becomes
20 (0001 0100).

INT1SHL(127,1)

INT2SHL(127,17)

TIBCO® Data Virtualization Reference Guide

178 | TDV Support for SQL Functions

Function Input Result Comments

INT1SHL(-2,1)

INT1SHL(-127,0)

INT1SHL(-127,1) 2

INT1SHL(-128,0) 0

INT2SHL(-128,0)

SHR Functions
The SHR functions right-shift the bits of the binary representation of a number.

Sample Syntax

INT1SHR(arg1, arg2[, arg3])

Remarks
• Shifts arg1 right by arg2 bits.

• With each shift, a 0 is placed in the second-most-significant bit of the INTEGER (of
whatever size), and the least significant bit is shifted out.

• If arg3 is present, arg1 is ANDed with arg3 before being shifted.

• Each left bit-shift doubles the number.

• The most significant bit of the binary representation of arg1 acts like a sign bit. It
does not move or change; that is, negative numbers remain negative, and positive
numbers remain positive.

• If arg1 is an odd number (whether positive or negative), the result of each position
shift is (arg1 minus 1) divided by 2. If arg1 is even, the result is arg1 divided by 2.

• Arg2 should be a nonnegative number (positive or 0).

TIBCO® Data Virtualization Reference Guide

179 | TDV Support for SQL Functions

Examples

The table below shows examples of SHR. Most of the examples use INT1.

Function Input Result Comments

INT1SHR(1,0) 1 Arg2 is 0, so no shift takes place.

INT1SHR(1,1) 0

INT1SHR(2,1) 1

INT1SHR(3,1) 1 Adjacent pairs of arg1 values map to the same result.

INT1SHR(5,1) 2 5 is odd, so the result is 5 -1 (=4) divided by 2, or 2.

INT1SHR(-5,1) -3 -5 is odd, so the result is -5 -1 (=-6) divided by 2, or -3.

INT2SHR(127,1) 63

INT2SHR(127,1,6) 3 Arg3 is present. Because both the 4-bit and the 2-bit are
set in 127 (0111 1111), the AND result is 6; shifted right
one position it becomes 3.

INT2SHR(127,17) 63 Arg2 is 9, the same as 1 mod 16 (the number of bits in
INT2), so the result is the same as INT2SHR(127,1).

INT1SHR(-128,8) -128 Arg 2 is 8, the same as 0 mod 8, so the result is the
same as INT1SHR(-128,0); that is, no shift.

XOR Functions
The XOR (exclusive-OR) functions create a result by combining each bit of one number with
the corresponding bit of the other number. If a pair of corresponding bits are the same, the
result for that bit position is 0; if they are different, the result is 1, as shown in the table.

TIBCO® Data Virtualization Reference Guide

180 | TDV Support for SQL Functions

XOR arg1

0 1

arg2 0 0 1

1 1 0

Sample Syntax

INT1XOR(arg1, arg2)

Remarks
• The XOR functions are commutative; that is, the order of the arguments does not

affect the outcome.

Examples

Function Input Result Comments

INT1XOR(0,x) x 0 has no bits set, so every bit set in x is set in the
result.

INT1XOR(0,x) -x -0 is mapped to 0 before being XORed to arg2.

INT1XOR(-0,-x) x -0 is mapped to 0 before being XORed to arg2.

INT1XOR(64,-64) -128

INT1XOR(64,-66) -2

INT1XOR(66,-64) -126

TIBCO® Data Virtualization Reference Guide

181 | TDV Support for SQL Functions

Function Input Result Comments

INT1XOR(-66,-64) 126

INT1XOR(-1,127) -128

INT1XOR(-128,1) -127

. . .

INT1XOR(-128,127) -1

INT1XOR(-128,-127) 1

. . .

INT1XOR(-128,-1) 127

BYTE_SUBSTR
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

Character Functions
Character functions let you get information about strings, combine them, or modify them.

TDV supports the character functions listed in the table.

TIBCO® Data Virtualization Reference Guide

182 | TDV Support for SQL Functions

TDV-Supported Character Function Comments

ASCII ASCII

BASE64 BASE64

BITCOUNT BITCOUNT

BITSTREAM_TO_BINARY BITSTRING_TO_BINARY

BIT_LENGTH BIT_LENGTH

BTRIM BTRIM

CHARACTER_LENGTH CHARACTER_LENGTH

CHARINDEX CHARINDEX

CHAR_LENGTH CHAR_LENGTH

CHR CHR

CONCAT CONCAT

CONTAINS CONTAINS

DLE_DST DLE_DST

ENDSWITH ENDSWITH

FIND FIND

FIND_IN_SET FIND_IN_SET

GET_JSON_OBJECT GET_JSON_OBJECT

GREATEST GREATEST

HEX_TO_BINARY HEX_TO_BINARY

TIBCO® Data Virtualization Reference Guide

183 | TDV Support for SQL Functions

TDV-Supported Character Function Comments

INDEXOF INDEXOF

INET_ATON INET_ATON

INET_NTOA INET_NTOA

INITCAP INITCAP

INSERT INSERT

INSTR INSTR

ISOF ISOF

ISUTF8 ISUTF8

LCASE ISUTF8

LEAST LEAST

LEFT LEFT

LENGTH LENGTH

LE_DST LE_DST

LOCATE LOCATE

LOWER LOWER

LPAD LPAD

LSHIFT LSHIFT

LTRIM LTRIM

MD5 MD5

TIBCO® Data Virtualization Reference Guide

184 | TDV Support for SQL Functions

TDV-Supported Character Function Comments

OCTET_LENGTH OCTET_LENGTH

OVERLAYB NEST

PARSE URL PARSE_URL

PARTIAL_STRING_MASK PARTIAL_STRING_MASK

POSITION POSITION

QUOTE_IDENT QUOTE_IDENT

QUOTE_LITERAL QUOTE_LITERAL

REGEXP REGEXP

REGEXP CONTAINS REGEXP_CONTAINS

REGEXP COUNT REGEXP_COUNT

REGEXP_EXTRACT REGEXP_EXTRACT

REGEXP INSTR REGEXP_INSTR

RREGEXP LIKE REGEXP_LIKE

RREGEXP POSITION REGEXP_POSITION

REGEXP_REPLACE REGEXP_REPLACE

REGEXP SUBSTR REGEXP_SUBSTR

REPEAT REPEAT

REPLACE REPLACE

REVERSE REVERSE

Reference/POSITION.htm#ch_4_sql_functions_2138746045_1400652

TIBCO® Data Virtualization Reference Guide

185 | TDV Support for SQL Functions

TDV-Supported Character Function Comments

RIGHT RIGHT

RLIKE RLIKE

RPAD RPAD

RSHIFT RSHIFT

RTRIM RTRIM

SPACE SPACE

SPLIT SPLIT

SPLIT_PART SPLIT_PART

STARTSWITH STARTSWITH

STRPOS STRPOS

SUBSTR SUBSTR

SUBSTRING SUBSTRING

SUBSTRINGOF SUBSTRINGOF

TO_CANONICAL

TRANSLATE TRANSLATE

TRIM TRIM

TRIMBOTH TRIMBOTH

TRIMLEADING TRIMLEADING

TRIMTRAILING TRIMTRAILING

TIBCO® Data Virtualization Reference Guide

186 | TDV Support for SQL Functions

TDV-Supported Character Function Comments

TYPE TYPE

UCASE UCASE

UNICHR UNICHR

UNICODE UNICODE

UPPER UPPER

V6_ATON V6_ATON

V6_NTOA V6_NTOA

V6_SUBNETA V6_SUBNETA

V6_SUBNETN V6_SUBNETN

V6_TYPE V6_TYPE

ASCII
ASCII returns the numerical value of an ASCII character.

Syntax

ASCII (expression)

Remarks
• If you pass a NULL string to this function, it returns 0.

• If the string is empty, this function returns 0.

• Any character outside the range 0 to 255 is returned as an error or ignored,
depending on the implementation of RDBMS.

TIBCO® Data Virtualization Reference Guide

187 | TDV Support for SQL Functions

• If expression is a string with more than one character, only the first character is
considered.

Example

SELECT ASCII ('a') AS lowercase_a,

ASCII('A') AS uppercase_a

BASE64
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

BITCOUNT
Returns the number of bits that are set in the input expression.

Syntax

BIT_COUNT(expression)

TIBCO® Data Virtualization Reference Guide

188 | TDV Support for SQL Functions

Example

SELECT BITCOUNT(HEX_TO_BINARY('0x10'));

The above SQL returns:

BITCOUNT

1

BIT_LENGTH
Returns the length of the given string in bits.

Syntax

BIT_LENGTH (str1)

Example

SELECT BIT_LENGTH('my text')

The above query returns:

BIT_LENGTH(‘my text’)

56

TIBCO® Data Virtualization Reference Guide

189 | TDV Support for SQL Functions

BITSTRING_TO_BINARY
This function translates the given VARCHAR bitstring representation into a VARBINARY
value. This function is the inverse of TO_BITSTRING.

Syntax

BITSTRING_TO_BINARY (expression)

Example

SELECT BITSTRING_TO_BINARY('0110000101100010');

BTRIM
The BTRIM function is used to remove the string specified in the argument from the given
string If no string for removing default space will be removed from leading and trailing side
from the string.

Syntax

BTRIM(<string value>, <string to be trimmed from the string value>)

Example‘

select BTRIM('testX','est')

The above query returns:

X

TIBCO® Data Virtualization Reference Guide

190 | TDV Support for SQL Functions

CHAR_LENGTH
The CHAR_LENGTH function returns the length of a string. This is the same as the
CHARACTER_LENGTH function.

Syntax

CHAR_LENGTH(string)

Example

SELECT CHAR_LENGTH(‘TDV’) AS Length;

The above query returns:

Length

3

CHARACTER_LENGTH
See CHAR_LENGTH

CHARINDEX
CHARINDEX function searches for one string inside a second string expression, returning
the starting position of the first expression if found. If not found a 0 is returned.

Syntax

CHARINDEX (expressionToFind , expressionToSearch [, start_location])

TIBCO® Data Virtualization Reference Guide

191 | TDV Support for SQL Functions

Example

SELECT CHARINDEX(‘an’, ‘This is an example’) as PositionofAN

The above query returns:

PositionofAn

9

CHR
CHR converts an integer ASCII code to a character.

Syntax

CHR (integer)

Remarks
• CHR can accept string input, as long as the string can be converted to a numeric

value.

• The input must be a value between 0 and 255, inclusive.

• If the input is NULL, the output is NULL.

• If the input is less than zero, an exception is thrown.

• If the input is greater than the maximum value of INTEGER (2147483647), an
exception is thrown.

• For an ASCII chart, see http://www.techonthenet.com/ascii/chart.php

The following table lists the input types that you can use in CHR, and their corresponding
output types.

TIBCO® Data Virtualization Reference Guide

192 | TDV Support for SQL Functions

Data Type of integer Output Type

BIGINT, DECIMAL,
INTEGER, SMALLINT,
STRING, TINYINT

CHAR(1)

NULL NULL

Example

SELECT DISTINCT CHR (100)

FROM /shared/examples/ds_orders/customers

CONCAT
Given two arguments, the CONCAT function concatenates them into a single output string.

Note: You can also concatenate two arguments in-line using the concatenation operator
(||); for example, A || B.

Syntax

CONCAT (argument1, argument2)

Remarks
• The arguments of CONCAT can be of type string or any other type, and you can

concatenate them in any combination of data types.

• To concatenate a nonstring to a string, use the CAST function to convert the
nonstring to string.

• Enclose a literal string within single-quotes to concatenate it with another argument.
For example, CONCAT(‘string1’, string2), where string1 is a literal.

TIBCO® Data Virtualization Reference Guide

193 | TDV Support for SQL Functions

• The CONCAT function does not supply white-space characters between arguments in
the concatenated output. You must provide the white-space characters manually.

You can use the Subfunction button in the Function Arguments Input dialog to
provide a space between concatenated strings, or use the format:

CONCAT('string1', CONCAT(' ', 'string2'))

• If any of the input strings in a CONCAT function is NULL, the result string is also
NULL. Otherwise, the output type is STRING.

The following table lists the input types that you can use in CONCAT.

Data Type of argument1 Data Type of
argument2

Output
Type

BIGINT, CHAR, DATE, DECIMAL, FLOAT,
INTEGER, LONGVARCHAR, NUMERIC,
REAL, SMALLINT, STRING, TIME,
TIMESTAMP, TINYINT, VARCHAR

Any type listed for
argument1 except
NULL.n

STRING

Any data type listed above. NULL NULL

NULL NULL

Examples (Generic)

CONCAT (<string>, <string>)

CONCAT (<string>, <nonstring>)

CONCAT (<nonstring>, <string>)

CONCAT (<nonstring>, <nonstring>)

TIBCO® Data Virtualization Reference Guide

194 | TDV Support for SQL Functions

Examples (Specific)

SELECT CONCAT (customers.ContactFirstName,

 CONCAT (' ', customers.ContactLastName)) Expr1,

 CONCAT ('a', concat(' ', 'b')) Expr2,

 CONCAT ('a', concat(' ', NULL)) Expr3,

 CONCAT ('NULL', concat(' ', NULL)) Expr4,

 CONCAT (NULL, concat(' ', NULL)) Expr5,

 CONCAT ('a', current_date) Expr6,

 CONCAT (current_date, current_time) Expr7,

 CONCAT ('Feb', concat(' ', CAST(2004 AS BIT))) Expr8,

 customers.ContactFirstName || ' ' ||

 customers.ContactLastName Expr9,

 '0100' || '1010' Expr10, 100 || 1010 Expr11, 23 || 56 Expr12

FROM /shared/examples/ds_orders/customers customers

TIBCO® Data Virtualization Reference Guide

195 | TDV Support for SQL Functions

CONTAINS
The CONTAINS function returns the rows from the table with columns that contains the
search string specified in the argument.

Syntax

CONTAINS(column_name, search_expression)

Example

SELECT *

from /shared/examples/ds_inventory/tutorial/employees

where CONTAINS(firstname, 'Jo')

The above query returns all the rows that has the string “Jo” as part of the first name
column.

DLE_DST
The value that is returned indicates how different the two input strings are calculated
according to the Damerau-Levenshtein edit distance algorithm.

Syntax

dle_dst (<str_expr_1>, <str_expr_2>)

Example

SELECT DLE_DST('on','no')

TIBCO® Data Virtualization Reference Guide

196 | TDV Support for SQL Functions

Returns: 1

ENDSWITH
Returns TRUE if the first expression ends with second expression.

Syntax

ENDSWITH(column/expr, string)

Example

select * from

/shared/examples/ds_orders/tutorial/employees

where endswith(firstname, 'es')

The above query lists all the rows that have the firstname column ending with “es”.

FIND
See INSTR

FIND_IN_SET
Returns the position of a string within a list of strings.

Syntax

FIND_IN_SET(string, string_list)

TIBCO® Data Virtualization Reference Guide

197 | TDV Support for SQL Functions

Example

SELECT FIND_IN_SET(‘a’, ‘b,a,c’);

The above query returns 2.

GET_JSON_OBJECT
GET_JSON_OBJECT extracts a JSON object from a JSON string based on the JSON path,
and returns a JSON string of the extracted JSON object.

Syntax

GET_JSON_OBJECT (STRING json_string, STRING json_path)

Remarks
• The json_path argument can contain only numbers, lowercase letters, and

underscore (_).

• Keys cannot start with numbers because of restrictions on Hive/Hadoop column
names.

• This function does not support recursive descent using '..'

• This function does not support filter expression '[?(<expression>)]

• Return value is NULL if the input JSON string is invalid.

• Union operator and array slice operator is not supported by this function.

Examples

The following is a simple example that uses GET_JSON_OBJECT.

PROCEDURE JSONPathFunctionExample(OUT resultJson VARCHAR)

TIBCO® Data Virtualization Reference Guide

198 | TDV Support for SQL Functions

BEGIN

DECLARE sourceJson VARCHAR(4096);

DECLARE jsonPathExpression VARCHAR(4096);

--Create a JSON value to use in the JSONPATH function

SET sourceJson = '{"LookupProductResponse":{"LookupProductResult":
{"row":[

{"ProductName":"Maxtific 40GB ATA133
7200","ProductID":"1","ProductDescription":"Maxtific Storage 40 GB"}

]}}}';

--Create a JSONPATH expression to evaluate

SET jsonPathExpression =
'$.LookupProductResponse.LookupProductResult.row[0].ProductName';

--Evaluate the XPATH expression against the source XML value

SET resultJson = JSONPATH (sourceJson, jsonPathExpression);

END

The output of this example is ‘Maxtific 40GB ATA133 7200’.

You can also use GET_JSON_OBJECT to iterate through an array and count the elements.

SET i = 0;

TIBCO® Data Virtualization Reference Guide

199 | TDV Support for SQL Functions

SET jsonobject = GET_JSON_OBJECT(jsonstring,'$.array_element[‘||CAST(i
AS VARCHAR)||‘]') ;

 WHILE jsonobject NOT NULL DO

 SET i = i + 1 ;

 SET jsonobject = GET_JSON_OBJECT(jsonstring,'$.array_element[‘||CAST(i
AS VARCHAR)||‘]') ;

 END DO;

GREATEST
The GREATEST function returns the greatest value in a list of expressions. The return value
is the same datatype as expr1.

Note: If the comparison is based on a character comparison, one character is considered
greater than another if it has a higher character set value.

Syntax

GREATEST(arg1, arg2, arg3, ...)

HEX_TO_BINARY
Translates the given VARCHAR hexadecimal representation into a VARBINARY value.

Syntax

HEX_TO_BINARY (string_expression)

TIBCO® Data Virtualization Reference Guide

200 | TDV Support for SQL Functions

INDEXOF
Returns the index within the calling String object of the first occurrence of the specified
value, starting the search at fromIndex, or -1 if the value is not found.

Syntax

INDEXOF(searchValue, fromIndex)

INET_ATON
Given the dotted-quad representation of an IPv4 network address as a string, returns an
integer that represents the numeric value of the address in network byte order. INET_ATON
() returns NULL if it does not understand its argument.

Syntax

INET_ATON(expr)

Example

SELECT INET_ATON('12.0.6.9')

The above example returns 201328137.

INET_NTOA
Given a numeric IPv4 network address in network byte order, returns the dotted-quad
string representation of the address as a string in the connection character set. INET_NTOA
() returns NULL if it does not understand its argument.

TIBCO® Data Virtualization Reference Guide

201 | TDV Support for SQL Functions

Syntax

INET_NTOA(expr)

Example

SELECT INET_NTOA(201328137);

The above query returns 12.0.6.9

INITCAP
The INITCAP function sets the first character in each word to uppercase and the rest to
lowercase.

Syntax

INITCAP(string1)

Example

SELECT INITCAP('tDv');

The above query returns Tdv.

INSERT
Returns a character string where length characters have been deleted from string_exp1,
beginning at start, and where string_exp2 has been inserted into string_exp1, beginning at
start.

TIBCO® Data Virtualization Reference Guide

202 | TDV Support for SQL Functions

Syntax

INSERT(string_exp1, start, length, string_exp2)

Example

select INSERT('Sunday',1,3,'Mon')

Returns: Monday

INSTR
The INSTR (“in string”) function searches for a character or substring within a string and
returns an integer for the location if that string is found, or zero if it is not found. The first
argument, which can be a literal string, a variable, or a table column, is searched for the
string specified by the second argument. If the string is found within the string, its position
is returned as an integer relative to either the start or the end of the string.

Syntax

INSTR (string_to_examine, string_to_find[, search_start[, nth_
occurrence]])

Remarks
• The first argument, string_to_examine, can be a literal expression or variable name

enclosed in single-quotes. The first argument can also be an expression within a SQL
SELECT to evaluate the values within a tableName.columnName. The data type must
be VARCHAR or similar.

• The second argument, string_to_find, should be a string, or a variable with a data
type of VARCHAR.

• Optionally, you can specify search_start to make the search proceed from any
arbitrary position within the string.

• If the search proceeds from the end of string_to_examine, the result is always 0.

TIBCO® Data Virtualization Reference Guide

203 | TDV Support for SQL Functions

• If INSTR is executed in TDV, it returns NULL for INSTR('','C') and 0 for INSTR(' ','C').
When pushed to some databases, INSTR('','C') might return 0 as opposed to NULL.

Note: The difference is a space character. The C character is just an example.

• INSTR treats empty strings as NULL.

• The location of any substring match is reported with a count that starts with the first
character position on the left.

• The INSTR function can be used to parse a concatenated value to identify the spaces
between space-delimited names or words.

• Each leading space counts as one character.

Note: See also the related function POSITION.

Examples

INSTR (' jean_doe', ' ', 2, 1)

This sample INSTR function call (with one leading space) returns 6.

INSTR (' jean_doe', ' ', 2, 1)

This sample INSTR function call (with two leading spaces) returns 2.

ISOF
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

Reference/POSITION.htm#ch_4_sql_functions_2138746045_1400652

TIBCO® Data Virtualization Reference Guide

204 | TDV Support for SQL Functions

ISUTF8
Tests whether a string is a valid UTF-8 string. Returns true if the string conforms to UTF-8
standards, and false otherwise. This function is useful to test strings for UTF-8 compliance
before passing them to one of the regular expression functions, such as REGEXP_LIKE,
which expect UTF-8 characters by default.

Syntax

ISUTF8(string);

LCASE
This function is used to convert the text to lower-case: Also see LOWER

Syntax

LCASE(text)

Example

SELECT LCASE(‘TDV’)

Returns: tdv

LEAST
This function returns the smallest value of the list of arguments.

Syntax

LEAST(arg1, arg2, arg3, ...)

TIBCO® Data Virtualization Reference Guide

205 | TDV Support for SQL Functions

Example

SELECT LEAST(8, 3, 2)

Returns: 2

LEFT
This function is used to extract a number of characters from a string (starting from left).

Syntax

LEFT(string, number of characters)

Example

SELECT LEFT(‘Tibco Data Virtualization’, 5)

Returns: Tibco

LENGTH
LENGTH returns the number of characters (rather than the number of bytes) in a given
string expression.

Syntax

LENGTH (string)

Remarks
• CHAR_LENGTH and CHARACTER_LENGTH are synonymous with LENGTH.

TIBCO® Data Virtualization Reference Guide

206 | TDV Support for SQL Functions

• If the input is NULL, the output is also NULL. Otherwise, the output is an integer that
is equal to or greater than zero.

• If the input is an empty string, the output is zero.

• The length of a white-space in an input argument is counted as 1 (one).

• If you want to count the white-space included in an input string, use the CONCAT
function to accommodate the space, as in this example:

LENGTH (CONCAT (customers.ContactFirstName, CONCAT (' ',
customers.ContactLastName)))

• If you want to find the length of an integer, you must convert the integer to
VARCHAR and then pass the string as the input for the LENGTH function.

For example, if you want to find out the number of digits in a phone number, cast
the phone number’s integer into a VARCHAR and use it in the LENGTH function.

The following table lists the input types that you can use in LENGTH, and their
corresponding output types.

Data Type of string Output Type

BLOB, CHAR, CLOB, LONGVARCHAR,
VARCHAR

INTEGER

NULL NULL

Example

SELECT LENGTH (customers.PostalCode) Expr1,

LENGTH (NULL) Expr2,

LENGTH (' ') Expr3,

LENGTH ('') Expr4,

TIBCO® Data Virtualization Reference Guide

207 | TDV Support for SQL Functions

LENGTH (CONCAT(customers.ContactFirstName,
 CONCAT(' ', customers.ContactLastName))) Expr5,

LENGTH (customers.FaxNumber) Expr6,

LENGTH (TO_CHAR(1000)) Expr7,

LENGTH (CAST (customers.PhoneNumber AS VARCHAR)) Expr8

FROM /shared/examples/ds_orders/customers customers

LE_DST
The return value indicates how different the two input strings are calculated according to
the Levenshtein edit distance algorithm. A value of 0 indicates that the strings are
equivalent without any modifications. The algorithm computes the number of
modifications that are required to change the first string into the second string. The strings
are case-sensitive. A modification is a change such as an addition, deletion, letter case-
change, or substitution of a single character.

Syntax

le_dst (<str_expr_1>, <str_expr_2>)

Example

SELECT le_dst('sow','show')

The above query returns a value of 1 (the addition of the character h)

SELECT le_dst('hello','Hollow')

TIBCO® Data Virtualization Reference Guide

208 | TDV Support for SQL Functions

The above query returns a value of 3

(the substitution of e for o, the capitalization of H, and the addition of w).

Remarks

Because the string comparisons are case-sensitive, you can use functions such as upper()
and lower() to change the letter casing of strings before the comparison and ignore case-
change modifications. For example, select le_dst('Smith','SMYTH') returns a value of 4
(three uppercase letter changes and a letter substitution). The function select le_dst(upper
('Smith'),'SMYTH') returns a value of 1 (the I/Y letter substitution).

LOCATE
Returns the position of the first occurrence of a substring in a string.

Syntax

LOCATE(substring, string, start)

Example

SELECT LOCATE(‘Virtual’, ‘Data Virtualization’,1)

Returns:6

LOWER
The LOWER function makes all the alphabetical characters in a given string lowercase. It
can be used to format output, or to make case-insensitive comparisons.

Syntax

LOWER (string)

TIBCO® Data Virtualization Reference Guide

209 | TDV Support for SQL Functions

Remarks
• The input string must be enclosed within single-quotes.

• If the input is an empty string, the output is also an empty string.

• If the input contains only space characters enclosed in single-quotes, it is not empty,
and LOWER does not turn it into an empty string.

The following table lists the input types that you can use in LOWER, and their
corresponding output types.

Data Type of string Output Type

CHAR, LONGVARCHAR, STRING,
VARCHAR

Same as the input type; for example, if the input is of
type VARCHAR, the output is also of type VARCHAR.

NULL NULL

Example (With a Comparison)

SELECT ContactLastName AS Name

FROM /shared/examples/ds_orders/customers

WHERE LOWER (ContactLastName) LIKE '%Ho%';

This example would convert all the letters in a ContactLastName to lowercase and pull out
all the names from the table customers containing the sequence ho, such as:

Howard

Honner

Nicholson

Thompson

TIBCO® Data Virtualization Reference Guide

210 | TDV Support for SQL Functions

Example (Other Contexts)

SELECT LOWER (products.ProductName) Name,

LOWER ('YOU') Expr4,

LOWER (' ') Expr6,

LOWER ('YoU 9 fEEt') Expr2,

LOWER (NULL) Expr1

FROM /shared/examples/ds_inventory/products products

LPAD
The LPAD function truncates strings from the right, or pads them with spaces (or specified
characters) on the left, to make all returned values the same specified length.

Syntax

LPAD (expression, padded_length [, pad_string])

Remarks
• The expression argument can be a literal, a variable set off by single-quotes, or a

SQL expression specifying table.columnName. The data type of the column specified
must be compatible with VARCHAR or a related data type, but not INTEGER, TINYINT,
or CHAR(1).

• If expression is an empty string or a NULL string, LPAD returns NULL.

• The padded_length argument is an integer that specifies the length of the returned
values.

TIBCO® Data Virtualization Reference Guide

211 | TDV Support for SQL Functions

• If padded_length is zero or negative, LPAD returns an empty string.

• The pad_string argument is optional. If it is omitted, spaces are used as the left-
padding character; otherwise, pad_string is added repeatedly as left-padding until
the return value reaches the specified integer string length, as shown in the fourth
example below.

• If pad_string is an empty string or a NULL string, LPAD returns NULL.

Note: See also the related function RPAD.

Example (Retrieve the First Character)

The following SQL example uses LPAD to retrieve just the first character from the values in
the column FirstName.

SELECT LPAD (table.FirstName, 1) FirstInitial FROM table

Example (Truncate Values)

The following SQL example uses LPAD to truncate the values from the FamilyName column
so that only the first twelve characters from very long family names are returned in the
result set column that has the alias LastName(12).

SELECT LPAD (table.FamilyName, 12) LastName(12) FROM table

Example (Limit Values or Left-Pad with a Value)

The following SQL example uses LPAD to limit the values of SectionTitle to the first 36
characters, and to precede section titles of fewer than 36 characters with enough periods
to bring their character counts to 36.

SELECT LPAD (table.SectionTitle, 36, '.') FROM table

Example (Limit Values or Left-Pad with a Pattern of Values)

When pad_string is more than a single character, the specified character pattern (or
beginning of the pattern) is repeated as padding until the exact string length is reached.

TIBCO® Data Virtualization Reference Guide

212 | TDV Support for SQL Functions

SELECT LPAD (table.LastName, 8, '*...') FROM table

In this example, a last name of “Shimabukuro” would return “Shimabuk” and a last name
of “Ho” would return “*...*.Ho”.

LSHIFT
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

LTRIM
This function removes leading spaces from a string.

Syntax

LTRIM(string)

Example

SELECT LTRIM(‘ Data’)

TIBCO® Data Virtualization Reference Guide

213 | TDV Support for SQL Functions

MD5
The MD5() function calculates an MD5 128-bit checksum for a string.

Syntax

MD5(string)

Example

SELECT MD5(‘tdv’)

OCTET_LENGTH
This function is used to count the number of bytes in a specified string.

Syntax

OCTET_LENGTH(string)

Example

SELECT OCTET_LENGTH(‘Data Virtualization’)

OVERLAYB
Replaces part of a string with another string and returns the new string as an octet value.

Syntax

OVERLAYB (input-string, replace-string, position [, extent])

TIBCO® Data Virtualization Reference Guide

214 | TDV Support for SQL Functions

Example

SELECT OVERLAYB('ABCDEFG', 'xxx', 2);

Returns: AxxxEFG

PARSE_URL
Returns the specified part from the URL. Valid values for partToExtract include HOST,
PATH, QUERY, REF, PROTOCOL, AUTHORITY, FILE, and USERINFO. For example, parse_url
('http://facebook.com/path1/p.php?k1=v1&k2=v2#Ref1', 'HOST') returns 'facebook.com'.
Also a value of a particular key in QUERY can be extracted by providing the key as the third
argument, for example, parse_url('http://facebook.com/path1/p.php?k1=v1&k2=v2#Ref1',
'QUERY', 'k1') returns 'v1'.

Syntax

parse_url(string urlString, string partToExtract [, string
keyToExtract])

Example

parse_url('http://facebook.com/path1/p.php?k1=v1&k2=v2#Ref1', 'HOST')

PARTIAL_STRING_MASK
This string masking function provides the ability to reveal the first and the last few
specified number of characters with a custom padding string in the middle.

Syntax

partial_string_mask(<str>, <prefix> ,<padding> , <suffix>)

TIBCO® Data Virtualization Reference Guide

215 | TDV Support for SQL Functions

Remarks
• <str> is the string to be masked.

• <prefix> is the starting number of characters to be revealed.

• <padding> is the custom padding string in the middle.

• <suffix> is the last number of characters to be revealed from the column value.

QUOTE_IDENT
The QUOTE_IDENT function is used to make a given string with suitably double quoted, so
as it can be used like an identifier in an SQL statement string if required.

Syntax

QUOTE_IDENT(string)

Example

SELECT quote_ident('De''angelo')

The above query returns:

“De’angelo”

QUOTE_LITERAL
Returns the given string, suitably quoted, to be used as a string literal in a SQL statement
string. Embedded single quotes and backslashes are doubled.

Syntax

QUOTE_LITERAL (string)

TIBCO® Data Virtualization Reference Guide

216 | TDV Support for SQL Functions

Example

SELECT QUOTE_LITERAL('Joseph D''Artagnan');

REGEXP_CONTAINS
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

REGEXP_COUNT
The function evaluates strings using characters as defined by the input character set. It
returns an integer indicating the number of occurrences of pattern. If no match is found,
then the function returns 0.

Syntax

REGEXP_COUNT(string, pattern)

Example

SELECT REGEXP_COUNT('3454565452545', '45') REGEXP_COUNT

Retunrs:4

TIBCO® Data Virtualization Reference Guide

217 | TDV Support for SQL Functions

REGEXP_EXTRACT
A string function used in search operations for sophisticated pattern matching including
repetition and alternation.

Syntax

REGEXP_EXTRACT(string, expr_to_match, (optional) which part of matching
string to be returned)

REGEXP_INSTR
The function evaluates strings using characters as defined by the input character set. It
returns an integer indicating the beginning or ending position of the matched substring,
depending on the value of the return_option argument.

Syntax

REGEXP_INSTR(string, pattern to search, position to begin search, nth
occurrence to search for, return_option, case sensitivity parameter)

REGEXP_REPLACE
This function allows you to replace a sequence of characters in a string with another set of
characters using regular expression pattern matching.

Syntax

REGEXP_REPLACE(string, pattern [, replacement_string [, start_position
[, nth_appearance [, match_parameter]]]])

TIBCO® Data Virtualization Reference Guide

218 | TDV Support for SQL Functions

REGEXP_SUBSTR
will allow you to extract a substring from a string using regular expression pattern
matching.

Syntax

REGEXP_SUBSTR(string, pattern [, start_position [, nth_appearance [,
match_parameter [, sub_expression]]]])

REGEXP_LIKE
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

REGEXP_POSITION
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated

TIBCO® Data Virtualization Reference Guide

219 | TDV Support for SQL Functions

query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

REPEAT
This function repeats a string as many times as specified.

Syntax

REPEAT(string, number)

Example

REPEAT(‘Test Data’,2)

REVERSE
This function reverses a string and returns the result.

Syntax

REVERSE(string)

Example

REVERSE(‘Test Data’)

RIGHT
The function extracts a number of characters from a string (starting from right).

TIBCO® Data Virtualization Reference Guide

220 | TDV Support for SQL Functions

Syntax

RIGHT(string, number_of_chars)

Example

SELECT RIGHT(suppliername, 5) AS supplier FROM /shared/examples/ds_
inventory/tutorial/suppliers

REPLACE
Given a series of three strings (representing the search string, string to be replaced, and
replacement string, respectively), the REPLACE function substitutes the replacement string
for all instances of the string to be replaced that are contained in the search string.

Syntax

REPLACE (search_string, string_to_be_replaced, replacement_string)

Remarks
• The string_to_be_replaced and the replacement_string must be of the same type

(string or binary).

• All occurrences of the string_to_be_replaced within the search_string are replaced
with the replacement_string.

• The string_to_be_replaced and the replacement_string must be enclosed within
single-quotes.

• If any of the input strings is NULL, the output is also NULL. Otherwise, the output is
a string.

The following table lists the input types that you can use in REPLACE, and their
corresponding output types.

TIBCO® Data Virtualization Reference Guide

221 | TDV Support for SQL Functions

Data Type of search_
string

Data Type of string_
to_be_replaced

Data Type of
replacement_
string

Output
Data Type

CHAR, VARCHAR,
LONGVARCHAR,
STRING

Same as search_string. Same as string_
to_be_
replaced.

Same as string_
to_be_
replaced.

CHAR, LONGVARCHAR,
NULL, STRING,
VARCHAR

NULL Same as search_
string.

NULL

NULL CHAR, VARCHAR,
LONGVARCHAR,
STRING

Same as string_
to_be_
replaced.

NULL

CHAR, LONGVARCHAR,
STRING, VARCHAR

Same as search_string. NULL NULL

Example

SELECT REPLACE (products.ProductName, 'USB 2.0', 'USB 3.0') Replaced

FROM /shared/examples/ds_inventory/products products

REGEXP
Applies to regular expression against string input

Syntax

REGEXP(pattern, string)

Also see RLIKE

TIBCO® Data Virtualization Reference Guide

222 | TDV Support for SQL Functions

RLIKE
The function performs a pattern match of a string expression against a pattern. The pattern
is supplied as an argument.

Syntax

RLIKE (pattern, string)

RPAD
The RPAD function truncates strings from the right, or pads them with spaces (or specified
characters) on the right, to make all returned values the same specified length.

Syntax

RPAD (expression, padded_length [, pad_string])

Remarks
• The expression argument can be a literal expression, a variable set off by single-

quotes, or a SQL expression specifying table.columnName. The data type of the
column specified must be compatible with VARCHAR or a related data type, but not
INTEGER, TINYINT, or CHAR(1).

• If expression is an empty string or a NULL string, RPAD returns NULL.

• The padded_length argument is an integer that specifies the length of the returned
values.

• If padded_length is zero or negative, RPAD returns an empty string.

• The pad_string argument is optional. If it is omitted, spaces are used as the right-
padding character; otherwise, pad_string is added repeatedly on the right until the
return value reaches the specified string length, as shown in the fourth example
below.

• If pad_string is an empty string or a NULL string, RPAD returns NULL.

Note: See also the related function LPAD.

TIBCO® Data Virtualization Reference Guide

223 | TDV Support for SQL Functions

Example (Retrieve the First Character)

The following SQL select uses RPAD to retrieve just the first two characters from the values
in the column FirstName.

SELECT RPAD (table.FirstName, 2) FirstInitial FROM table

Example (Truncate Values)

The following SQL select uses RPAD to truncate the values from the FamilyName column so
that only the first twelve characters from very long family names are returned in the result
column that has the alias LastName(12).

SELECT RPAD (table.FamilyName, 12) LastName(12) FROM table

Example (Limit Values or Right-Pad with a Value)

The following SQL select uses RPAD to limit the values of SectionTitle to the first 36
characters, and to append enough periods to shorter section titles to bring their character
counts to 36.

SELECT RPAD (table.SectionTitle, 36, '.') FROM table

Example (Limit Values or Right-Pad with a Pattern of Values)

When pad_string is more than a single character, the specified characters are repeated as
padding until the length specified by padded_length is reached.

SELECT RPAD (table.LastName, 10, '*...') FROM table

In this example, a LastName of “Shimabukuro” would return “Shimabuk”; a LastName of
“Ho” would return “Ho*...*..” (that is, with all or part of the pattern asterisk-dot-dot-dot
repeated until a count of 10 characters has been reached).

TIBCO® Data Virtualization Reference Guide

224 | TDV Support for SQL Functions

RSHIFT
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

RTRIM
The RTRIM function trims all white-spaces from the right side of a string.

Syntax

RTRIM (string) []

Remarks
• White-spaces embedded in an input string are not affected.

• If the input string is NULL, the output is also NULL. Otherwise, the output is of the
same type as the input.

The following table lists the input types that you can use in RTRIM, and their corresponding
output types.

Data Type of string Output Type

CHAR, LONGVARCHAR, NULL,
VARCHAR

Same type as the input type. For example, if the input
is of type CHAR, the output is also of type CHAR.

TIBCO® Data Virtualization Reference Guide

225 | TDV Support for SQL Functions

Example (No White-Space before Second Concatenated String)

concat (RTRIM ('AAA '), 'Member')

This example has white-spaces at the end of the sequence AAA and no white-space
character preceding the M in Member. It produces the following result:

AAAMember

Example (White-Space before Second Concatenated String)

concat (RTRIM ('AAA '), ' Member')

This example has white-spaces at the end of the sequence AAA and one white-space
character preceding the M in Member. It produces the following result:

AAA Member

SPACE
The SPACE function returns a string of as many spaces as the integer specifies.

Syntax

SPACE (integer)

Remarks
• This function accepts a DECIMAL input value.

• If the input is NULL, the output is also NULL; otherwise, the output is a string.

• If the input is a negative integer, the output is NULL.

The following table lists the input types that you can use in SPACE, and their
corresponding output types.

TIBCO® Data Virtualization Reference Guide

226 | TDV Support for SQL Functions

Data Type of integer Output Type

BIGINT, DECIMAL, INTEGER, SMALLINT,
TINYINT

CHAR

NULL NULL

Example

SELECT CONCAT (customers.ContactFirstName,
CONCAT (SPACE (1), customers.ContactLastName)) Name

FROM /shared/examples/ds_orders/customers customers

SPLIT
See SPLIT_PART.

SPLIT_PART
This function is used to split a given string based on a delimiter and pick out the desired
field from the string, start from the left of the string.

Syntax

split_part(<string>,<delimiter>, <field_number>)

Example

SELECT split_part('1234-#-Acme parts-#-order', '-#-', 2);

In the example above, the delimiter of the defined string is '-#-' and specified field number
is 2. So the split_part function splits the second field from the specified string and returns
‘Acme Parts’.

TIBCO® Data Virtualization Reference Guide

227 | TDV Support for SQL Functions

STARTSWITH
Returns true if expr1 starts with expr2. Both expressions must be text or binary expressions.

Syntax

STARTSWITH(<expr1> , <expr2>)

Example

select * from /shared/examples/ds_inventory/tutorial/suppliers

where startswith(suppliername, 'A');

STATEMENT_TIMESTAMP
This function is used to get current date and time (start of current transaction).

Syntax

STATEMENT_TIMESTAMP()

Example

SELECT STATEMENT_TIMESTAMP()

STRPOS
This function is used to find the position, from where the substring is being matched within
the string.

TIBCO® Data Virtualization Reference Guide

228 | TDV Support for SQL Functions

Syntax

STRPOS(<string>, < substring >)

Example

SELECT STRPOS('Data Virtualization', 'Vi')AS "Position";

SUBSTR
Given a string, the SUBSTR and SUBSTRING functions return the substring starting from the
start position, and extending up to the length specified by the substring length.

Syntax

SUBSTR (string, start_position, length_of_substring)

SUBSTRING (string, start_position, length_of_substring)

Remarks
• Start_position and length_of_substring must be positive integers.

• The original string is assumed to start at position one (1).

• The resulting substring is any sequence of characters in the original string, including
an empty string.

• If the original string is an empty string, the resulting substring is also an empty
string.

• If any of the input arguments is NULL, the output is also NULL.

The following table lists the input types that you can use in SUBSTRING, and their
corresponding output types.

TIBCO® Data Virtualization Reference Guide

229 | TDV Support for SQL Functions

Data Type of
string

Data Type of start_
position

Data Type of length_
of_substring

Data Type of
Output

CHAR TINYINT Same as start_
position.

Same as
string
argument.LONGVARCHAR INTEGER

STRING BIGINT

VARCHAR SMALLINT

NULL BIGINT Same as start_
position.

NULL

INTEGER

NULL

SMALLINT

TINYINT

CHAR NULL TINYINT NULL

LONGVARCHAR INTEGER

STRING BIGINT

VARCHAR SMALLINT

CHAR TINYINT NULL NULL

LONGVARCHAR INTEGER

STRING BIGINT

VARCHAR SMALLINT

Example

SELECT SUBSTRING (customers.PhoneNumber, 1, 5) AreaCode

TIBCO® Data Virtualization Reference Guide

230 | TDV Support for SQL Functions

SUBSTRING
Refer SUBSTR

SUBSTRINGOF
Returns true if string_expression contains string_expression, otherwise returns false.

Syntax

SUBSTRINGOF(string_expression, string_search)

string_expression: The string expression to search within.

string_search: The value to search for.

TRANSLATE
Returns the string from the first argument AFTER the characters specified in the second
argument are translated into the characters specified in the third argument:

Syntax

TRANSLATE(string, characters, translations)

Example

SELECT TRANSLATE('Product', 'Product', 'Order');

Returns: Order

TIBCO® Data Virtualization Reference Guide

231 | TDV Support for SQL Functions

TRIM
The TRIM function removes all instances of some specified character (default: blanks) from
the input string. By default, TRIM removes the character from the beginning and end of the
input string (BOTH). TRIM can remove the character from just the beginning of the string
(LEADING) or the end of the string (TRAILING).

Syntax

TRIM ([[BOTH | LEADING | TRAILING] [character_to_trim] FROM] string)

Remarks
• If the input string is NULL, the output is also NULL. Otherwise, the output is a string.

• If you also want to trim characters within a string, use the REPLACE function. (See
REPLACE.)

• When no character to trim is specified, the TRIM function removes ASCII space
characters (value 32), but not Unicode nonbreaking space characters (value 160).

The following table lists the valid input types, and their corresponding output types.

Data Type of string Output Type

CHAR, LONGVARCHAR, VARCHAR, NULL Same as the input data type.

Examples

This example removes all leading and trailing ASCII space characters from the string,
resulting in ‘ababa’:

SELECT TRIM (' ababa ')

FROM /services/databases/system/DUAL

This example is equivalent to the one above:

TIBCO® Data Virtualization Reference Guide

232 | TDV Support for SQL Functions

SELECT TRIM (BOTH ' ababa ')

FROM /services/databases/system/DUAL

This TRIM function results in bab:

SELECT TRIM (BOTH 'a' FROM 'ababa')

FROM /services/databases/system/DUAL

This TRIM function results in baba:

SELECT TRIM (LEADING 'a' FROM 'ababa')

FROM /services/databases/system/DUAL

This TRIM function results in abab:

SELECT TRIM (TRAILING 'a' FROM 'ababa')

FROM /services/databases/system/DUAL

TRIMBOTH
See TRIM with option BOTH.

TRIMLEADING
See TRIM with option LEADING.

TIBCO® Data Virtualization Reference Guide

233 | TDV Support for SQL Functions

TRIMTRAILING
See TRIM with option TRAILING.

TYPE
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

UCASE
This function is used to convert the text to upper-case: Also see UPPER

Syntax

UCASE(text)

Example

SELECT UCASE(‘tdv’)

Returns: TDV

TIBCO® Data Virtualization Reference Guide

234 | TDV Support for SQL Functions

UNICHR
Takes an integer input and returns the character with the specified ASCII value.

Syntax

UNICHR(integer)

Example

SELECT UNICHR(123)

UNICODE
Return an integer value (the Unicode value), for the first character of the input expression:

Syntax

UNICODE(character_expression)

Example

SELECT unicode(productname) from

/shared/examples/ds_inventory/tutorial/products

UPPER
The UPPER function returns the specified string with all alphabetical characters uppercase.
It can be used it to format output, or to make case-insensitive comparisons.

TIBCO® Data Virtualization Reference Guide

235 | TDV Support for SQL Functions

Syntax

UPPER (string)

Remarks
• The input string must be enclosed within single-quotes.

• If the input is an empty string, the output is also an empty string.

• If the input contains only space characters enclosed in single-quotes, it is not empty,
and UPPER does not turn it into an empty string.

The following table lists the input types that you can use in UPPER, and their
corresponding output types.

Data Type of string Output Type

CHAR, LONGVARCHAR,
NULL, VARCHAR

Same as the input.

Example

SELECT UPPER (products.ProductName) ProductName

FROM /shared/examples/ds_inventory/products products

V6_ATON
Converts an IPv6 address represented as a character string to a binary string.

Syntax

V6_ATON (expression)

TIBCO® Data Virtualization Reference Guide

236 | TDV Support for SQL Functions

Example

SELECT V6_ATON('12.3.1.4');

V6_NTOA
Converts an IPv6 address represented as varbinary to a character string.

Syntax

V6_NTOA (expression)

Example

SELECT V6_NTOA(V6_ATON('12.3.1.4'));

V6_SUBNETA
Calculates a subnet address in CIDR (Classless Inter-Domain Routing) format from a binary
or alphanumeric IPv6 address.

Syntax

V6_SUBNETA (expression1, expression2)

V6_SUBNETN
Calculates a subnet address in CIDR (Classless Inter-Domain Routing) format from a
varbinary or alphanumeric IPv6 address.

TIBCO® Data Virtualization Reference Guide

237 | TDV Support for SQL Functions

Syntax

V6_SUBNETN (expression1, expression2)

V6_TYPE
Characterizes a binary or alphanumeric IPv6 address B as an integer type.

Syntax

V6_TYPE (expression)

Example

SELECT V6_TYPE(V6_ATON('125.65.7.10'));

 Conditional Functions
TDV supports the conditional functions listed in the table.

TDV-Supported Conditional Function Comments

COALESCE COALESCE

COMMON COMMON

DECODE DECODE

ES_MATCH ES_MATCH

FILTER FILTER

TIBCO® Data Virtualization Reference Guide

238 | TDV Support for SQL Functions

TDV-Supported Conditional Function Comments

IFINF IFINF

IFMISSING IFMISSING

IFMISSINGORNULL IFMISSINGORNULL

IFNAN IFNAN

IFNANORINF IFNANORINF

IFNULL IFNULL

IFNULLCB IFNULLCB

ISARRAY ISARRAY

ISATOM ISATOM

ISBOOLEAN ISBOOLEAN

ISNULL ISNULL

ISNUMBER ISNUMBER

ISNUMERIC ISNUMERIC

ISOBJECT ISOBJECT

ISSTRING ISSTRING

MATCH_PHRASE MATCH_PHRASE

MATCH_PHRASE_PREFIX MATCH_PHRASE_PREFIX

MISSINGIF MISSINGIF

NANIF NANIF

TIBCO® Data Virtualization Reference Guide

239 | TDV Support for SQL Functions

TDV-Supported Conditional Function Comments

NEGINFIF NEGINFIF

NULLIF NULLIF

NVL NVL

NVL2 NVL2

POSINFIN POSINFIF

TERM TERM

TEST TEST

COALESCE
The COALESCE function returns first value in one or more expressions that is not NULL;
otherwise, it returns NULL.

Syntax

COALESCE (expression1, expression2, ...)

Remarks

COALESCE (expression1, expression2, expression3) is equivalent to this CASE statement:

CASE WHEN expression1 IS NOT NULL THEN expression1

 WHEN expression2 IS NOT NULL THEN expression2

 WHEN expression3 IS NOT NULL THEN expression3

TIBCO® Data Virtualization Reference Guide

240 | TDV Support for SQL Functions

 ELSE NULL END

The following table lists the data types of the input arguments for COALESCE, and the
resulting output type.

Data Type of expression Output Type

BINARY, DATE, DECIMAL, FLOAT,
INTEGER, INTERVAL_DAY, INTERVAL_
YEAR, NULL, STRING, TIME, TIMESTAMP,
XML

Follows the ANSI SQL rules for data type
precedence.

Example

SELECT ProductID, COALESCE (UnitPrice, SalePrice, MinPrice) “Best Price”

FROM /shared/examples/ds_orders/products products

COMMON
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

TIBCO® Data Virtualization Reference Guide

241 | TDV Support for SQL Functions

DECODE
The DECODE function compares an expression with a search value and, when true, returns
the specified result. If no match is found, DECODE returns the default value, if specified. If
the default value is omitted, then DECODE returns NULL.

Syntax

DECODE (expression, search_value, result, [search_value, result]...
[,default])

Remarks
• If the expression and search_value are NULL, the result is returned.

• To determine the data type of the output value for DECODE, using the result values,
apply the ANSI SQL rules of data type precedence. The search_value has no effect on
the output data type.

• DECODE treats empty strings as NULL.

The following table lists the data types of the input arguments for DECODE.

Data Type of expression Output Type

BINARY, DATE, DECIMAL, FLOAT,
INTEGER, INTERVAL_DAY, INTERVAL_
YEAR, NULL, STRING, TIME, TIMESTAMP,
XML

Follows the ANSI SQL rules for data type
precedence.

Example

SELECT supplier_name,

DECODE (supplier_id,

 10000, 'IBM',

TIBCO® Data Virtualization Reference Guide

242 | TDV Support for SQL Functions

 10001, 'Microsoft',

 10002, 'Hewlett Packard',

 'Gateway') result

FROM suppliers;

This example is equivalent to:

CAST WHEN supplier_id = 10000 THEN 'IBM'

WHEN = 10001 THEN 'Microsoft'

WHEN = 10002 THEN 'Hewlett Packard'

ELSE 'Gateway'; END

ES_MATCH
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

TIBCO® Data Virtualization Reference Guide

243 | TDV Support for SQL Functions

FILTER
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

IFINF
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

IFMISSING
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

TIBCO® Data Virtualization Reference Guide

244 | TDV Support for SQL Functions

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

IFMISSINGORNULL
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

IFNAN
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

TIBCO® Data Virtualization Reference Guide

245 | TDV Support for SQL Functions

IFNANORINF
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

IFNULL
The IFNULL function returns the value in an expression that is not NULL; otherwise, it
returns a specified value.

Syntax

IFNULL (expression, value)

Remarks

The possible data types of expression must be compatible with the data type of value.

The following table lists the data types of the input arguments for IFNULL.

Data Type of expression Output Type

BINARY, DATE, DECIMAL, FLOAT, INTEGER,
INTERVAL_DAY, INTERVAL_YEAR, NULL,
STRING, TIME, TIMESTAMP, XML

Follows the ANSI SQL rules for data type
precedence.

TIBCO® Data Virtualization Reference Guide

246 | TDV Support for SQL Functions

Example

SELECT IFNULL (UnitPrice, ‘Request Quote’)

FROM /shared/examples/ds_orders/products products

IFNULLCB
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

ISARRAY
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

TIBCO® Data Virtualization Reference Guide

247 | TDV Support for SQL Functions

ISATOM
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

ISBOOLEAN
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

ISNUMBER
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

TIBCO® Data Virtualization Reference Guide

248 | TDV Support for SQL Functions

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

ISOBJECT
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

ISNULL
The ISNULL function returns the first value in the specified expressions that is not NULL;
otherwise, it returns NULL. ISNULL is equivalent to the COALESCE function except that it
takes only two arguments.

Syntax

ISNULL (expression1, expression2)

Remarks

ISNULL (expression1, expression2) is equivalent to this CASE statement:

CASE WHEN expression1 IS NOT NULL THEN expression1

TIBCO® Data Virtualization Reference Guide

249 | TDV Support for SQL Functions

 WHEN expression2 IS NOT NULL THEN expression2

 ELSE NULL END

The following table lists the data types of the input arguments for ISNULL.

Data Type of expression Output Type

BINARY, DATE, DECIMAL, FLOAT,
INTEGER, INTERVAL_YEAR, INTERVAL_
DAY, NULL, STRING, TIME, TIMESTAMP,
XML

Follows the ANSI SQL rules for data type
precedence.

Example

SELECT ProductID, ISNULL (SalePrice, UnitPrice) “Best Price”

FROM /shared/examples/ds_orders/products products

ISNUMERIC
The ISNUMERIC function determines whether an expression evaluates to a valid numeric
type, returning 1 if it is valid and 0 if it is not valid.

Syntax

ISNUMERIC (expression)

Remarks

The following table lists the data types of the evaluated expression for ISNUMERIC and the
possible return values.

TIBCO® Data Virtualization Reference Guide

250 | TDV Support for SQL Functions

Data Type of Evaluated Expression Returns

BIGINT, INT, SMALLINT, TINYINT, BIT, DECIMAL,
NUMERIC, FLOAT, REAL, MONEY, SMALLMONEY

1

Any other data type 0

Example

SELECT Contact, Phone, ZipCode

WHERE ISNUMERIC (ZipCode) = 1

FROM /shared/examples/ds_orders/products products

The above example returns the rows with zip code having valid numeric values.

Note: ISNUMERIC returns 1 for some characters that are not numbers, such as plus (+),
minus (-), and valid currency symbols such as the dollar sign ($).

ISSTRING
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

TIBCO® Data Virtualization Reference Guide

251 | TDV Support for SQL Functions

MATCH_PHRASE
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

MATCH_PHRASE_PREFIX
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

MISSINGIF
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

TIBCO® Data Virtualization Reference Guide

252 | TDV Support for SQL Functions

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

NANIF
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

NEGINFIF
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

TIBCO® Data Virtualization Reference Guide

253 | TDV Support for SQL Functions

NULLIF
The NULLIF function compares two arguments and returns NULL if they are equal;
otherwise, it returns the first argument.

Syntax

NULLIF (expression1, expression2)

Remarks
• The first argument in NULLIF cannot be NULL. The output data type of NULLIF is

always the same as the first argument.

• The function NULLIF (expression1, expression2) is equivalent to:

CASE

WHEN expression1 = expression2 THEN NULL

ELSE expression1

END

• The data types of the two input arguments must be of comparable types. The output
argument data type is the same as expression1.

Example

SELECT ProductID, UnitPrice, NULLIF (UnitPrice, 0) as "Null Price"

FROM /shared/examples/ds_orders/products products

TIBCO® Data Virtualization Reference Guide

254 | TDV Support for SQL Functions

NVL
The NVL (Null Value Replacement) function tests the values returned by an expression. If
the value returned is NULL, the function replaces the NULL value with the new value. If the
value returned is not NULL, it is left unchanged.

Syntax

NVL (expression, new_value)

Remarks
• You can replace NULL values in a column with a value of a compatible data type.

• NVL treats empty strings as NULL. For example, NVL (nullString, '') returns NULL.

• NVL returns NULL when expression is an empty string.

• DATE and TIMESTAMP cannot be used in the same NVL command.

• NVL follows the ANSI SQL rules for data type precedence.

Example (Simple Substitution for Null Value)

SELECT NVL (ColumnName, 'N/A') FROM table

For the SELECT above, NULL values in ColumnName are replaced with the string N/A. If the
input value were a column of INTEGER type, the replacement value should be an integer,
and so on.

Example (Multiple NVL Function Calls)

TDV lets you issue multiple NVL function calls to replace NULL values in multiple columns.
In the following example, NULL values from ColumnA are replaced with the string valueX,
and NULL values from ColumnB are replaced with the value from ColumnC:

SELECT NVL (ColumnA, 'valueX'), NVL (ColumnB, "ColumnC") FROM table

The double-quotes explicitly define a column name, but the quotes can be omitted.

TIBCO® Data Virtualization Reference Guide

255 | TDV Support for SQL Functions

Example (Filtering and NVL Function Calls)

You can filter the returned result set by using the DISTINCT keyword, but it must occur
outside of the NVL function call.

SELECT DISTINCT NVL (ColumnName, UniqueValue) FROM table

In the query above, all NULL values in ColumnName are replaced with UniqueValue.
Because of the keyword DISTINCT, the SELECT statement returns only the first occurrence
of UniqueValue.

Example (Substitution for Null Values in a Column with Values from
Another Column)

Null values in one column can be replaced by the values from another column.

SELECT NVL (FormalTitle, Common_Name) FROM table

In the query above, NULL values in FormalTitle are replaced by the corresponding values
from Common_Name.

NVL2
The NVL2 (Null Value Replacement 2) function lets you replace both non-NULL and NULL
values in the returned result set.

Syntax

NVL2 (expression, value_if_NOT_NULL, value_if_NULL)

Remarks
• NVL2 tests the values returned by the column or variable defined by expression.

— If a value returned is not NULL, the function replaces that value with the second
expression (value_if_NOT_NULL).

TIBCO® Data Virtualization Reference Guide

256 | TDV Support for SQL Functions

— If the value returned is NULL, the function replaces that value with the third
expression (value_if_NULL).

• If a replacement value character string is not numeric or set off by single-quotes, it is
interpreted as a column name. In this case, the result set is replaced with the value
found in the column corresponding to the result of the NULL test.

• NVL2 treats empty strings as NULL.

• NVL2 follows the ANSI SQL rules for data type precedence.

Example (Testing for a Completion Value)

For the column named CompletionTime, a non-NULL value indicates that the transaction
was completed, and so the return value is 1. If CompletionTime has a NULL value, the
return value is 0.

NVL2 (CompletionTime, 1, 0) FROM Transaction_Table

Example (Checking a Timestamp)

In this example, SELECT NVL2 checks to see if a time stamp is set in the PymtPosted
column. If it has a non-NULL value, the string “Yes” is returned in the result set. If the value
of PymtPosted is NULL, the value from the corresponding row in the column named Acct_
Status is returned in the result set.

SELECT NVL2 (PymtPosted_timestamp, 'Yes', Acct_Status) FROM table

Example (Checking for a Value or NULL)

In this example, an appropriate string is returned for each row in the named column,
depending on its value.

SELECT NVL2 (ColName, 'This had a value.', 'This was NULL.') FROM table

TIBCO® Data Virtualization Reference Guide

257 | TDV Support for SQL Functions

POSINFIF
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

TERM
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

TEST
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

TIBCO® Data Virtualization Reference Guide

258 | TDV Support for SQL Functions

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

Convert Functions
Convert functions change the format of date and time values.

TDV supports the conversion functions listed in the table.

TDV-Supported Convert
Function

Comments

CAST CAST

FORMAT_DATE FORMAT_DATE

PARSE_DATE PARSE_DATE

PARSE_TIME PARSE_TIME

PARSE_TIMESTAMP PARSE_TIMESTAMP

TIMESTAMP TIMESTAMP

TO_BITSTRING TO_BITSTRING

TO_CHAR TO_CHAR

TO_NCHAR TO_NCHAR

TO_DATE TO_DATE

TO_HEX TO_HEX

TO_NUMBER TO_NUMBER

TIBCO® Data Virtualization Reference Guide

259 | TDV Support for SQL Functions

TDV-Supported Convert
Function

Comments

TO_TIMESTAMP TO_TIMESTAMP

TO_TIMESTAMPTZ TO_TIMESTAMP_TZ

TRUNC See TRUNC (for date/time) and TRUNC (for numbers)

CAST
Given a valid expression and a target data type, the CAST function converts the expression
into the specified data type.

Syntax

CAST (expression AS target_data_type)

Remarks
• The expression argument specifies what is to be converted to the target data type.

• If the input expression is NULL, the output is NULL. If the input expression is an
empty string, the output is an empty string. In all other cases, the output type is the
same as that of the target data type.

• Target data types can include length, precision, and scale arguments.

• You can use BLOB or CLOB data types in this function.

• When you convert a DECIMAL to an INTEGER, the resulting value is truncated rather
than rounded. (For example, 15.99 is converted to 15.)

• The CAST function can truncate strings without issuing an error. For example, CAST
('30000' AS INTEGER) produces an integer (30000) with no error.

• The CAST function issues a runtime error if you cast a string '30000' to TINYINT,
because the TINYINT data type cannot accommodate that large a number, and no
meaningful truncation can be applied. In such a case, CAST proceeds normally only
if all the values of the integer column are valid values for the TINYINT data type.

TIBCO® Data Virtualization Reference Guide

260 | TDV Support for SQL Functions

• You can use the CAST function to truncate strings and round down decimals to
integers.

Note: For a function to round a decimal up to the next integer, see CEILING.

• All INTERVALs can be cast to CHAR and VARCHAR and vice versa.

• Interval years, months, days, hour, minute, or seconds can only be cast to identical
interval units. Errors are thrown if any data loss occurs. (See examples below table.)

• CAST from character string values to DATE, TIME, or TIMESTAMP requires that the
input values be in one of these ISO formats:

— CAST to DATE—‘YYYY-MM-DD’ input value format

— CAST to TIME—‘HH24:MI:SS’ input value format (plus optional fractional seconds
with a decimal point before them)

— CAST to TIMESTAMP—‘YYYY-MM-DD HH24:MI:SS’ input value format (plus optional
fractional seconds with a decimal point before them)

If the values are not in these formats, you can use alternative data conversion
functions such as TO_DATE, TO_TIMESTAMP or PARSE_DATE, PARSE_TIMESTAMP,
and so on. Some of these functions may not be pushed, and the query itself might
not be pushed, as a result of using these functions.

The following table shows the output type that results for each combination of input
expression type and target data type.

Data Type of expression Target Data Type Output Type

BIGINT, CHAR, DECIMAL,
FLOAT, INTEGER,
LONGVARCHAR, NUMERIC,
REAL, SMALLINT, TINYINT,
VARCHAR

BIGINT, DECIMAL, FLOAT,
INTEGER, NUMERIC, REAL,
SMALLINT, TINYINT

Target data type.

NULL BIGINT, CHAR, DATE, DECIMAL,
FLOAT, LONGVARCHAR, NULL,
NUMERIC, INTEGER, REAL,
SMALLINT, TIME, TIMESTAMP,
VARCHAR

NULL

TIBCO® Data Virtualization Reference Guide

261 | TDV Support for SQL Functions

Data Type of expression Target Data Type Output Type

NULL<Data_Type1> <Any_Data_Type2> NULL<Data_Type1>

BIGINT, CHAR, DATE,
DECIMAL, FLOAT, INTEGER,
LONGVARCHAR, NUMERIC,
REAL, SMALLINT, TIME,
TIMESTAMP, TINYINT,
VARCHAR

CHAR, LONGVARCHAR,
VARCHAR

Target data type

DATE, TIMESTAMP DATE DATE

TIME, TIMESTAMP TIME TIME

BIGINT, CHAR, INTEGER,
LONGVARCHAR, SMALLINT,
TIMESTAMP, TINYINT,
VARCHAR

TIMESTAMP TIMESTAMP

Example (Simple CAST Function)

SELECT products.UnitPrice, CAST (products.UnitPrice AS INTEGER) Price

FROM /shared/examples/ds_inventory/products products

Example (Target Data Type Includes Length)

CAST (Orders_Qry.ShipPostalCode AS CHAR(5))

Examples (With BLOB or CLOB)

CAST (myBlob AS VARBINARY(size))

CAST (myVarBinary AS BLOB)

TIBCO® Data Virtualization Reference Guide

262 | TDV Support for SQL Functions

CAST (myClob AS VARCHAR(size))

CAST (myVarChar AS CLOB)

Examples (Casting to Different Data Types)

CAST (INTERVAL '23' MONTH AS INTERVAL YEAR)

This returns an error (11 months lost).

CAST (INTERVAL '23' MONTH AS VARCHAR)

This returns 23 with a data type of VARCHAR.

CAST (INTERVAL '10' YEAR AS INTERVAL MONTH(3))

This returns the interval in months (120).

FORMAT_DATE
The FORMAT_DATE function formats an input argument based on a format string. The
output is a VARCHAR(255).

Syntax

FORMAT_DATE (input, format_string)

Remarks
• The input argument must be a DATE, TIME, or TIMESTAMP.

• The format_string argument must be a string.

• The format_string is not case-sensitive except as indicated in the following table,
which also lists the format string types.

TIBCO® Data Virtualization Reference Guide

263 | TDV Support for SQL Functions

• If input is a DATE, the format_string must not contain any TIME elements such as
hour, minute, or seconds.

• If input is a TIME, the format_string must not contain any DATE elements such as
year, month, or day of month.

• The output is a string representation of the DATE, TIME, or TIMESTAMP argument
based on the format indicated by format_string.

• If the output exceeds 255 characters, it is truncated.

Note: Different data sources return results of FORMAT_DATE in different formats. To make
sure TDV is formatting the date, put it in a CSV file and test it from that.

Any leading white space causes a parsing error. Tabs, newlines, the punctuation marks - / ,
. ; : and embedded or trailing white spaces are acceptable and are passed to the output.
Enclose characters in single-quotes (for example, ‘quoted’) if you want them to be passed
directly to the output. (The single-quotes are removed.) Use two single-quotes in a row to
pass one single-quote to the output.

format_string Description

fm Fill mode. If this is used at the start of format, excess zeroes are
suppressed.

yyyy 4-digit year ('2006')

yy 2-digit year ('06')

MONTH
Month
month

Full month name ('JULY').
Case is matched.

MON
Mon
mon

Abbreviated month name ('JUL'). Case is matched.

mm Numeric month ('07'; '7' if fill mode).

DAY
Day
day

Name of day ('FRIDAY').
Case is matched.

TIBCO® Data Virtualization Reference Guide

264 | TDV Support for SQL Functions

format_string Description

DY
Dy
dy

Abbreviated name of day ('FRI').
Case is matched.

dd Day of month ('04'; '4' if fill mode).

hh Hour in 12-hour format ('11').

hh24 Hour in 24-hour format ('23').

AM am
PM pm

Results are followed by AM or PM string. Case is matched.

mi Minute ('59')

ss Second ('59').

ff Fractional seconds to millisecond level ('790'; '79' if fill mode).

Examples

FORMAT_DATE (DATE '2000-02-01', 'Mon mon MON Month month MONTH')

This results in: Feb feb FEB February february FEBRUARY.

FORMAT_DATE (DATE '2001-02-03', 'dd')

This results in: 03.

FORMAT_DATE (DATE '2001-02-03', 'fmdd')

This results in: 3.

FORMAT_DATE (TIME '23:59:01', 'hh hh24:mi:ss')

This results in: 11 23:59:01.

TIBCO® Data Virtualization Reference Guide

265 | TDV Support for SQL Functions

PARSE_DATE
The PARSE_DATE function outputs a DATE by parsing the first argument using the format
defined by the second argument.

Syntax

PARSE_DATE (date_string, format_string)

Remarks
• The date_string must be a CHAR or VARCHAR.

• The format_string must also be a CHAR or VARCHAR, and must follow the same
string format as the FORMAT_DATE function.

• The format_string must not contain any non-date elements such as hours, minutes,
or seconds.

• When the two-digit year format 'yy' is used as the format string, 50 is parsed as the
year 1950, but 49 is parsed as the year 2049.

Examples

PARSE_DATE ('MARCH 06, 49', 'MONTH dd, yy')

This results in a DATE value of 2049-03-06.

PARSE_DATE ('JAN 06, 2007', 'MON dd, yyyy')

This results in a DATE value of 2007-01-06.

PARSE_DATE ('MARCH 06, 50', 'MONTH dd, yy')

This results in a DATE value of 1950-03-06.

TIBCO® Data Virtualization Reference Guide

266 | TDV Support for SQL Functions

PARSE_TIME
The PARSE_TIME function is similar to PARSE_DATE except that the output of PARSE_TIME
is a TIME.

Syntax

PARSE_TIME (time_string, format_string)

Remarks

The format_string must not contain any DATE elements such as year, month, or day of
month.

Example

PARSE_TIME ('23:59:31', 'hh24:mi:ss')

This results in a TIME value of 23:59:31.

PARSE_TIMESTAMP
The PARSE_TIMESTAMP function is similar to PARSE_DATE except that PARSE_TIMESTAMP
converts a string representing a DATE or DATETIME into a TIMESTAMP value.

Syntax

PARSE_TIMESTAMP (timestamp_string, format_string)

Examples

PARSE_TIMESTAMP ('2004-4-4 12:59:58.987654321', 'yyyy-mm-dd
hh:mi:ss.ff9')

TIBCO® Data Virtualization Reference Guide

267 | TDV Support for SQL Functions

The fractional-seconds designation (ff) can be followed by an integer value from 1 to 9,
indicating the number of decimal places to return.

PARSE_TIMESTAMP ('MARCH 06, 1923 03:59:31 pm', 'MONTH dd, yyyy hh:mi:ss
am')

This results in a TIMESTAMP value of 1923-03-06 15:59:31.

PARSE_TIMESTAMP ('MARCH 06, 1923 23:59:31', 'MONTH dd, yyyy hh24:mi:ss')

This results in a TIMESTAMP value of 1923-03-06 23:59:31.

TIMESTAMP
The TIMESTAMP function converts a date or a date + time into a time stamp.

Syntax

TIMESTAMP (date_string, [time_string])

Remarks
• The date_string must be a STRING, DATE, or DATETIME data type.

• The time_string must be a TIME data type and must not contain any DATE elements
such as year, month, or day of month.

Example

TIMESTAMP ('AUG 11, 2014')

This results in a TIMESTAMP value of 2014-08-11 00:00:00.

TIMESTAMP ('AUG 11, 2014', '23:59:31')

This results in a TIMESTAMP value of 2014-08-11 23:59:31.

TIBCO® Data Virtualization Reference Guide

268 | TDV Support for SQL Functions

TO_BITSTRING
The TO_BITSTRING function converts data from the binary type to the character type,
where the character representation is the bitstring format.

Syntax

TO_BITSTRING (binary_expression)

Remarks
• TO_BITSTRING returns a VARCHAR that represents the given VARBINARY value in

bitstring format.

TO_CHAR
The TO_CHAR function converts a date or number to a CHAR.

Syntax

TO_CHAR (value[,’template’])

Remarks
• The optional template can be of any length, but make sure it contains as many

digits as the longest expected input value.

• If two arguments are provided, TO_CHAR treats empty strings as NULL.

• Date templates are the same as those used in FORMAT_DATE.

• Most number template indicators (commas, decimal points, letter designations) can
be used in combination.

• The table below illustrates representative effects of number templates.

TIBCO® Data Virtualization Reference Guide

269 | TDV Support for SQL Functions

Template Sample
Input

Result Comments

999,999,999 12345 12,345 Returns the input value with commas placed
as in the template.

099,999 1234 001,234 Returns leading zeroes to fill out the number
of digits in the template.

$99,999 1234 $1,234 Returns the input expressed as a dollar
amount, with commas.

$099,999.99 1234.56
1234

$001,234.56
$001,234.00

Returns the input expressed as a dollar
amount with two decimal places, with
leading zeroes to fill out the number of digits
in the template.

L999,999 12345 $12,345 Returns the local currency symbol in the
specified position.

999,999PR -12345 <12,345> If the input is negative, returns it in angle
brackets.

s999,999 12345 +12,345 Returns the input with a leading plus or
minus sign. Zero returns +0.

S999,999pr -12345 <-12,345> Leading S and trailing PR can be used
together in the template.

Example

SELECT

TO_CHAR(TIME '17:45:29', 'hh24 HH:MI:SS')

FROM

TIBCO® Data Virtualization Reference Guide

270 | TDV Support for SQL Functions

/services/databases/system/DUAL

This returns:

17 05:45:29

TO_NCHAR
The TO_NCHAR function converts a date or number to a NCHAR/NVARCHAR.

Syntax

TO_NCHAR (value[,’template’])

Remarks
• The optional template can be of any length, but make sure it contains as many

digits as the longest expected input value.

• If two arguments are provided, TO_NCHAR treats empty strings as NULL.

• Date templates are the same as those used in FORMAT_DATE.

• Most number template indicators (commas, decimal points, letter designations) can
be used in combination.

• The table below illustrates representative effects of number templates.

Template Sample
Input

Result Comments

999,999,999 12345 12,345 Returns the input value with commas placed
as in the template.

099,999 1234 001,234 Returns leading zeroes to fill out the number
of digits in the template.

TIBCO® Data Virtualization Reference Guide

271 | TDV Support for SQL Functions

Template Sample
Input

Result Comments

$99,999 1234 $1,234 Returns the input expressed as a dollar
amount, with commas.

$099,999.99 1234.56
1234

$001,234.56
$001,234.00

Returns the input expressed as a dollar
amount with two decimal places, with
leading zeroes to fill out the number of digits
in the template.

L999,999 12345 $12,345 Returns the local currency symbol in the
specified position.

999,999PR -12345 <12,345> If the input is negative, returns it in angle
brackets.

s999,999 12345 +12,345 Returns the input with a leading plus or
minus sign. Zero returns +0.

S999,999pr -12345 <-12,345> Leading S and trailing PR can be used
together in the template.

Example

SELECT

TO_NCHAR(TIME '17:45:29', 'hh24 HH:MI:SS')

FROM

/services/databases/system/DUAL

This returns:

17 05:45:29

TIBCO® Data Virtualization Reference Guide

272 | TDV Support for SQL Functions

TO_DATE
The TO_DATE function converts a string value to a DATE data type.

Syntax

TO_DATE (expression, date_time_pattern)

Remarks
• The expression argument must be a CHAR or VARCHAR. For other input types, use

TO_CHAR to cast a CHAR or VARCHAR before using the TO_DATE function.

• The pattern argument specifies an output pattern using a DATE, TIME, or NUMERIC
format.

• You can control the data type returned by TO_DATE with a configuration parameter
named Return data type of TO_DATE Function, which is under Server > SQL Engine >
Overrides in the Administration > Configuration menu. If you set it to TRUE (the
default), the function returns a DATE when format string is specified; if you set it to
FALSE, the function returns a TIMESTAMP.

• For a change to this configuration parameter to take effect, you need to rebind or
explicitly resave the view.

Example

SELECT TO_DATE(‘30 jun 2015’, ‘DD Mon YYYY’);

This returns

2015-06-30

TO_HEX
The TO_HEX function converts data from the binary data type to a character data type in
which the character is represented in hexadecimal format.

TIBCO® Data Virtualization Reference Guide

273 | TDV Support for SQL Functions

Syntax

TO_HEX (binary_expression)

Remarks
• The argument binary_expression evaluates to the integer to be converted to a

hexadecimal value.

• Returns a VARCHAR representing the hexadecimal equivalent of a number.

Example

SELECT TO_HEX (‘Binary’::binary(2));

This returns:

8046

TO_NUMBER
The TO_NUMBER function is deprecated. No warranties are provided to guarantee
continued proper functionality. Converts a given string expression into a number.

Use the CAST function for more efficient data-type conversions.

Syntax

TO_NUMBER (expression)

The expression is a column name that returns a string, string literal, or the result of
another function.

TIBCO® Data Virtualization Reference Guide

274 | TDV Support for SQL Functions

TO_TIMESTAMP
The TO_TIMESTAMP function is deprecated. No warranties are implied as to continued
proper functionality. Converts a valid TIMESTAMP format into a valid TIMESTAMP format.

Use the PARSE_TIMESTAMP function for more efficient data-type conversions.

Syntax

TO_TIMESTAMP (expression)

The expression is a string.

TO_TIMESTAMP_TZ
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

TRUNC
See TRUNC (for date/time) for the usage of the function with date/time values and TRUNC
(for numbers) for the usage with numeric values.

TIBCO® Data Virtualization Reference Guide

275 | TDV Support for SQL Functions

TRUNC (for date/time)
The TRUNC function returns the integer portion of an expression, or, using the optional
second argument, returns the expression with a specified number of decimal places.
TRUNC does not take the sign of the expression into account (in other words, the decimal
portion of both negative and positive expressions trend toward zero).

Syntax

TRUNC (first_arg, [format])

Remarks
• TRUNCATE works the same as TRUNC.

• The first argument is the keyword DATE or TIME or TIMESTAMP plus a quoted string
containing the date or time expression to truncate.

• The data type and length of the result are the same as they are for the first
argument.

• If the format argument is not present:

— TIMESTAMP truncates to day, with a time of 00:00:00.

— DATE or the date portion of a TIMESTAMP remains unchanged.

— TIME or the time portion of a TIMESTAMP is returned as 00:00:00.

• The optional second argument, format, is a STRING. Its values are listed in the table
below. This argument is not case-sensitive.

Format
Argument

TRUNC Output

CC
SCC

Truncates to the beginning year of the century. For example, 2050-01-
01 truncates to 2001-01-01.

SYEAR, SYYYY
YEAR, YYYY, YYY,
YY, Y

Truncates to the beginning of the current year.

TIBCO® Data Virtualization Reference Guide

276 | TDV Support for SQL Functions

Format
Argument

TRUNC Output

IYYY, IYY, IY, I Truncates to the beginning of the current ISO Year. An ISO year (ISO
8601 standard) starts on Monday of the week containing the first
Thursday of January. It can start as early as 12/29 of the previous year,
or as late as 01/04 of the current year.

Q Truncates to the beginning of the current quarter.

MONTH, MON,
MM, RM

Truncates to the beginning of the current month.

WW Same day of the current week as the first day of the year.

IW Same day of the current week as the first day of the ISO year (that is,
Monday).

W Same day of the current week as the first day of the month.

DDD, DD, J Returns the date (with 00:00:00 for the hour portion of a TIMESTAMP).

DAY, DY, D Returns the date of the starting day (Sunday) of the current week.

IDDD ISO day of year, where day 1 of the year is Monday of the first ISO
week. Range is 001-371.

ID ISO day of the week, where Monday = 1 and Sunday = 7.

HH, HH12,
HH24

Truncates to the hour, with 00 minutes and 00 seconds.

MI Truncates to the minute, with 00 seconds.

Examples

The table gives examples of TRUNC (or its equivalent, TRUNCATE) with its available format
definitions and the results.

TIBCO® Data Virtualization Reference Guide

277 | TDV Support for SQL Functions

SELECT Statement Result

TRUNC (TIMESTAMP '1983-03-06 12:34:56',
'cc')

1901-01-01 00:00:00

TRUNC (TIMESTAMP '1983-03-06
15:59:31','Y')

1983-01-01 00:00:00

TRUNC (DATE '1983-03-06', 'yyyy') 1983-01-01

TRUNC (TIMESTAMP '2015-03-06
15:59:31','I')

2014-12-29 00:00:00

TRUNC (DATE '2015-03-06', 'i') 2014-12-29

TRUNC (TIMESTAMP '1983-03-06
15:59:31','q')

1983-01-01 00:00:00

TRUNC (DATE '1983-03-06', 'q') 1983-01-01

TRUNC (TIMESTAMP '1983-03-06 12:34:56',
'mm')

1983-03-01 00:00:00

TRUNC (DATE '1983-03-06', 'mm') 1983-03-01

TRUNC (DATE '2015-04-03', 'ww') 2015-04-02

TIBCO® Data Virtualization Reference Guide

278 | TDV Support for SQL Functions

SELECT Statement Result

TRUNC (DATE '2015-04-03', 'iw') 2015-03-30

TRUNC (DATE '2015-04-03', 'w') 2015-04-01

TRUNC (TIMESTAMP '2015-04-03 12:34:56',
'ddd')

2015-04-03 00:00:00

TRUNC (TIMESTAMP '2015-04-03 12:34:56',
'd')

2015-03-29 00:00:00

TRUNC (TIMESTAMP '2015-06-10 12:34:56',
'hh')

2015-06-10 12:00:00

TRUNC (for numbers)
The TRUNC function returns the integer portion of an expression, or, using the optional
second argument, returns the expression with a specified number of decimal places.
TRUNC does not take the sign of the expression into account; in other words, the decimal
portion of both negative and positive expressions trend toward zero.

Syntax

TRUNC (expression, [decimal_places])

Remarks

The input argument expression represents the number to truncate and a NUMERIC or
date/time data type as follows:

TIBCO® Data Virtualization Reference Guide

279 | TDV Support for SQL Functions

• If the first argument is a numeric expression (DECIMAL, FLOAT, INTEGER, or STRING),
the second argument is the number of decimal places to truncate to.

• If the second argument is greater than the number of decimal places of the first
argument, zeros are added to the right of the last significant digit.

• If the second argument is not present, the function returns the integer portion of the
expression.

• The output is the same data type as the first input value.

• If either input is NULL, the output is NULL.

Examples

SELECT TRUNC(5.234);

This returns 5.

SELECT TRUNC(5.234, 2);

This returns 5.23.

SELECT TRUNC(5.234, 5);

This returns 5.23400.

TRUNCATE

The TRUNCATE function is the same as TRUNC for date/time and numeric expressions.
Refer to TRUNC (for numbers),

TRUNCATE can also be used in a SQL script to remove (“chop”) a specified number of
elements from a VECTOR. Refer to TRUNCATE, for a description.

Cryptographic Functions
Cryptographic functions let you obfuscate product IDs, passwords, and other sensitive
data.

TIBCO® Data Virtualization Reference Guide

280 | TDV Support for SQL Functions

TDV supports the cryptographic functions listed in the table.

Cryptographic
Function

Comments

HASHMD2 See HASHMD2

HASHMD4 See HASHMD4

HASHMD5 See HASHMD5

HASHSHA See HASHSHA

HASHSHA1 See HASHSHA1

HASHMD2
HASHMD2 is a cryptographic hash function known as the MD2 Message-Digest Algorithm.

Syntax

HASHMD2 (value)

Remarks

The value argument specifies a key for use with the cryptographic algorithm; it is a STRING,
BINARY, or a value that can be converted to a STRING by implicit casting. The return value
is a binary hashed value.

Example

HASHMD2 (‘dslfdkjLK85kldhnv$n000#knf’)

TIBCO® Data Virtualization Reference Guide

281 | TDV Support for SQL Functions

HASHMD4
HASHMD4 is a cryptographic hash function known as the MD4 Message-Digest Algorithm.

Syntax

HASHMD4 (value)

Remarks

The value argument specifies a key for use with the cryptographic algorithm; it is a STRING,
BINARY, or a value that can be converted to a STRING by implicit casting. The return value
is a binary hashed value.

Example

HASHMD4 (‘dslfdkjLK85kldhnv$n000#knf’)

HASHMD5
HASHMD5 is a cryptographic hash function known as the MD5 Message-Digest Algorithm.

Syntax

HASHMD5 (value)

Remarks

The value argument specifies a key for use with the cryptographic algorithm; it is a STRING,
BINARY, or a value that can be converted to a STRING by implicit casting. The return value
is a binary hashed value.

TIBCO® Data Virtualization Reference Guide

282 | TDV Support for SQL Functions

Example

HASHMD5 (‘dslfdkjLK85kldhnv$n000#knf’)

HASHSHA
HASHSHA is a cryptographic hash function known as the Secure Hash Function.

Syntax

HASHSHA (value)

Remarks

The value argument specifies a key for use with the cryptographic algorithm; it is a STRING,
BINARY, or a value that can be converted to a STRING by implicit casting. The return value
is a binary hashed value.

Example

HASHSHA (‘dslfdkjLK85kldhnv$n000#knf’)

HASHSHA1
HASHSHA1 is a cryptographic hash function known as SHA-1.

Syntax

HASHSHA1 (value)

TIBCO® Data Virtualization Reference Guide

283 | TDV Support for SQL Functions

Remarks

The value argument specifies a key for use with the cryptographic algorithm; it is a STRING,
BINARY, or a value that can be converted to a STRING by implicit casting. The return value
is a binary hashed value.

Example

HASHSHA1 (‘dslfdkjLK85kldhnv$n000#knf’)

Custom Functions
TDV supports the following custom functions:

HasClaim

GetClaim

GetClaim
Returns the Claim value from the bearer token for the specific Claim provided in the
argument. This built-in procedure is also discussed in the TDV Administration Guide chapter
OAuth Administration.

Location

/lib/users

Input

The claim name that is carried in the bearer token sent by the Client Application. The
bearer token is encoded token in JSON format with name-value pairs.

Output

Returns the Claims value for the Claim name thats passed as the argument.

TIBCO® Data Virtualization Reference Guide

284 | TDV Support for SQL Functions

HasClaim
Returns a boolean value to indicate if a specific Claim provided exists or not in the bearer
token. The built-in procedure is also discussed in the TDV Administration Guide chapter
OAuth Administration.

Location

/lib/users

Input

The claim name that is carried on the bearer token sent by the Client Application.

Output

Returns TRUE if the claim name exists in the token and FALSE if it does not.

Date Functions
Date functions return date and time information and calculate or convert time zones.

TDV supports the date functions listed in the table.

Date Function Comments

ADD_MONTHS ADD_MONTHS

AGE AGE

AT TIME ZONE AT TIME ZONE

CALENDAR MONTH CALENDAR_MONTH

CALENDAR QUARTER CALENDAR_QUARTER

TIBCO® Data Virtualization Reference Guide

285 | TDV Support for SQL Functions

Date Function Comments

CALENDAR YEAR CALENDAR_YEAR

CLOCK MILLIS CLOCK_MILLIS

CLOCK STR CLOCK_STR

CLOCK_TIMESTAMP CLOCK_TIMESTAMP

CURRENT_DATE CURRENT_DATE,

CURRENT_TIME CURRENT_TIME,

CURRENT_TIMESTAMP CURRENT_TIMESTAMP,

DATE DATE

DATEADD DATEADD

DATE_ADD DATE_ADD

DATE_ADD_MILLIS DATE_ADD_MILLIS

DATE_ADD_STR DATE_ADD_STR

DATEDIFF DATEDIFF

DATE_DIFF See DATEDIFF,

DATE_DIFF_MILLIS DATE_DIFF_MILLIS

DATE_DIFF_STR DATE_DIFF_STR

DATENAME DATENAME

DATEPART DATEPART

DATE_PART DATE_PART

TIBCO® Data Virtualization Reference Guide

286 | TDV Support for SQL Functions

Date Function Comments

DATE_PART_MILLIS DATE_PART_MILLIS

DATE_PART_STR DATE_PART_STR

DATETRUNC DATETRUNC

DATE_TRUNC DATE_TRUNC

DATE_TRUNC_MILLIS DATE_TRUNC_MILLIS

DATE_TRUNC_STR DATE_TRUNC_STR

DATE_SUB DATE_SUB

DAY ARRAY_POSITION,

DAYNAME DAYNAME

DAYOFMONTH DAYOFMONTH

DAYOFWEEK DAYOFWEEK

DAYOFWEEK_ISO DAYOFWEEK_ISO

DAYOFYEAR DAYOFYEAR

DAYS DAYS

DAYS_BETWEEN DAYS_BETWEEN

DAYS_IN_MONTH DAY_IN_MONTH

DAY_IN_WEEK DAY_IN_WEEK

DAY_IN_YEAR DAY_IN_YEAR

DAY_ONLY DAY_ONLY

TIBCO® Data Virtualization Reference Guide

287 | TDV Support for SQL Functions

Date Function Comments

DBTIMEZONE DBTIMEZONE

EXTRACT See EXTRACT

EXTRACTDAY EXTRACTDAY

EXTRACTDOW EXTRACTDOW

EXTRACTDOY EXTRACTDOY

EXTRACTEPOCH EXTRACTEPOCH

EXTRACTHOUR EXTRACTHOUR

EXTRACTMICROSECOND EXTRACTMICROSECOND

EXTRACTMILLISECOND EXTRACTMILLISECOND

EXTRACTMINUTE EXTRACTMINUTE

EXTRACTMONTH EXTRACTMONTH

EXTRACTQUARTER EXTRACTQUARTER

EXTRACTSECOND EXTRACTSECOND

EXTRACTWEEK EXTRACTWEEK

EXTRACTYEAR EXTRACTYEAR

FISCAL_MONTH FISCAL_MONTH

FISCAL_QUARTER FISCAL_QUARTER

FISCAL_YEAR FISCAL_YEAR

FRACTIONALSECONDS FRACTIONALSECONDS

TIBCO® Data Virtualization Reference Guide

288 | TDV Support for SQL Functions

Date Function Comments

FROM_UNIXTIME FROM_UNIXTIME

GETUTCDATE GETUTCDATE

HOUR HOUR

HOUR_IN_DAY HOUR_IN_DAY

ISFINITE ISFINITE

JULIAN_DAY JULIAN_DAY

LAST_DAY LAST_DAY

LOCALTIME LOCALTIME

LOCALTIMESTAMP LOCALTIMESTAMP

MAXDATETIME MAXDATETIME

MICROSECOND MICROSECOND

MIDNIGHT_SECONDS MIDNIGHT_SECONDS

MILLIS MILLIS

MILLIS_TO_STR MILLIS_TO_STR

MILLIS_TO_UTC MILLIS_TO_UTC

MINDATETIME MINDATETIME

MINUTE MAXDATETIME

MONTH ARRAY_POSITION,

MONTHNAME MONTHNAME

TIBCO® Data Virtualization Reference Guide

289 | TDV Support for SQL Functions

Date Function Comments

MONTHS_BETWEEN MONTHS_BETWEEN,

NEW_TIME NEW_TIME

NEXT_DAY NEXT_DAY

NOW NOW

NOW_MILLIS NOW_MILLIS

NOW_STR NOW_STR

NUMTODSINTERVAL NUMTODSINTERVAL,

NUMTOYMINTERVAL NUMTOYMINTERVAL,

QUARTER QUARTER

ROUND ROUND

SECOND SECOND

STATEMENT_TIMESTAMP

STR_TO_MILLIS STR_TO_MILLIS

STR_TO_UTC STR_TO_UTC

STR_TO_ZONE_NAME STR_TO_ZONE_NAME

SYSDATE SYSDATE

TIME TIME

TIME_SLICE TIME_SLICE

TIMEOFDAY TIMEOFDAY

TIBCO® Data Virtualization Reference Guide

290 | TDV Support for SQL Functions

Date Function Comments

TIMESTAMP_ROUND TIMESTAMP_ROUND

TIMESTAMP_TRUNC TIMESTAMP_TRUNC

TIMESTAMPADD TIMESTAMPADD

TIMESTAMPDIFF TIMESTAMPDIFF

TOTALOFFSETMINUTES TOTALOFFSETMINUTES

TOTALSECONDS TOTALSECONDS

TRANSACTION_
TIMESTAMP

TRANSACTION_TIMESTAMP

TZ_OFFSET TZ_OFFSET,

TZCONVERTOR TZCONVERTOR ,

UNIX_TIMESTAMP UNIX_TIMESTAMP

UTC_TO_TIMESTAMP UTC_TO_TIMESTAMP,

WEEK WEEK

WEEK_IN_MONTH WEEK_IN_MONTH

WEEK_IN_YEAR WEEK_IN_YEAR

WEEK_ISO WEEK_ISO

YEAR ARRAY_POSITION,

YEAR_ISO YEAR_ISO

TIBCO® Data Virtualization Reference Guide

291 | TDV Support for SQL Functions

ADD_MONTHS
The ADD_MONTHS function returns a date with a specified number of months added. The
function returns a date value.

Syntax

ADD_MONTHS(datetime_value_expression, number_months)

Example

ADD_MONTHS(DATE '2001-08-01', 3)

Result: DATE '2001-11-01'

AGE
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

AT TIME ZONE
The date function is used to convert a date or date time value to a given time zone.

TIBCO® Data Virtualization Reference Guide

292 | TDV Support for SQL Functions

Syntax

<TIMESTAMP expression> AT TIME ZONE <TIME ZONE>

Example

select CURRENT_TIMESTAMP at time zone ‘est’

The above query returns the current time according to the Eastern time zone.

CALENDAR_MONTH
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

CALENDAR_QUARTER
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated

TIBCO® Data Virtualization Reference Guide

293 | TDV Support for SQL Functions

query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

CALENDAR_YEAR
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

CLOCK_MILLIS
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

CLOCK_STR
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

TIBCO® Data Virtualization Reference Guide

294 | TDV Support for SQL Functions

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

CLOCK_TIMESTAMP
Returns the current date and time.

Syntax

clock_timestamp()

Example

select clock_timestamp()

CURRENT_DATE
The CURRENT_DATE function returns the current date from the system clock of the
machine where the database is running.

Syntax

CURRENT_DATE

Remarks
• CURRENT_DATE takes no arguments.

TIBCO® Data Virtualization Reference Guide

295 | TDV Support for SQL Functions

• The output is a DATE with the format YYYY-MM-DD.

CURRENT_TIME
The CURRENT_TIME function returns the current time from the system clock of the
machine where the database is running.

Syntax

CURRENT_TIME [p]

Remarks
• CURRENT_TIME has an optional precision argument (p), an unsigned integer that

specifies the number of digits of fractional seconds.

• The output is a TIME with the format HH:MM:SS[.fff].

• Valid values of p are 0 (no fractional seconds) to 3 (milliseconds). Values greater
than 3 return 3 digits. For example, CURRENT_TIME(3) and CURRENT_TIME(8) both
return a value like 19:06:27.583.

CURRENT_TIMESTAMP
The CURRENT_TIMESTAMP function returns the current date and time from the system
clock of the machine where the database is running.

Syntax

CURRENT_TIMESTAMP [p]

Remarks
• CURRENT_TIMESTAMP has an optional precision argument (p), an integer that

specifies the number of digits of fractional seconds.

TIBCO® Data Virtualization Reference Guide

296 | TDV Support for SQL Functions

• The output is a TIMESTAMP with the format YYYY-MM-DD HH:MM:SS[.fff].

• Valid values of p are 0 (no fractional seconds) to 3 (milliseconds). Values greater
than 3 return 3 digits. For example, CURRENT_TIMESTAMP(3) and CURRENT_
TIMESTAMP(8) both return a value like 2014-12-13 13:05:47.968.

DATE
The DATE function returns the date part of the given expression.

Syntax

DATE(expression)

Example

SELECT DATE('2020-11-02 10:02:00')

DATE_ADD
This function performs add date arithmetic. The given integer is added to the day part of
the given date or timestamp. A negative expression subtracts the number from the given
date or timestamp.

Syntax

DATE_ADD(date, value)

Example

SELECT DATE_ADD('2018-05-02', 1)

The above query returns “2018-05-03”

TIBCO® Data Virtualization Reference Guide

297 | TDV Support for SQL Functions

SELECT DATE_ADD('2018-05-02', -1)

The above query returns “2018-05-01”

DATEADD
This function adds a specified number value (signed integer) to a specified datepart of an
input date value, depending on the INTERVAL specified and then returns the modified
value.

Syntax

DATEADD (INTERVAL, value, datepart)

Example

SELECT 'day',DATEADD(DAY,1,’2007-03-01 11:15:9.23’)

returns

day 2007-03-02 11:15:9.23

DATE_ADD_MILLIS
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated

TIBCO® Data Virtualization Reference Guide

298 | TDV Support for SQL Functions

query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

DATE_ADD_STR
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

DATE_DIFF_MILLIS
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

DATE_DIFF_STR
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

TIBCO® Data Virtualization Reference Guide

299 | TDV Support for SQL Functions

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

DATE_PART
The DATE_PART() function extracts a subfield from a date value.

Syntax

DATE_PART(field,source)

Field - is a constant value that specifies the sub-field (for example, year, day, etc) to extract
from the given date or timestamp.

Source - is the input date that will be processed.

Example

SELECT date_part(year,orderdate)

from

/shared/examples/ds_orders/tutorial/orders

The above query returns the year part from the orderdate column.

TIBCO® Data Virtualization Reference Guide

300 | TDV Support for SQL Functions

DATENAME
This function returns a character string representing the specified datepart of the specified
date.

Syntax

DATENAME (datepart , date)

DATEPART
See DATE_PART

DATE_PART_MILLIS
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

DATE_PART_STR
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

TIBCO® Data Virtualization Reference Guide

301 | TDV Support for SQL Functions

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

DATE_SUB
The DATE_SUB() function subtracts days from a date or timestamp expression.

Syntax

DATE_SUB(datetime_value_expression, integer_expression)

Example

SELECT DATE_SUB('2020-11-02',1)

The above query returns
2020-11-01

DATE_TRUNC
The DATE_TRUNC function truncates a timestamp expression or literal based on the date
part that you specify. DATE_TRUNC returns the first day of the specified year, the first day
of the specified month, or the Monday of the specified week.

Syntax

DATE_TRUNC('datepart', timestamp)

Example

SELECT DATE_TRUNC('HOUR', TIMESTAMP '2020-01-14 13:22:35') AS HOUR;

TIBCO® Data Virtualization Reference Guide

302 | TDV Support for SQL Functions

The above query returns:

2020-01-14 13:00:00

DATETRUNC
See DATE_TRUNC

DATE_TRUNC_MILLIS
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

DATE_TRUNC_STR
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

TIBCO® Data Virtualization Reference Guide

303 | TDV Support for SQL Functions

DAY_IN_MONTH
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

DAY_IN_WEEK
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

DAY_IN_YEAR
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

TIBCO® Data Virtualization Reference Guide

304 | TDV Support for SQL Functions

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

DAYNAME
Return the weekday name for a date or timestamp.

Syntax

DAYNAME(date)

Example

SELECT DAYNAME('2020-06-20');

The above query returns:

Saturday

DAYOFMONTH
Return the weekday name for a date or timestamp.

Syntax

DAYOFMONTH(date)

TIBCO® Data Virtualization Reference Guide

305 | TDV Support for SQL Functions

Example

SELECT DAYOFMONTH('2020-06-20');

The above query returns:

20

DAYOFWEEK_ISO
Returns an INTEGER representing the ISO 8061 day of the week based on a VARCHAR,
DATE, or TIMESTAMP input value. Valid return values are:

* 1 Monday

* 2 Tuesday

* 3 Wednesday

* 4 Thursday

* 5 Friday

* 6 Saturday

* 7 Sunday

Syntax

DAYOFWEEK_ISO (date)

TIBCO® Data Virtualization Reference Guide

306 | TDV Support for SQL Functions

DAYOFWEEK
Return the weekday index for a date or timestamp:

Syntax

DAYOFWEEK(date)

Example

SELECT DAYOFWEEK('2020-06-20');

The above query returns:

7

DAYOFYEAR
Return the day of the year for a date or timestamp:

Syntax

DAYOFYEAR(date)

Example

SELECT DAYOFYEAR('2020-06-20');

The above query returns:

172

TIBCO® Data Virtualization Reference Guide

307 | TDV Support for SQL Functions

DAY_ONLY
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

DATEDIFF
The DATEDIFF function calculates the number of date parts (days, weeks, and so on)
between two specified dates, times, or timestamps.

Note: TDV supports the two parameter formats that supported data sources use. Note that
the order of startdate and enddate is swapped in the two formats.

Syntax

DATEDIFF (datepart, startdate, enddate)
DATEDIFF (enddate, startdate)

Remarks
• The first argument specifies the datepart for which to return an integer indicating

the difference—for example, 1 (day), 4 (years), and so on.

• TDV supports these datepart keywords:

YEARS YEAR YYYY YY

TIBCO® Data Virtualization Reference Guide

308 | TDV Support for SQL Functions

QUARTERS QUARTER QQ Q

MONTHS MONTH MM M

WEEKS WEEK WW WK

WEEKS_US [an artificial date part for use in TDV only; see example 1
below]

DAYS DAY DD D

HOURS HOUR HH

MINUTES MINUTE MI M

SECONDS SECOND SS S

MILLISECONDS MILLISECOND MS

• The other two arguments (startdate and enddate) are chronological values.

• TDV by default calculates DATEDIFF according to the ISO standard (using Monday as
the first day of the week). Databases that are locale-aware (for example, Sybase)
calculate according to the local standards they are configured to implement—for
example, the US standard (which uses Sunday as the first day of the week). This
variance in implementation can cause week-counts calculated in the data source to
differ from week-counts calculated in TDV.

• WEEKS_US is an artificial datepart that makes TDV calculate DATEDIFF according to
the US standard instead of the ISO standard. WEEKS_US should not be pushed to a
data source, because it will be rejected there.

TIBCO® Data Virtualization Reference Guide

309 | TDV Support for SQL Functions

• Sybase produces correct (standard) results for year, month, day date parts and
incorrect results for hour, minute, second date parts. TDV produces correct results
for all six.

Example 1

Calculate the difference in weeks between a Friday and the following Sunday:

DATEDIFF ('WEEK', DATE '2014-04-25', DATE '2014-04-27')

According to US standard, the week starts with a Sunday; therefore, the two dates belong
to different weeks (Sunday starts a new week), and so a locale-aware database produces 1.

According to ISO standard, the week starts with a Monday; therefore, Friday and Sunday
belong to the same week (starting the prior Monday), so TDV produces the result 0.

If you use the artificial date part WEEKS_US, TDV produces the result 1:

DATEDIFF (‘WEEKS_US’, DATE ‘2014-04-25’, DATE ‘2014-04-27’)

Example 2

Calculate the difference in years between August 15, 2009 and December 31, 2012:

DATEDIFF (year, date '2009-08-15', date '2012-12-31')

TDV returns 3 by counting the year intervals as follows:

[1] January 1, 2010 + [2] January 1, 2011 + [3] January 1, 2012 = 3

The months between January 1, 2012 and December 31, 2012 are ignored, because the
datepart specified is YEAR, and only the start of each year is counted.

DAY,MONTH,and YEAR
The DAY, MONTH, and YEAR functions take a date expression as input, and returns the day,
month, and year, respectively, from the date expression.

TIBCO® Data Virtualization Reference Guide

310 | TDV Support for SQL Functions

Syntax

DAY (date_expression)

MONTH (date_expression)

YEAR (date_expression)

Remarks
• The date_expression cannot be an empty string.

• Leading zeroes in a date or month are ignored in the output.

• If the input is NULL, the output is also NULL.

Name and Format Data Type of
date_expression

Output Type Output Value

DAY
(date_expression)

DATE, TIMESTAMP INTEGER Between 1 and 31.

NULL NULL NULL

MONTH
(date_expression)

DATE, TIMESTAMP INTEGER Between 1 and 12.

NULL NULL NULL

YEAR
(date_expression)

DATE, TIMESTAMP INTEGER Between 1 and 9999.

NULL NULL NULL

Example

SELECT DAY (orders.OrderDate) OrderDate,

MONTH (orders.OrderDate) OrderMonth,

TIBCO® Data Virtualization Reference Guide

311 | TDV Support for SQL Functions

YEAR (orders.OrderDate) OrderYear

FROM /shared/examples/ds_orders/orders orders

DAYS
The DAYS_BETWEEN function returns the number of days since January 1, 0001, including
that beginning date.

Syntax

DAYS (date_expression)

Remarks
• TDV natively implements the version of the DAYS function.

• The Excel DAYS function is far different from the TDV/ DAYS function.

Examples

SELECT DAYS ('0001-01-02')

This example returns 2.

SELECT DAYS ('2001-01-02')

This example returns 730487.

DAYS_BETWEEN
The DAYS_BETWEEN function returns the number of days between two dates, excluding the
two dates themselves. If the later date is first, the result is a positive number. If the earlier
date is first, the result is a negative number.

TIBCO® Data Virtualization Reference Guide

312 | TDV Support for SQL Functions

The result is a NUMERIC data type.

Syntax

DAYS_BETWEEN (end-date, start-date)

Example

DAYS_BETWEEN ('1995-01-01', '1995-01-10')

This example returns a result of -9, because date1 is earlier than date2.

DBTIMEZONE
The DBTIMEZONE function returns the value of the database time zone (if the function is
pushed) or the TDV time zone (if the function is not pushed).

If the function is pushed, the return type is a time-zone offset or a time-zone region name,
depending on how the database time zone value was defined in the most recent CREATE
DATABASE or ALTER DATABASE statement. If the function is not pushed, the return type is
a time-zone offset.

Syntax

DBTIMEZONE

Example

The following example assumes that the database time zone is set to UTC time zone:

DBTIMEZONE ()

This example returns a result that looks like this:

DBTIME

TIBCO® Data Virtualization Reference Guide

313 | TDV Support for SQL Functions

+00:00

EXTRACT
The EXTRACT function extracts a single field from a TIMESTAMP or INTERVAL value.

Syntax

EXTRACT (<field_name> FROM <value>)

The field_name argument is SECOND, MINUTE, HOUR, DAY, MONTH, QUARTER, or YEAR.
The value argument is of type TIMESTAMP or INTERVAL.

Remarks
• The data type of the output is an exact NUMERIC with a precision equal to the

leading precision of value and a scale of zero. When the field name is a SECOND, the
precision is equal to the sum of the leading precision and the seconds precision of
value and a scale equal to the SECOND’s precision.

• When value is a negative INTERVAL, the result is a negative value.

• If value is NULL, the result is also NULL.

EXTRACT (With INTERVAL)

SELECT orders.OrderDate,

EXTRACT (SECOND FROM INTERVAL '2 23:51:19.124' DAY TO SECOND),

EXTRACT (MINUTE FROM INTERVAL '2 23:51:19.124' DAY TO SECOND),

TIBCO® Data Virtualization Reference Guide

314 | TDV Support for SQL Functions

EXTRACT (HOUR FROM INTERVAL '2 23:51:19.124' DAY TO SECOND),

EXTRACT (DAY FROM INTERVAL '2 23:51:19.124' DAY TO SECOND),

EXTRACT (MONTH FROM INTERVAL '500' MONTH(3))

EXTRACT (YEAR FROM INTERVAL '499-11' YEAR(3) TO MONTH),

FROM /shared/examples/ds_orders/orders

Results of the EXTRACT functions:

EXTRACT (SECOND FROM INTERVAL '2 23:51:19.124' DAY TO SECOND) = 19.124

EXTRACT (MINUTE FROM INTERVAL '2 23:51:19.124' DAY TO SECOND) = 51

EXTRACT (HOUR FROM INTERVAL '2 23:51:19.124' DAY TO SECOND) = 23

EXTRACT (DAY FROM INTERVAL '2 23:51:19.124' DAY TO SECOND) = 2

EXTRACT (MONTH FROM INTERVAL '500' MONTH(3)) = 500

EXTRACT (YEAR FROM INTERVAL '499-11' YEAR(3) TO MONTH) = 499

EXTRACT (Without INTERVAL)

SELECT orders.ShipName,

 orders.OrderID,

 orders.OrderDate,

TIBCO® Data Virtualization Reference Guide

315 | TDV Support for SQL Functions

EXTRACT (DAY FROM orders.OrderDate) "day",

EXTRACT (MONTH FROM orders.OrderDate) "month"

EXTRACT (QUARTER FROM orders.OrderDate) "quarter"

FROM /shared/examples/ds_orders/orders orders

EXTRACTDAY
This function returns the day component of the input timestamp value. Also see EXTRACT.

Syntax

EXTRACT(DAY FROM TIMESTAMP timestamp_expr)

EXTRACTDOW
This function returns the day of the week component of the input timestamp value. Also
see EXTRACT.

Syntax

EXTRACT(DOW FROM TIMESTAMP timestamp_expr)

EXTRACTDOY
This function returns the day of the year component of the input timestamp value. Also see
EXTRACT.

TIBCO® Data Virtualization Reference Guide

316 | TDV Support for SQL Functions

Syntax

EXTRACT(DOY FROM TIMESTAMP timestamp_expr)

EXTRACTEPOCH
This function returns the total number of seconds in the interval of the input timestamp
value. Also see EXTRACT.

Syntax

SELECT EXTRACT(EPOCH FROM TIMESTAMP timestamp_expr);

EXTRACTHOUR
This function returns the hour part of the input timestamp value. Also see EXTRACT.

Syntax

SELECT EXTRACT(HOUR FROM TIMESTAMP timestamp_expr);

EXTRACTMICROSECOND
This function returns the seconds, including fractional parts, multiplied by 1000000 of the
input timestamp value. Also see EXTRACT.

Syntax

SELECT EXTRACT(MICROSECONDS FROM TIMESTAMP timestamp_expr);

TIBCO® Data Virtualization Reference Guide

317 | TDV Support for SQL Functions

EXTRACTMILLISECOND
This function returns the seconds, including fractional parts, multiplied by 1000 of the
input timestamp value. Also see EXTRACT.

Syntax

SELECT EXTRACT(MILLISECONDS FROM TIMESTAMP timestamp_expr);

EXTRACTMINUTE
This function returns the minute part of the input timestamp value. Also see EXTRACT.

Syntax

SELECT EXTRACT(MINUTE FROM TIMESTAMP timestamp_expr);

EXTRACTMONTH
This function returns the month part of the input timestamp value. Also see EXTRACT.

Syntax

SELECT EXTRACT(MONTH FROM TIMESTAMP timestamp_expr);

EXTRACTQUARTER
This function returns the quarter part of the input timestamp value. Also see EXTRACT.

TIBCO® Data Virtualization Reference Guide

318 | TDV Support for SQL Functions

Syntax

SELECT EXTRACT(QUARTER FROM TIMESTAMP timestamp_expr);

EXTRACTSECOND
This function returns the second part of the input timestamp value. Also see EXTRACT.

Syntax

SELECT EXTRACT(SECOND FROM TIMESTAMP timestamp_expr);

EXTRACTWEEK
This function returns the week part of the input timestamp value. Also see EXTRACT.

Syntax

SELECT EXTRACT(WEEK FROM TIMESTAMP timestamp_expr);

EXTRACTYEAR
This function returns the year part of the input timestamp value. Also see EXTRACT.

Syntax

SELECT EXTRACT(YEAR FROM TIMESTAMP timestamp_expr);

TIBCO® Data Virtualization Reference Guide

319 | TDV Support for SQL Functions

FISCAL_MONTH
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

FISCAL_QUARTER
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

FISCAL_YEAR
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

TIBCO® Data Virtualization Reference Guide

320 | TDV Support for SQL Functions

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

FRACTIONALSECONDS
Returns the decimal value that specifies the fractional seconds component of the specified
time.

Syntax

FRACTIONALSECONDS(datetime_time)

FROM_UNIXTIME
Format a UNIX timestamp as a date.

The FROM_UNIXTIME function accepts 1 or 2 arguments. The first argument can be a date
or timestamp. The second argument is a string.

Syntax

FROM_UNIXTIME (datetime_or_integer, [format])

GETUTCDATE
Returns the current database system timestamp as a datetime value. This value is derived
from the operating system of the computer on which the TDV instance is running.

TIBCO® Data Virtualization Reference Guide

321 | TDV Support for SQL Functions

Syntax

GETUTCDATE()

HOUR
Returns the hour part of the datetime or time.

Syntax

HOUR(datetime)

Example

SELECT HOUR("2020-06-20 10:02:00");

The above query returns 10.

HOUR_IN_DAY
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

TIBCO® Data Virtualization Reference Guide

322 | TDV Support for SQL Functions

ISFINITE
The isfinite() function is used to test for a finite date.

Syntax

ISFINITE(date/timestamp/interval)

Example

SELECT ISFINITE(TIMESTAMP '2020-06-20 12:59:59')

The above query returns TRUE.

ISUTF8
Tests whether a string is a valid UTF-8 string. Returns true if the string conforms to UTF-8
standards, and false otherwise.

Syntax

ISUTF8(string);

JULIAN_DAY
JULIAN_DAY function takes a date and returns the date as a Julian Day. A Julian Day is the
number of days since Nov 24, 4714 BC 12:00pm Greenwich time in the Gregorian calendar.

Syntax

JULIAN_DAY(date)

TIBCO® Data Virtualization Reference Guide

323 | TDV Support for SQL Functions

Example

SELECT JULIAN_DAY('2016-10-18');

The above query returns:

2457680

LAST_DAY
LAST_DAY function returns the last day of the month based on a date value.

Syntax

LAST_DAY(date)

Example

SELECT LAST_DAY(TO_DATE('2020/02/03', 'yyyy/mm/dd'))

Returns:

2020-02-29

LOCALTIME
Returns the current date and time.

Syntax

LOCALTIME()

TIBCO® Data Virtualization Reference Guide

324 | TDV Support for SQL Functions

Example

SELECT LOCALTIME()

LOCALTIMESTAMP
Returns the current date and time as a TIMESTAMP value.

Syntax

LOCALTIMESTAMP()

Example

SELECT LOCALTIMESTAMP()

MICROSECOND
Returns MICROSECONDs from the time or datetime expression.

Syntax

MICROSECOND(expr)

Example

SELECT MICROSECOND('2020-06-20 11:20:52.000321')

Returns: 321

TIBCO® Data Virtualization Reference Guide

325 | TDV Support for SQL Functions

MIDNIGHT_SECONDS
The MIDNIGHT_SECONDS function returns an integer, in the range 0 - 86400, that
represents the number of seconds between midnight and the time that is specified in the
argument.

Syntax

MIDNIGHT_SECONDS(expr)

Example

SELECT MIDNIGHT_SECONDS('2020-06-20 11:20:52.000321')

MILLIS
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

MILLIS_TO_STR
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

TIBCO® Data Virtualization Reference Guide

326 | TDV Support for SQL Functions

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

MILLIS_TO_UTC
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

MAXDATETIME
Returns the latest possible datetime.

Syntax

MAXDATETIME()

MINDATETIME
Returns the earliest possible datetime.

TIBCO® Data Virtualization Reference Guide

327 | TDV Support for SQL Functions

Syntax

MINDATETIME()

MINUTE
Returns the minute part of a datetime value.

Syntax

MINUTE(expr)

Example

SELECT minute('2020-06-20 11:20:52.000321')

MONTHNAME
Returns the name of the month of a datetime value.

Syntax

MONTHNAME(expr)

Example

SELECT MONTHNAME('2020-06-20 11:20:52.000321')

Returns: June

TIBCO® Data Virtualization Reference Guide

328 | TDV Support for SQL Functions

MONTHS_BETWEEN
The MONTHS_BETWEEN function returns the number of months between two dates.

Syntax

MONTHS_BETWEEN (date1, date2)

Remarks
• If the later date is first, the result is a positive number.

• If the earlier date is first, the result is a negative number. The number returned is
also based on the real calendar.

• If the result is not a whole number of months (that is, there are some days as well),
the days part is shown as a decimal (for example, 0.5 months for 15 days out of a
30-day month).

• The number is not rounded.

• Hive's MONTHS_BETWEEN rounds off the result to 8 digits decimal.

• The result is a numeric data type.

Example

MONTHS_BETWEEN (sysdate, TO_DATE ('01-01-2007','dd-mm-yyyy'))

This returns the number of months since January 1, 2007.

NEW_TIME
The NEW_TIME() function is used to convert a date from timezone1 to a date in timezone2.

Syntax

NEW_TIME(date, timezone1, timezone2)

TIBCO® Data Virtualization Reference Guide

329 | TDV Support for SQL Functions

Example

SELECT new_time(TO_DATE('06-20-20 10:20:52', 'MM-DD-YY HH24:MI:SS'),
'EST','PST')

NEXT_DAY
Returns the first weekday that is greater than a date.

Syntax

NEXT_DAY(date, weekday)

Example

SELECT NEXT_DAY(TO_DATE('06-20-20 10:20:52', 'MM-DD-YY HH24:MI:SS'),
'WEDNESDAY')

NOW
The NOW() function returns the current date and time.

Syntax

NOW()

NOW_MILLIS
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

TIBCO® Data Virtualization Reference Guide

330 | TDV Support for SQL Functions

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

NOW_STR
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

NUMTODSINTERVAL
The NUMTODSINTERVAL function converts a number to an INTERVAL DAY TO SECOND
literal.

Syntax

NUMTODSINTERVAL (number, 'unit')

Remarks
• The number argument can be any number value, or an expression that can be

implicitly converted to a number value.

TIBCO® Data Virtualization Reference Guide

331 | TDV Support for SQL Functions

• The unit argument specifies the unit-type of the number argument.

• The unit argument must be a CHAR with a value of DAY, HOUR, MINUTE, or SECOND.

• The unit argument is case-insensitive, and leading and trailing values within the
parentheses are ignored.

• The precision of the return is 9.

Example

NUMTODSINTERVAL (200, ' day ')

NUMTODSINTERVAL (1200, 'Minute ')

NUMTODSINTERVAL (8, 'HOUR')

NUMTOYMINTERVAL
The NUMTOYMINTERVAL function converts a number to an INTERVAL YEAR TO MONTH
literal.

Syntax

NUMTOYMINTERVAL (number, 'unit')

Remarks
• The number argument can be any number value, or an expression that can be

implicitly converted to a number value.

• The unit argument specifies the unit-type of the number argument.

• The unit argument must be a CHAR with a value of YEAR or MONTH.

• The unit argument is not case-sensitive, and leading and trailing values within the
parentheses are ignored.

• The precision of the return is 9.

TIBCO® Data Virtualization Reference Guide

332 | TDV Support for SQL Functions

Example

NUMTOYMINTERVAL (200, 'YEAR')

NUMTOYMINTERVAL (200, ' month ')

QUARTER
Returns the quarter of the year for a given date value.

Syntax

QUARTER(date)

Example

SELECT QUARTER(DATE '2020-06-20');

ROUND
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

TIBCO® Data Virtualization Reference Guide

333 | TDV Support for SQL Functions

SECOND
Returns the second part of the datetime.

Syntax

SECOND(datetime)

Example

SELECT SECOND("2020-06-20 10:02:18");

The above query returns 18.

STR_TO_MILLIS
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

STR_TO_UTC
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

TIBCO® Data Virtualization Reference Guide

334 | TDV Support for SQL Functions

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

STR_TO_ZONE_NAME
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

SYSDATE
The SYSDATE() function returns the current date and time.

Syntax

SYSDATE()

Example

SELECT SYSDATE()

TIME
Returns the current time using datetime_offset.

TIBCO® Data Virtualization Reference Guide

335 | TDV Support for SQL Functions

Syntax

TIME(datetime_offset)

TIMESTAMP_ROUND
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

TIME_SLICE
Aggregates data by different fixed-time intervals and returns a rounded-up input
TIMESTAMP value to a value that corresponds with the start or end of the time slice
interval.

Syntax

TIME_SLICE(expression, slice-length [, 'time-unit' [, 'start-or-end']
])

Example

SELECT TIME_SLICE('2020-06-20 00:00:01', 3);

TIBCO® Data Virtualization Reference Guide

336 | TDV Support for SQL Functions

TIMEOFDAY
This function is used to get current date and time (like clock_timestamp, but as a text
string).

Syntax

TIMEOFDAY()

Example

SELECT TIMEOFDAY()

TIMESTAMPADD
The TIMESTAMPADD() function adds time value with a date or datetime value.

Syntax

TIMESTAMPADD(unit,interval,datetime_expr);

Example

SELECT TIMESTAMPADD(SQL_TSI_frac_second,4353,'1901-12-31 13:59:00')

TIMESTAMPDIFF
The TIMESTAMPDIFF() function sreturns a value after subtracting a datetime expression
from another.

TIBCO® Data Virtualization Reference Guide

337 | TDV Support for SQL Functions

Syntax

TIMESTAMPDIFF(unit,datetime_expr1,datetime_expr2);

Example

SELECT TIMESTAMPDIFF(SQL_TSI_year,'1902-1-1 12:59:00','-1901-12-1
13:59:00')

TIMESTAMP_TRUNC
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

TRANSACTION_TIMESTAMP
Returns a value of type TIME WITH TIMEZONE that represents the start of the current
transaction.

Syntax

TRANSACTION_TIMESTAMP()

TIBCO® Data Virtualization Reference Guide

338 | TDV Support for SQL Functions

Example

SELECT TRANSACTION_TIMESTAMP()

TOTALOFFSETMINUTES
Returns the integer that specifies the offset minutes component of the specified date.

Syntax

TOTALOFFSETMINUTES(datetime_date)

datetime_date: The datetime string that specifies the date.

TOTALSECONDS
Returns the duration value in total seconds.

Syntax

TOTALSECONDS(duration)

TZ_OFFSET
The TZ_OFFSET function returns the time zone of the argument as of the date the
statement is executed. Timezone region names are required by daylight savings features.

Syntax

TZ_OFFSET ({ 'time_zone_name' | '{ + | - } hh : mi'})

TIBCO® Data Virtualization Reference Guide

339 | TDV Support for SQL Functions

Remarks
• The time_zone_name argument can be a time zone name or an offset from UTC

(which returns itself).

• TDV does not accept the argument SESSIONTIMEZONE or DBTIMEZONE.

• For a list of time zone names, see Time Zones

Example

SELECT TZ_OFFSET ('US/Eastern');

This example returns a result that looks like this:

TZ_OFFSET('US/Eastern')

-04:00

TZCONVERTOR
The TZCONVERTOR function offsets a timestamp from one time zone to another time zone.

Syntax

TZCONVERTOR (TIMESTAMP <timestamp>, <source_zone>, <target_zone>)

Remarks
• The timestamp argument is in the form yyyy-mm-dd hh:mm:ss, enclosed in single-

quotes.

• The source_zone argument is a string designating the source time zone, enclosed in
single-quotes.

• The target_zone argument is a string designating the target time zone, enclosed in
single-quotes.

TIBCO® Data Virtualization Reference Guide

340 | TDV Support for SQL Functions

• The TDV implementation of TZCONVERTOR does not support offset notation such as
GMT+5.

• Valid source_zone / target_zone arguments are listed in Time Zones.

Example (Date Is Outside of Daylight Saving Time Range)

TZCONVERTOR (TIMESTAMP '2011-3-1 00:00:00', 'US/Pacific', 'UTC')

OR

TZCONVERTOR (TIMESTAMP '2011-3-1 00:00:00', 'America/Los_Angeles',
'UTC')

Because daylight saving time is not in effect on the specified date, this example returns:

TIMESTAMP '2011-3-1 08:00:00'

Example (Date Is Inside the Daylight Saving Time Range)

TZCONVERTOR (TIMESTAMP '2011-9-1 00:00:00', 'US/Pacific', 'UTC')

OR

TZCONVERTOR (TIMESTAMP '2011-9-1 00:00:00', 'America/Los_Angeles',
'UTC')

Because daylight saving time is in effect on the specified summer date, this example
returns:

TIMESTAMP '2011-9-1 07:00:00'

TIBCO® Data Virtualization Reference Guide

341 | TDV Support for SQL Functions

UNIX_TIMESTAMP
If called with no argument, returns a Unix timestamp as an unsigned integer. If UNIX_
TIMESTAMP() is called with a date argument, it returns the value of the argument as
seconds since '1970-01-01 00:00:00'’

Syntax

UNIX_TIMESTAMP()

UTC_TO_TIMESTAMP
The UTC_TO_TIMESTAMP function takes a decimal or integer number—which specifies the
number of seconds that have elapsed since 00:00:00 Coordinated Universal Time (UTC),
Thursday, 1 January 1970—and converts it into a timestamp. Leap seconds are not
counted.

The result from this function is automatically offset by the number of hours from GMT+0 of
the timezone where this TDV instance resides.

Syntax

UTC_TO_TIMESTAMP (expression)

Remarks
• The expression is a DECIMAL or INTEGER specifying the number of seconds since

00:00:00 UTC.

• If the input is NULL, the result is NULL.

• The argument must not be less than -9223372036854775 or exceed
9223372036854775; otherwise, an exception occurs.

TIBCO® Data Virtualization Reference Guide

342 | TDV Support for SQL Functions

Example

UTC_TO_TIMESTAMP (36000)

This example returns a timestamp of 1970-01-01 10:00:00 if TDV Server is in time zone
GMT+0, but a timestamp of 1970-01-01 02:00:00 if the TDV Server is in the America/Los_
Angeles time zone (GMT-8).

WEEK
Returns the week number for a given date.

Syntax

WEEK(date);

Example

SELECT WEEK('2020-06-20');

WEEK_ISO
The WEEK_ISO function returns an integer between 1 and 53 that represents the week of
the year.

Syntax

WEEK_ISO(expression)

Example

SELECT WEEK_ISO(date '2011-1-2')

TIBCO® Data Virtualization Reference Guide

343 | TDV Support for SQL Functions

WEEK_IN_MONTH
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

WEEK_IN_YEAR
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

YEAR_ISO
Returns an integer that represents the year portion of the specified date. The return value
is based on the ISO 8061 standard.

Syntax

YEAR_ISO (date)

TIBCO® Data Virtualization Reference Guide

344 | TDV Support for SQL Functions

JSON Functions
TDV supports the JSON functions listed in the table.

TDV-Supported JSON Function Comments

DECODE_JSON See DECODE_JSON

ENCODE_SIZE See ENCODED_SIZE

ENCODE_JSON See ENCODE_JSON

JSONPATH The JSON)PATH function provides XPath-like syntax for
JSON structures. It provides a way to extract parts of a
given document.

JSON_ARRAY Returns the listed values. The list can be empty. Array
values must be of type string, number, object, array,
boolean or null.

JSON_AVG Returns the average value of a JSON array within a
JSON object

JSON_COUNT Returns the number of elements in a JSON array within
a JSON object. It returns the values based on the JSON
path passed as the second argument to the function.

JSON_EXTRACT The JSON_EXTRACT function can extract individual
values from a JSON object

JSON_EXTRACT_SCALAR See JSON_EXTRACT_SCALAR

JSON_MAX Returns the highest numeric value of a JSON array
within a JSON object

JSON_MIN Returns the lowest numeric value of a JSON array
within a JSON object

JSON_OBJECT Evaluates a key-value pair and returns a JSON object

TIBCO® Data Virtualization Reference Guide

345 | TDV Support for SQL Functions

TDV-Supported JSON Function Comments

containing the pair

JSON_SUM Returns the sum of the numeric values of a JSON array
within a JSON object

JSON_TABLE JSON_TABLE is a SQL extension that creates a
relational view of JSON data.

DECODE_JSON
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

ENCODE_JSON
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

TIBCO® Data Virtualization Reference Guide

346 | TDV Support for SQL Functions

ENCODED_SIZE
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

JSON_TABLE
JSON_TABLE is a SQL extension that creates a relational view of JSON data.

For examples of how to use JSON_TABLE with views, see the Views topic of the TDV User
Guide. For a progressive set of JSON_TABLE examples, refer to these sections:

• Example 1: A Literal JSON Table

• Example 2: Another Literal JSON Table, with Ignored Objects

• Example 3: Retrieving Object Properties and Their Values

• Example 4: JSON Content Provided by an External Table

• Example 5: Subquery

• Example 6: Conditional Logic with Key and Value Retrieval

• Example 7: Invalid Keys and Values

• Example 8: Nested Arrays

Syntax

JSON_TABLE has a wide variety of arguments and syntax. After remarks, definitions, and
illustrations of JSON path, the examples demonstrate how JSON_TABLE can be applied to

TIBCO® Data Virtualization Reference Guide

347 | TDV Support for SQL Functions

representative use cases.

Remarks

JSON_TABLE elements can be formatted with tabs, newlines, and extra space characters to
make it more readable.

With JSON_TABLE you can:

• Define and create JSON data without regard to a schema or a particular pattern of
use.

• Decompose the result of JSON expression evaluation into the relational rows and
columns of a new, virtual table (an “in-line relational view”).

Definitions

These definitions are most easily understood with the help of examples. Examples in this
document, and more in the Views topic of the TDV User Guide, illustrate how JSON_TABLE
can be structured, presented, and used.

• JSON—JavaScript Object Notation. No comments are allowed in this notation.

• JSON_TABLE—The keyword JSON_TABLE followed by three ordered elements,
enclosed in parentheses. The first two are cross-joined either implicitly (separated by
a comma) or explicitly (separated by the keywords CROSS JOIN):

The JSON content provider, which can be:

A literal—A construct, enclosed in single-quotes (' '), that defines an in-line virtual
table.

A column reference in an identified web data source (for example, T1, C1).

A path expression (see next main bullet below), enclosed in single-quotes (' '), that
designates the row provider.

A COLUMNS clause—The word COLUMNS followed by, in parentheses, one or more
comma-separated column definitions. Each column definition contains a column
alias, its SQL data type, the keyword PATH, and either (1) a path expression
designating the context item and object that is to occupy that column (Example 1: A
Literal JSON Table), or (2) a keyword designating a syntax element whose values are
to be retrieved (Example 3: Retrieving Object Properties and Their Values).

— An optional alias (for example, JT) for the table.

TIBCO® Data Virtualization Reference Guide

348 | TDV Support for SQL Functions

— If the source table is external (rather than an in-line virtual table), a comma
followed by the name of the table (and an optional alias for that name).

— If the JSON content is provided through a column reference, the table that owns
the column should be cross-joined with the JSON_TABLE.
The tables can be cross-joined either explicitly (“T1 CROSS JOIN T2”) or implicitly
(“T1, T2”).

• Path expression—An expression that identifies the JSON object or objects on which
to operate.

Context item (JSON root)—A dollar sign ($).

An optional path step (an object step or an array step).

 Note: For column paths, a depth of only one path step is allowed (in a pattern
similar to '$.title’)

— Object step—A dot (period), followed by the name of an object property. If the
name includes internal dots, it must be enclosed in double quotes.

— Array step—A dot (period), followed by the name of an object property, followed
by square brackets ([]). If the name includes internal dots, it must be enclosed
in double quotes.

The characters inside an array step are called array slicers:
 A number, or multiple numbers separated by commas, indicate the positions
(counting from 1) of objects.
 The keyword “to” indicates a range.
 Omitting the starting number begins the range at the first element of the
array.
 Omitting the number after TO ends the range at the last element of the array.

Example of array steps:
 .[to 3, 6, 8 to] — elements 1, 2, 3, 6, 8, 9, 10 (in a 10-element array)

• Property name—In a path expression, a property name must start with an alphabetic
character. It can contain alphanumerics characters and some special characters
(which must be enclosed in double quotes).

JSON Paths

Here are some examples of path expressions and their meanings.

TIBCO® Data Virtualization Reference Guide

349 | TDV Support for SQL Functions

Path Expression Description

$ The context item (root), designating a specific JSON object.

$.dept Root, and path step. The value of property 'dept' of the object.

$.dept.coffee[1] Root, path step, and leaf step. The object that is the first element of
the array that is the value of property 'coffee' of the root of the JSON
object. The value of property 'coffee' is an array.

$.dept.coffee[12, 3, 8
to 10]

The twelfth, third, eighth, ninth, and tenth elements of array 'coffee'
(property of the root of the JSON object). The elements are returned
in array order: third, eighth, ninth, tenth, twelfth.

$.dept[].coffee[] Both steps can be array steps.

$."rest.ID_
output"."rest.row"

This path expression designates a row within an external table. Notice
that double quotes are used to escape the dot characters within the
path elements.

Example 1: A Literal JSON Table

This example sets up an in-line table and then selects title, author, and price (in that order)
from it.

Execution results follow the query.

Query

In this example, the FROM clause provides the in-line virtual table. The JSON_TABLE literal
begins right after the opening parenthesis and ends (followed by a comma) right before the
path expression. The path expression specifies an array object (the virtual table) and a
range from the beginning to 2. The COLUMNS clause defines columns that correspond to
those requested in the SELECT. An alias of JT is applied to the table following the closing
parenthesis.

SELECT

 myTitle, author, price

TIBCO® Data Virtualization Reference Guide

350 | TDV Support for SQL Functions

FROM

JSON_TABLE (

 '{

 "store": {

 "book": [

 {

 "category" : "reference",

 "author" : "Nigel Rees",

 "title" : "Sayings of the Century",

 "price" : 8.95

 },

 { "title":"The Rumi Collection"

 },

 {

 "category": "fiction",

TIBCO® Data Virtualization Reference Guide

351 | TDV Support for SQL Functions

 "author": "Evelyn Waugh",

 "title": "Sword of Honour",

 "price": 15.00

 },

 {

 "category": "history",

 "author": "Steve Harris",

 "title": "Rennaisance",

 "price": 17.00

 }

]

 }}',

 '$.store.book[to 2]'

 COLUMNS (myTitle VARCHAR(100) PATH '$.title',

price DOUBLE PATH '$.price',

TIBCO® Data Virtualization Reference Guide

352 | TDV Support for SQL Functions

author VARCHAR(100) PATH '$.author')) JT

ORDER BY price desc

Results

The results of executing this query are:

myTitleauthorprice

Savings of the Century Nigel Rees 8.95

The Rumi Collection [NULL] [NULL]

Example 2: Another Literal JSON Table, with Ignored Objects

This example has a newsstand object between the two store objects, but the query ignores
it and its contents. For every book record, the query requests the values of three attributes.

Query

SELECT

 myTitle, author, price

FROM

JSON_TABLE (

 '{

 "store": {

TIBCO® Data Virtualization Reference Guide

353 | TDV Support for SQL Functions

 "book": [

 {

 "category": "reference",

 "author" : "Nigel Rees",

 "title": "Sayings of the Century",

 "price": 8.95

 },

 {

 "category": "fiction",

 "author": "Evelyn Waugh",

 "title": "Sword of Honour",

 "price": 15.00

 },

 {

 "category": "history",

TIBCO® Data Virtualization Reference Guide

354 | TDV Support for SQL Functions

 "author": "Steve Harris",

 "title": "Rennaisance",

 "price": 17.00

 }

]

 },

 "newsstand" : {

 "magazine": [

 {

 "brand" : "Newsweek",

 "price" : 10.00

 }

]

 },

 "store": {

TIBCO® Data Virtualization Reference Guide

355 | TDV Support for SQL Functions

 "book": [

 {

 "category": "reference",

 "author" : "Nigel Rees",

 "title": "Sayings of the Century_2",

 "price": 8.95

 },

 {

 "category": "fiction",

 "author": "Evelyn Waugh",

 "title": "Sword of Honour_2",

 "price": 15.00

 },

 {

 "category": "history",

TIBCO® Data Virtualization Reference Guide

356 | TDV Support for SQL Functions

 "author": "Steve Harris",

 "title": "Rennaisance_2",

 "price": 17.00

 }

]

 }

 }',

 '$.store[2].book'

 COLUMNS (myTitle VARCHAR(100) PATH '$.title',

price DOUBLE PATH '$.price',

author VARCHAR(100) PATH '$.author')) JT

-- ORDER BY price asc

Results

The path expression points to the second object in the array, but for that object the name
test (store) does not match, so no result is returned.

TIBCO® Data Virtualization Reference Guide

357 | TDV Support for SQL Functions

Example 3: Retrieving Object Properties and Their Values

This query retrieves all of the keys and values within books. In this case, the COLUMNS
clause uses keywords, instead of path expressions in single quotes, after PATH.

Query

SELECT

 property, propValue

FROM

JSON_TABLE (

 '{

 "store": {

 "book": [

 {

 "category": "reference",

 "author" : "Nigel Rees",

 "title": "Sayings of the Century",

 "price": 8.95

 },

TIBCO® Data Virtualization Reference Guide

358 | TDV Support for SQL Functions

 {

 "category": "fiction",

 "author": "Evelyn Waugh",

 "title": "Sword of Honour",

 "price": 15.00

 },

 {

 "category": "history",

 "author": "Steve Harris",

 "title": "Rennaisance",

 "price": 17.00

 }

]

 }}',

 '$.store.book'

TIBCO® Data Virtualization Reference Guide

359 | TDV Support for SQL Functions

 COLUMNS (property VARCHAR(100) PATH key,

propValue VARCHAR(200) PATH value)) JT

ORDER BY property

Results

The results list keys and their values as row entries, instead of listing values under column
headings representing keys. In other words, you can use JSON_TABLE to retrieve structural
information from tables, as well as values.

propertypropValue

author Nigel Rees

author Evelyn Waugh

author Steve Harris

category reference

category fiction

category history

price 8.95

price 15.00

price 17.00

TIBCO® Data Virtualization Reference Guide

360 | TDV Support for SQL Functions

title Savings of the Century

title Sword of Honor

title Renaissance

Example 4: JSON Content Provided by an External Table

This example uses JSON_TABLE to define a relational structure (columns) on an external
table that came from a REST data source.

Query

SELECT

 customerId, customerName

FROM

JSON_TABLE (

C."output",

 '$."rest.customersResponse"."rest.customersOutput"."rest.row"'

 COLUMNS (customerId INTEGER PATH '$."rest.customerid"',

customerName VARCHAR(100) PATH '$."rest.companyname"')) JT ,

 /shared/customers_wrapper C

TIBCO® Data Virtualization Reference Guide

361 | TDV Support for SQL Functions

Results

The results are selected from the output JSON table from the REST data source.

customerId customerName

1 Able Computing

2 Anston Systems

3 Blackard Electronics

. . .

Example 5: Subquery

In this example, JSON_TABLE is embedded in a subquery and uses a REST data source.

Query

SELECT

 1 C

FROM

 /services/databases/system/DUAL

WHERE EXISTS

(

SELECT

TIBCO® Data Virtualization Reference Guide

362 | TDV Support for SQL Functions

 customerId, price

FROM

 /shared/examples/customers_wrapper C,

JSON_TABLE (

C."output",

 '$."rest.customersOutput"."rest.row"'

 COLUMNS (customerId INTEGER PATH '$."rest.customerid"',

 price VARCHAR(100) PATH '$."rest.companyname"')) JT

 WHERE

 customerId = 30

)

Example 6: Conditional Logic with Key and Value Retrieval

This example illustrates the use of conditional logic to retrieve the value of different
properties based on the structure of the source data. This adds flexibility when dealing
with heterogeneous data sources.

Query

SELECT

TIBCO® Data Virtualization Reference Guide

363 | TDV Support for SQL Functions

 firstName,

 lastName,

 CASE WHEN firstName IS NULL THEN fullName

 ELSE firstName || ' ' || lastName END fullName,

 price

FROM

JSON_TABLE (

 '{

 "store": {

 "book": [

 {

 "category": "reference",

 "author" : {"firstName": "Nigel" , "lastName" :
"Rees"},

 "title": "Sayings of the Century",

 "price": 8.95

TIBCO® Data Virtualization Reference Guide

364 | TDV Support for SQL Functions

 },

 {

 "category": "fiction",

 "author": {"FN":"Evelyn Waugh"},

 "title": "Sword of Honour",

 "price": 15.00

 },

 {

 "category": "history",

 "author": "Steve Harris",

 "title": "Rennaisance",

 "price": 17.00

 }

]

 }}',

TIBCO® Data Virtualization Reference Guide

365 | TDV Support for SQL Functions

 '$.store.book[1 to 2]'

 COLUMNS (author VARCHAR(100) PATH '$.author',

 price VARCHAR(100) PATH '$.price')) JT,

JSON_TABLE (JT.author,

 '$'

 columns (firstName VARCHAR(20) PATH '$.firstName',

 lastName VARCHAR(20) PATH '$.lastName',

 fullName VARCHAR(20) PATH '$.FN')) JT2

Results

The results combine data organized in two different ways, along with price, which is
common to both.

firstNamelastNamefullNameprice

Nigel Rees Nigel Rees 8.95

[NULL] [NULL] Evelyn Waugh 15.00

TIBCO® Data Virtualization Reference Guide

366 | TDV Support for SQL Functions

Example 7: Invalid Keys and Values

Query

SELECT

 firstName,

 lastName,

 CASE WHEN firstName IS NULL THEN author

 ELSE firstName || ' ' || lastName END fullName,

 price

FROM

JSON_TABLE (

 '{

 "store": {

 "book": [

 {

 "category": "reference",

TIBCO® Data Virtualization Reference Guide

367 | TDV Support for SQL Functions

 "author" : {"firstName": "Nigel" , "lastName" :
"Rees"},

 "title": "Sayings of the Century",

 "price": 8.95

 },

 {

 "category": "fiction",

 "author": {"FN":"Evelyn Waugh"},

 "title": "Sword of Honour",

 "price": 15.00

 },

 {

 "category": "history",

 "author": "Steve Harris",

 "title": "Rennaisance",

 "price": 17.00

TIBCO® Data Virtualization Reference Guide

368 | TDV Support for SQL Functions

 }

]

 }}',

 '$.store.book[*]'

 COLUMNS (author VARCHAR(100) PATH '$.author',

 price VARCHAR(100) PATH '$.price')) JT,

 JSON_TABLE (JT.author,

 '$'

 columns (firstName VARCHAR(20) PATH '$.firstName',

 lastName VARCHAR(20) PATH '$.lastName')) JT2

Results

An error message is returned because the array designation ($.store[*]) contains the
wildcard character, which is not supported.

com.compositesw.cdms.webapi.WebapiException: Problems encountered while
resolving JSON_TABLE references: Exception 1 :

 com.compositesw.cdms.services.parser.ParserException: Invalid JSON
path. Cause: Compile json

 path $.store.book[*] failed.. On line 32, column 6.

TIBCO® Data Virtualization Reference Guide

369 | TDV Support for SQL Functions

 [parser-2931070] . . .

Example 8: Nested Arrays

In this example, store is an array that contains arrays called book. The path expression,
$.store[1].book[2], retrieves property values from these nested arrays.

Query

SELECT

-- {option "DISABLE_PLAN_CACHE" }

 myTitle, author, price

FROM

JSON_TABLE (

 '{

 "store": [{

 "book":

[{

 "category_2": "reference",

 "author" : "Nigel Rees",

TIBCO® Data Virtualization Reference Guide

370 | TDV Support for SQL Functions

 "title": "Sayings of the Century_S1-BA1-B1",

 "price": 13.95

 } ,

 {

 "category_2": "reference",

 "author" : "Nigel Rees",

 "title": "Sayings of the Century_S1-BA1-B1",

 "price": 12.95

 }

] ,

 "book": [{

 "category_2": "reference",

 "author" : "Nigel Rees",

 "title": "Sayings of the Century_S1-BA2-B1",

 "price": 11.95

TIBCO® Data Virtualization Reference Guide

371 | TDV Support for SQL Functions

 } ,

 {

 "category_21": "reference",

 "author" : "Nigel Rees",

 "title": "Sayings of the Century_S1-BA2-B2",

 "price": 10.95

 }

]

 } ,

 {

 "book": [{

 "category_2": "reference",

 "author" : "Nigel Rees",

 "title": "Sayings of the Century_S1-BA3-B1",

 "price": 9.95

TIBCO® Data Virtualization Reference Guide

372 | TDV Support for SQL Functions

 } ,

 {

 "category_21": "reference",

 "author" : "Nigel Rees",

 "title": "Sayings of the Century_S1-BA3-B2",

 "price": 8.95

 }

]

 }

]}',

 '$.store[1].book[2]'

 COLUMNS (myTitle VARCHAR(100) PATH '$.title',

 price DOUBLE PATH '$.price',

 author VARCHAR(100) PATH '$.author')) JT

ORDER BY price asc

TIBCO® Data Virtualization Reference Guide

373 | TDV Support for SQL Functions

--OFFSET 1 FETCH 2 ROWS ONLY

Results

The results (with the final line of the query left commented-out), are fetched based on the
PATH expression and then sorted by price:

myTitleauthorprice

Sayings of the Century_S1-BA2-B2 Nigel Rees 10.95

Sayings of the Century_S1-BA1-B 1 Nigel Rees 12.95

If you uncomment OFFSET 1 FETCH 2 ROWS ONLY, the offset skips the first qualifying item
(after the sorting by price), and even though two rows are to be fetched, only one is left to
be returned:

myTitleauthorprice

Sayings of the Century_S1-BA1-B2 1 Nigel Rees 12.95

JSON_EXTRACT
The JSON_EXTRACT function returns data from a JSON document, selected from the parts
of the document matched by the path arguments.

Syntax

JSON_EXTRACT(json, json_path)

Example

The following example extracts the 3nd element in the json array:

TIBCO® Data Virtualization Reference Guide

374 | TDV Support for SQL Functions

SELECT JSON_EXTRACT(JSON_ARRAY(1, 2, 3),'$[2]') json

FROM /shared/examples/ds_orders/tutorial/customers

WHERE customerid = 10

Result: 3

JSON_EXTRACT_SCALAR
This function Like json_extract(), but returns the result value as a string (as opposed to
being encoded as JSON). The value referenced by json_path must be a scalar (boolean,
number or string).

Syntax

JSON_EXTRACT_SCALAR(json, json_path)

Example

The following example extracts the 3nd element in the json array:

SELECT JSON_EXTRACT_SCALAR(JSON_ARRAY(1, 2, 3),'$[2]') json

FROM /shared/examples/ds_orders/tutorial/customers

WHERE customerid = 10

Result: 3

TIBCO® Data Virtualization Reference Guide

375 | TDV Support for SQL Functions

JSON_COUNT
The JSONCOUNT function returns the number of items in a JSON array

Syntax

JSON_COUNT(json, jsonpath)

Example

The following example returns the number of items in the JSON array.

SELECT JSON_COUNT(JSON_ARRAY(1, 2, 3),'$') json

FROM /shared/examples/ds_orders/tutorial/customers

WHERE customerid = 10

Result: 3

JSON_SUM
The JSONSUM function returns the sum of the elements in the JSON array.

Syntax

JSON_SUM(json, jsonpath)

Example

The following example calculates the sum of the elements in the JSON array:

SELECT JSON_AVG(JSON_ARRAY(1, 2, 3),'$') json

TIBCO® Data Virtualization Reference Guide

376 | TDV Support for SQL Functions

FROM /shared/examples/ds_orders/tutorial/customers

WHERE customerid = 10

Result: 6

JSON_MIN
The JSONMIN function returns the smallest in an array of numbers.

Syntax

JSON_MIN(json, jsonpath)

Example

The following example returns the smallest number in the array:

SELECT JSON_MIN(JSON_ARRAY(1, 2, 3),'$') json

FROM /shared/examples/ds_orders/tutorial/customers

WHERE customerid = 10

Result: 1

JSON_MAX
The JSONMAX function returns the largest in an array of numbers.

TIBCO® Data Virtualization Reference Guide

377 | TDV Support for SQL Functions

Syntax

JSON_MAX(json, jsonpath)

Example

The following example returns the largest number in the array.

SELECT JSON_MAX(JSON_ARRAY(1, 2, 3),'$') json

FROM /shared/examples/ds_orders/tutorial/customers

WHERE customerid = 10

Result: 3

JSON_AVG
The JSONAVG function returns the average of the numbers in an array.

Syntax

JSON_AVG(json, jsonpath)

Example

The following example returns the average of the elements in the array:

SELECT JSON_AVG(JSON_ARRAY(1, 2, 3),'$') json

FROM /shared/examples/ds_orders/tutorial/customers

TIBCO® Data Virtualization Reference Guide

378 | TDV Support for SQL Functions

WHERE customerid = 10

Result: 2

JSONPATH
The JSONPATH function provides XPath-like syntax for JSON structures. It provides a way
to extract parts of a given document.

Syntax

JSONPATH (json_object, search_query [, arguments])

Remarks
• The search returns a JSON array as a string, or FALSE if the search fails.

• The search query starts with a dollar sign to represent the root object.

Example

PROCEDURE JSONPathFunctionExample(OUT resultJson VARCHAR)

BEGIN

 DECLARE sourceJson VARCHAR(4096);

 DECLARE jsonPathExpression VARCHAR(4096);

 -- Create a JSON value to use in the JSONPATH function.

TIBCO® Data Virtualization Reference Guide

379 | TDV Support for SQL Functions

 SET sourceJson = '{"LookupProductResponse":{"LookupProductResult":
{"row":[{"ProductName":"Maxtific 40GB ATA133
7200","ProductID":"1","ProductDescription":"Maxtific Storage 40
GB"}]}}}';

 -- Create a JSONPATH expression to evaluate.

 SET jsonPathExpression =
'$.LookupProductResponse.LookupProductResult.row[0].ProductName';

 -- Evaluate the XPATH expression against the source XML value.

 SET resultJson = JSONPATH (sourceJson, jsonPathExpression);

END

The result is Maxtific 40GB ATA133 7200.

JSON_OBJECT
The JSON_OBJECT function evaluates a key-value pair and returns a JSON object
containing the pair

Syntax

<JSON object constructor> ::= "JSON_OBJECT" “(" [<JSON name and value>
[{ "," <JSON name and value> }...] ["NULL ON NULL" | "ABSENT ON NULL"
]] ")"

<JSON name and value> ::= <JSON name> ":" <JSON value expression>

<JSON name> ::= <character value expression>

TIBCO® Data Virtualization Reference Guide

380 | TDV Support for SQL Functions

<JSON value expression> ::= <value expression>

Rules
1. Return type is String;

2. NULL ON NULL is implicit;

3. If <JSON name and value> number is 0, then an empty JSON object “{}” will be
return;

4. Add option to control, whether to throw exception if name is null, or replace the
name with empty string, or ignore null keys, should not throw exception by default.

5. RFC7159 do not allow duplicate keys, in CIS, using configurations to avoid duplicate
key or allow it.

6. Besides numeric, boolean, null types, JSON values should be string or cast as string.

Examples

JSON_OBJECT is the same as the other common sql functions:

SELECT * from /shared/examples/ds_orders/tutorial/customers ORDER BY
JSON_OBJECT()

SELECT a.customerid, a.CompanyName from /shared/examples/ds_
orders/tutorial/customers a INNER JOIN /shared/examples/ds_
orders/shippingmethods b ON '{}'=JSON_OBJECT()

JSON_ARRAY
Returns the listed values. The list can be empty. Array values must be of type string,
number, object, array, boolean or null.

TIBCO® Data Virtualization Reference Guide

381 | TDV Support for SQL Functions

Syntax

<JSON array constructor> ::= “JSON_ARRAY “(“ [<JSON value expression> [
{ “,” <JSON value expression> }...] ["NULL ON NULL" | "ABSENT ON NULL"
]] “)”

Rules
1. Return type is String;

2. ABSENT ON NULL is implicit;

3. Query expression is not supported: JSON_ARRAY "(" <query expression> ")", create
an view with required tabular data is a natural way to reach this objective.

4. Besides numeric, boolean, null types, JSON values should be string or cast as string.

Examples

SELECT * from /shared/examples/ds_orders/tutorial/customers ORDER BY
JSON_ARRAY ()

SELECT a.customerid, a.CompanyName from /shared/examples/ds_
orders/tutorial/customers a INNER JOIN /shared/examples/ds_
orders/shippingmethods b ON '[]'=JSON_ARRAY()

Numeric Functions
Numeric functions return absolute values, trigonometric values, the value of pi, and so on.

TDV supports the numeric functions listed in the table.

Numeric Function Comments

ABS ABS

ACOS ACOS

TIBCO® Data Virtualization Reference Guide

382 | TDV Support for SQL Functions

Numeric Function Comments

ASIN ASIN

ATAN Output value is in radians. See ATAN

ATAN2 Two-argument version of ATAN. This enables the function to use the
sign of x and y to determine the quadrant of the result. See ATAN2

CBRT Returns the cubic root of a given number.

CEILING CEILING

COS Input argument is in radians. See COS

COSH COSH

COT Input argument is in radians. See COT

DECFLOAT DECFLOAT

DEGREES DEGREES

E E

EXP See EXP

FLOOR See FLOOR

GEO DISTANCE GEO.DISTANCE

GEO INTERSECTS GEO.INTERSECTS

GEO LENGTH GEO.LENGTH

LN Returns the natural log (base e) of a number. If you need the base 10
of a number, use the LOG function instead. See LN

LOG Returns the base 10 of a number. See LOG If you need the base 2

TIBCO® Data Virtualization Reference Guide

383 | TDV Support for SQL Functions

Numeric Function Comments

(natural) number instead, use the LN function.

LOG10 Returns the log (base 10) of a number. See LOG10

MOD Modulo. Returns the remainder after dividing the first number by the
second number. For example, 18 modulo 12 is 6 (18/12 = 1 with
remainder 6, the result). See MOD

NEGATIVE NEGATIVE

NORMALIZE_
DECFLOAT

NORMALIZE_DECFLOAT

NUMERIC_LOG Same as LOG.

Oracle ROWNUM A number indicating the order in which Oracle selects the row from
a table or set of joined rows. ROWNUM=1 for of the first row
selected, ROWNUM=2 for the second row selected, and so on.

PI PI

POW POW

POWER POWER

QUANTIZE QUANTIZE

RADIANS RADIANS

RAND RAND

RANDOM Returns a pseudo-random FLOAT value that is greater than 0 but
less than 1. See RANDOM

ROUND See ROUND (for date/time) and ROUND (for numbers)

ROWNUM ROWNUM

TIBCO® Data Virtualization Reference Guide

384 | TDV Support for SQL Functions

Numeric Function Comments

SIGN Returns the positive or negative sign of the input expression, or 0 if
the input expression resolves to zero. See SIGN

SIN Input argument is in radians. See SIN

SINH See SINH

SQRT See SQRT

TAN Input argument is in radians. See TAN

TANH See TANH

TOTALORDER TOTALORDER

ABS
The ABS function returns the absolute value of the input argument.

Syntax

ABS (argument)

Remarks

The table lists the valid input argument data types and the resulting output data types.

Data Type of Argument Output Type

BIGINT, DECIMAL, FLOAT, INTEGER,
NUMERIC, REAL, SMALLINT, TINYINT

Same as the input argument.

NULL NULL

TIBCO® Data Virtualization Reference Guide

385 | TDV Support for SQL Functions

Data Type of Argument Output Type

INTERVAL INTERVAL
ABS (- INTERVAL '1' DAY) = INTERVAL '1'
DAY

Example

SELECT ABS(-4);

SELECT ABS(4);

The result in either case is 4.

ACOS
The ACOS function returns the arc-cosine of the input argument; that is, the angle (in
radians) whose cosine is x.

Syntax

ACOS (x)

Remarks

The table lists the valid input argument data types and the resulting output data types.

Data Type of Argument Output Type Notes

BIGINT, DECIMAL, FLOAT,
INTEGER, NUMERIC, REAL,
SMALLINT, TINYINT

FLOAT Input argument is between -1.0 and
+1.0.
Output value is in radians.

NULL NULL

TIBCO® Data Virtualization Reference Guide

386 | TDV Support for SQL Functions

Example

SELECT ACOS(0.8660254037844387)

The result is 0.5235987755982987 (pi/6) radians, which is 30 degrees.

ASIN
The ASIN function returns the arcsine of the input argument; that is, the angle (in radians)
whose sine is x.

Syntax

ASIN (x)

Remarks

The table lists the valid input argument data types and the resulting output data types.

Data Type of Argument Output Type Notes

BIGINT, DECIMAL, FLOAT, INTEGER,
NUMERIC, REAL, SMALLINT, TINYINT

FLOAT Input value is between -1.0 and
+1.0.
Output value is in radians.

NULL NULL

Example

SELECT ASIN(0.5);

The result is 0.5235987755982989 radians, which is 30 degrees.

TIBCO® Data Virtualization Reference Guide

387 | TDV Support for SQL Functions

ATAN
The ATAN function returns the arctan of the input argument; that is, the angle (in radians)
whose tangent is x.

Syntax

ATAN (x)

Remarks

The table lists the valid input argument data types and the resulting output data types.

Data Type of Argument Output Type Notes

BIGINT, DECIMAL, FLOAT,
INTEGER, NUMERIC, REAL,
SMALLINT, TINYINT

FLOAT The input value can range from -pi/2 to
pi/2, inclusive.
Output value is in radians.

NULL NULL

Example

SELECT ATAN(0.57735026919);

The result is 0.5235987755982989 radians, which is 30 degrees.

ATAN2
The ATAN2 function returns the arctan value of the ratio of the input arguments; that is,
the angle (in radians) whose tangent is y/x.

TIBCO® Data Virtualization Reference Guide

388 | TDV Support for SQL Functions

Syntax

ATAN (y, x)

Remarks

The table lists the valid input argument data types and the resulting output data types.

Data Type of y and x Output Type Notes

BIGINT, DECIMAL, FLOAT,
INTEGER, NUMERIC, REAL,
SMALLINT, TINYINT

FLOAT The input ratio y/x can range from -pi/2
to pi/2, inclusive.
Output value is in radians.

NULL NULL

Example

SELECT ATAN2(-5.19615242271, -9);

The result is 0.5773502691 radians, in the third (-x, -y) quadrant.

CBRT
Returns the cubic root of a given number.

Syntax

CBRT(number)

Example

SELECT CBRT(8) AS "Cube Root";

TIBCO® Data Virtualization Reference Guide

389 | TDV Support for SQL Functions

Cube Root

2.0

CEILING
The CEILING function returns the smallest integer that is greater than or equal to the input
argument.

Syntax

CEILING (argument)

Remarks

The table lists the valid input argument data types and the resulting output data types.

Data Type of Argument Output Type

BIGINT, DECIMAL, FLOAT, INTEGER, NUMERIC, REAL,
SMALLINT, TINYINT

INTEGER

NULL NULL

Examples

SELECT CEILING (3598.6);

The result is 3599.

SELECT CEILING (-3598.6);

TIBCO® Data Virtualization Reference Guide

390 | TDV Support for SQL Functions

The result is -3598.

COS
The COS function returns the cosine of the input argument.

Syntax

COS (argument)

Remarks

The table lists the valid input argument data types and the resulting output data types.

Data Type of Argument Output Type Notes

BIGINT, DECIMAL, FLOAT, INTEGER,
NUMERIC, REAL, SMALLINT, TINYINT

FLOAT Input argument is in radians.
Output value is between -1.0 and
+1.0.

NULL NULL

Example

SELECT COS(PI()/6);

The result is 0.8660254037844387.

COSH
The COSH function returns the hyperbolic cosine of the input argument.

TIBCO® Data Virtualization Reference Guide

391 | TDV Support for SQL Functions

Syntax

COSH (argument)

Remarks

The table lists the valid input argument data types and the resulting output data types.

Data Type of Argument Output Type Notes

BIGINT, DECIMAL, FLOAT, INTEGER,
NUMERIC, REAL, SMALLINT, TINYINT

FLOAT Input argument is in radians.
Output value range is from 1 to +
infinity.

NULL NULL

Example

SELECT COSH(0);

The result is 1.

COT
The COT function returns the cotangent of the input argument.

Syntax

COT (argument)

Remarks

The table lists the valid input argument data types and the resulting output data types.

TIBCO® Data Virtualization Reference Guide

392 | TDV Support for SQL Functions

Data Type of Argument Output Type Note

BIGINT, DECIMAL, FLOAT, INTEGER,
NUMERIC, REAL, SMALLINT, TINYINT

FLOAT Input argument is in
radians.

NULL NULL

Example

SELECT COT(PI()/6);

The result is 1.7320508075688776.

DECFLOAT
The DECFLOAT function returns a decimal floating-point representation of a number or a
string representation of a number.

Syntax

DECFLOAT(expr)

DEGREES
Given an angle in radians, the DEGREES function returns the corresponding angle in
degrees.

Syntax

DEGREES (argument)

Remarks

The table lists the valid input argument data types and the resulting output data types.

TIBCO® Data Virtualization Reference Guide

393 | TDV Support for SQL Functions

Data Type of Argument Output Type

BIGINT, DECIMAL, FLOAT, INTEGER, NUMERIC, REAL,
SMALLINT, TINYINT

FLOAT

NULL NULL

E
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

EXP
The EXP function returns the exponent value of the input argument.

Syntax

EXP (argument)

Remarks

The table lists the valid input argument data types and the resulting output data types.

TIBCO® Data Virtualization Reference Guide

394 | TDV Support for SQL Functions

Data Type of Argument Output Type

BIGINT, DECIMAL, FLOAT, INTEGER, NUMERIC, REAL,
SMALLINT, TINYINT

FLOAT

NULL NULL

FLOOR
The FLOOR function returns the largest INTEGER that is less than or equal to the input
argument.

Syntax

FLOOR (argument)

Remarks

The table lists the valid input argument data types and the resulting output data types.

Data Type of Argument Output Type

BIGINT, DECIMAL, FLOAT, INTEGER, NUMERIC, REAL,
SMALLINT, TINYINT

INTEGER

NULL NULL

GEO.DISTANCE
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

TIBCO® Data Virtualization Reference Guide

395 | TDV Support for SQL Functions

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

GEO.INTERSECTS
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

GEO.LENGTH
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

TIBCO® Data Virtualization Reference Guide

396 | TDV Support for SQL Functions

LN
Returns the natural logarithm of a number.

Syntax

LN(number)

Example

SELECT LN(3)

Returns: 1.098612288

LOG
The LOG function returns the logarithm of the input argument.

Syntax

LOG (argument)

Remarks

The table lists the valid input argument data types and the resulting output data types.

Data Type of Argument Output Type Note

BIGINT, DECIMAL, FLOAT, INTEGER,
NUMERIC, REAL, SMALLINT, TINYINT

FLOAT Input value should be greater
than zero.

NULL NULL

TIBCO® Data Virtualization Reference Guide

397 | TDV Support for SQL Functions

Example

SELECT LOG(3.1622776601683794);

The result is 0.5.

LOG10
The LOG10() function returns the natural logarithm of a number to base 10.

Syntax

LOG10(number)

Example

SELECT LOG10(3);

Returns: 0.477121254

MOD
Returns the remainder of a number divided by another number.

Syntax

MOD(x, y)

Example

SELECT MOD(17,3)

TIBCO® Data Virtualization Reference Guide

398 | TDV Support for SQL Functions

NEGATIVE
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

NORMALIZE_DECFLOAT
The function returns a decimal floating-point value equal to the input argument in its
simplest form with all trailing zeros removed.

Syntax

NORMALIZE_DECFLOAT(expr)

Example

SELECT NORMALIZE_DECFLOAT(1.210000)

Returns: 1.21

PI
The PI function returns the value of pi as a DOUBLE value.

TIBCO® Data Virtualization Reference Guide

399 | TDV Support for SQL Functions

Syntax

PI ()

Remarks

The return value has 16 significant digits (3.141592653589793).

POW
Returns the value of x to the power of y (x^y).

Syntax

POW(x,y)

Example

SELECT POW(2,3)

POWER
The POWER function returns the value of the first input argument raised to the power
indicated by the second input argument.

Syntax

POWER (value, exponent)

Remarks

The table lists the valid input argument data types and the resulting output data types.

TIBCO® Data Virtualization Reference Guide

400 | TDV Support for SQL Functions

Data Type of Value Data Type of Exponent Output
Type

BIGINT, DECIMAL, FLOAT,
INTEGER, NUMERIC, REAL,
SMALLINT, TINYINT

BIGINT, DECIMAL, FLOAT, INTEGER,
NUMERIC, REAL, SMALLINT, TINYINT

FLOAT

NULL BIGINT, DECIMAL, FLOAT, INTEGER,
NUMERIC, REAL, SMALLINT, TINYINT

NULL

BIGINT, DECIMAL, FLOAT,
INTEGER, NUMERIC, REAL,
SMALLINT, TINYINT

NULL NULL

QUANTIZE
The QUANTIZE function returns a DECFLOAT value that is equal in value (except for any
rounding) and sign to the first argument and that has an exponent that is set to equal the
exponent of the second argument.

Syntax

QUANTIZE(expr1,expr2)

Example

SELECT QUANTIZE(4.112, DECFLOAT(0.01))

Returns: 4.11

RADIANS
Given an angle in degrees as the input argument, the RADIANS function returns the
corresponding angle in radians.

TIBCO® Data Virtualization Reference Guide

401 | TDV Support for SQL Functions

Syntax

RADIANS (argument)

Remarks

The table lists the valid input argument data types and the resulting output data types.

Data Type of Argument Output Type

BIGINT, DECIMAL, FLOAT, INTEGER, NUMERIC, REAL,
SMALLINT, TINYINT

FLOAT

NULL NULL

RAND
The RAND() function returns a random number between 0 (inclusive) and 1 (exclusive).

Syntax

RAND()

RANDOM
See RAND

ROUND (for date/time)
Given two input arguments, this form of the ROUND function returns the value of the first
input argument rounded to the value specified by the second input argument (format).

TIBCO® Data Virtualization Reference Guide

402 | TDV Support for SQL Functions

Syntax

ROUND (input_arg, format)

Remarks
• The input argument is the keyword DATE or TIME or TIMESTAMP plus a quoted string

containing the date/time expression to truncate.

• If the format argument is not present:

— TIMESTAMP rounds up or down to a day, with a time of 00:00:00.

— DATE or the date portion of a TIMESTAMP remains unchanged.

— TIME or the time portion of a TIMESTAMP rounds down to the given hour or up
to the next hour, with 00:00 minutes and seconds.

• The optional second argument, format, is a STRING. Its values are listed in the table
below. This argument is not case-sensitive.

Format Argument Output and Comments

CC
SCC

Beginning with January 1 of xx50, rounds up to the
first day of the next century. Up to December 31 of
xx49, rounds down to the beginning day of the
current century. For example, 2050-01-01 rounds to
2101-01-01; 2049-12-31 rounds to 2001-01-01.

SYEAR, SYYYY
YEAR, YYYY, YYY, YY, Y

Year. Starting on July 1, rounds up to the next year.

IYYY, IYY, IY, I Date of first day of the ISO year. An ISO year (ISO
8601 standard) starts on Monday of the week
containing the first Thursday of January. It can start
as early as 12/29 of the previous year, or as late as
01/04 of the current year.

Q Date of the first day of the current quarter (up to the
fifteenth of the second month of the quarter).
Beginning on the sixteenth day of the second month

TIBCO® Data Virtualization Reference Guide

403 | TDV Support for SQL Functions

Format Argument Output and Comments

of the quarter, rounds up to the first day of the next
quarter.

MONTH, MON, MM, RM Date of the first day of the current month (up to the
fifteenth day). Beginning on the sixteenth day of the
month, rounds up to the first day of the next month.

WW Date of the same day of the week as the first day of
the year.

IW Because an ISO year always begins on a Monday:
date of Monday of the current week if the first
argument is Monday through Wednesday; date of
Monday of the following week if the first argument is
Thursday through Sunday.

W Date of the same day of the week as the first day of
the month.

DDD, DD, J For 12:00:00 (noon) or later, rounds up to date of the
following day. For 11:59:59 or before, or for a DATE,
rounds down to current date.

DAY, DY, D Starting day of the week; that is, date of the Sunday
of the week that current date is in.

IDDD ISO day of year, where day 1 of the year is Monday
of the first ISO week. Range is 001-371.

ID ISO day of the week, where Monday = 1 and Sunday
= 7.

HH, HH12, HH24 For hour plus 30 minutes or later, rounds up to next
hour.

MI For minute plus 30 seconds or later, rounds up to
next minute.

TIBCO® Data Virtualization Reference Guide

404 | TDV Support for SQL Functions

Examples

The table gives examples of ROUND with some of its format definitions and the results.

SELECT Statement Result

ROUND (TIMESTAMP '1949-12-31 00:00:00',
'cc')

1901-01-01 00:00:00

ROUND (DATE '1950-01-01', 'cc') 2001-01-01

ROUND (timestamp '1983-07-01
15:59:31','Y')

1984-01-01 00:00:00

ROUND (date '1983-06-30', 'y') 1983-01-01

ROUND (timestamp '2015-03-06
15:59:31','i')

2014-12-29 00:00:00

ROUND (date '2015-03-06', 'i') 2014-12-29

ROUND (timestamp '1983-03-06
15:59:31','q')

1983-01-01 00:00:00

ROUND (date '1983-03-06', 'Q') 1983-01-01

ROUND (timestamp '1983-03-06 12:34:56',
'mm')

1983-03-01 00:00:00

TIBCO® Data Virtualization Reference Guide

405 | TDV Support for SQL Functions

SELECT Statement Result

ROUND (date '1983-03-06', 'mm') 1983-03-01

ROUND (timestamp '2015-06-08 12:34:56',
'ww')

2015-06-11 00:00:00

ROUND (date '2015-06-08', 'ww') 2015-06-11

ROUND (timestamp '2015-06-07 12:34:56',
'ww')

2015-06-04 00:00:00

ROUND (date '2015-06-107', 'ww') 2015-06-04

ROUND (timestamp '2015-06-10 12:34:56',
'ddd')

2015-06-10 00:00:00

ROUND (date '2015-06-10', 'ddd') 2015-06-10

ROUND (TIMESTAMP '2015-06-10 12:34:56',
'hh')

2015-06-10 12:00:00

ROUND (time '12:34:56', 'hh') 12:00:00

ROUND (TIMESTAMP '2015-06-10 12:34:56',
'mi')

2015-06-10 12:34:00

TIBCO® Data Virtualization Reference Guide

406 | TDV Support for SQL Functions

SELECT Statement Result

ROUND (time '12:34:56', 'mi') 12:34:00

ROUND (for numbers)
The ROUND function returns the value of the first input expression rounded to the number
of decimal places specified by the second input argument (scale). If a third argument is
present and nonzero, the input expression is truncated.

Syntax

ROUND (input_exp, scale [, modifier])

Remarks
• The input expression is the number to round.

• The input expression data type can be DECIMAL, INTEGER, FLOAT, STRING, or NULL.

• The scale data type can be DECIMAL, INTEGER, FLOAT, STRING, or NULL.

• If either the input argument or the scale is NULL, the output is NULL.

• If the modifier is present and nonzero, the input expression is truncated. If the
modifier is absent or zero, the input expression is rounded. The modifier can be
TINYINT, SMALLINT, or INT.

• If scale is less than zero, it is set to zero; if scale is greater than 255, it is set to 255.

• See About SQL Functions in TDV for an explanation of the DECIMAL(p,s) notation.

The table below shows the effect of scale on different input argument data types.

Data Type of Input Argument Output Type

DECIMAL(p,q) DECIMAL(p-q+scale, scale)

TIBCO® Data Virtualization Reference Guide

407 | TDV Support for SQL Functions

Data Type of Input Argument Output Type

TINYINT, SMALLINT, BIGINT, INTEGER, or
NUMERIC

DECIMAL(19+scale, scale)

FLOAT, REAL, STRING DECIMAL(255, scale)

NULL NULL

Examples

SELECT ROUND (columnX, 2) FROM tableY

If columnX is DECIMAL(10, 6), a value in columnX of 10.666666 is converted to DECIMAL(6,
2) with a value of 10.67.

SELECT ROUND (100.123456, 4)

Result is 100.1235.

SELECT ROUND (100.15, 4)

Result is 100.1500.

SELECT ROUND (100.15, 1, 1)

Because of the nonzero third argument, the result is truncated to 100.1.

ROWNUM
This is a Push-Only function. It means that TDV relies on remote data sources that support
this function to natively process it.

Not all data sources will support all functions and those that do may not have the exact
same syntax or behavior. For help with syntax and functionality, refer to your data source
documentation.

TIBCO® Data Virtualization Reference Guide

408 | TDV Support for SQL Functions

Push-Only functions should generally only be used when either there is no general
alternative supplied by TDV or there is some specific behavior or performance benefit that
is not available through TDV alternatives. Using Push-Only functions can prevent federated
query optimizations when TDV creates query plans. This means TDV has less flexibility in
determining in which data sources will process the different parts of a federated query.

SIGN
The SIGN() function returns the sign of a number.

Syntax

SIGN(number)

Example

SELECT SIGN(-2.56)

Returns -1

SIN
The SIN function returns the sine of the input argument.

Syntax

SIN (argument)

Remarks

The table lists the valid input argument data types and the resulting output data types.

TIBCO® Data Virtualization Reference Guide

409 | TDV Support for SQL Functions

Data Type of Argument Output Type Notes

BIGINT, DECIMAL, FLOAT, INTEGER,
NUMERIC, REAL, SMALLINT, TINYINT

FLOAT Input argument is in radians.
Output values range from -1.0 to
+1.0.

NULL NULL

Examples

SELECT ROUND(SIN(PI()));

The result is 0.

SELECT SIN(PI()+0.2);

The result is -0.19866933079506127.

SELECT SIN(30 * 3.14159265359/180);

SELECT SIN(RADIANS(30));

The result in either case is 0.5.

SINH
The SINH function returns the hyperbolic sine of the input argument.

Syntax

SINH (argument)

Remarks
• The input argument is a double value.

TIBCO® Data Virtualization Reference Guide

410 | TDV Support for SQL Functions

• If the argument is not a number, the result is not a number.

• If the argument is zero, the result is a zero with the same sign as the argument.

• If the argument is positive infinity, the result is positive infinity.

• If the argument is negative infinity, the result is negative infinity.

Example

SELECT SINH(1);

The result is 1.17520119364.

SQRT
The SQRT function returns the square root of the input argument.

Syntax

SQRT (argument)

Remarks

The table lists the valid input argument data types and the resulting output data types.

Data Type of Argument Output Type Notes

BIGINT, DECIMAL, FLOAT, INTEGER,
NUMERIC, REAL, SMALLINT, TINYINT

FLOAT Input value must not be negative.
Output value is greater than or
equal to 0.

NULL NULL

TIBCO® Data Virtualization Reference Guide

411 | TDV Support for SQL Functions

Example

SELECT SQRT(6);

The result is 2.449489742783178.

TAN
The TAN function returns the tangent of the input argument.

Syntax

TAN (argument)

Remarks

The table lists the valid input argument data types and the resulting output data types.

Data Type of Argument Output
Type

Note

BIGINT, DECIMAL, FLOAT, INTEGER,
NUMERIC, REAL, SMALLINT, TINYINT

FLOAT Input argument is in radians.

NULL NULL

Example

SELECT TAN(2;

The result is 0.964028.

TIBCO® Data Virtualization Reference Guide

412 | TDV Support for SQL Functions

TANH
The TANH function returns the hyperbolic tangent of the input argument.

Syntax

TANH (argument)

Remarks
• The input argument is a double value.

• If the argument is not a number, the result is not a number.

• If the argument is zero, the result is a zero with the same sign as the argument.

• If the argument is positive infinity, the result is +1.0.

• If the argument is negative infinity, the result is -1.0.

Example

SELECT TANH(1);

The result is 0.76159415595.

TOTALORDER
The TOTALORDER function returns an ordering for DECFLOAT values. The TOTALORDER
function returns a small integer value that indicates how expression1 compares with
expression2.

Syntax

TOTALORDER(decfloat, decfloat)

TIBCO® Data Virtualization Reference Guide

413 | TDV Support for SQL Functions

Example

select TOTALORDER(DECFLOAT(-1.1), DECFLOAT(-1.2))

Operator Functions
TDV supports the operator functions listed in the table.

Operator Function Comments

X + Y Add

X||Y Concatenate; for example abc||def returns abcdef.

X/Y Divide; for example, 18/3 returns 6.

X ** Y Exponentiate; for example, 2**8 returns 256.

FACTORIAL or X! Return the factorial of the given integer; for example, 5! returns 60.

X % Y Modulo; for example 7 % 3 returns 1, because seven divided by 3
leaves a remainder of 1.

X * Y Multiply.

-X Negate (unary operator); for example, -(1) returns -1 and -(-1) returns
1.

X - Y Subtract.

Add-Operator
See Operator Functions

TIBCO® Data Virtualization Reference Guide

414 | TDV Support for SQL Functions

Concatenate-Operator
See Operator Functions

Divide-Operator
See Operator Functions

Exponentiate-Operator
See Operator Functions

Factorial-Operator
See Operator Functions

FACTORIAL
See Operator Functions

Module-Operator
See Operator Functions

Multiply-Operator
See Operator Functions

TIBCO® Data Virtualization Reference Guide

415 | TDV Support for SQL Functions

Negate-Operator
See Operator Functions

Subtract-Operator
See Operator Functions

Phonetic Functions
TDV supports the phonetic functions listed in the table. The TDV functions are modeled on
Netezza implementations. For further information, follow this link.

Phonetic Function Comments

DBL_MP DBL_MP (string_expression) returns a TDV 32-bit numeric
expression of the input argument.

NYSIIS NYSIIS (string_expression) returns a Soundex representation of the
input argument using the New York State Identification and
Intelligence System (NYSIIS) variation of Soundex.

PRI_MP PRI_MP (numeric_expression) returns the four-character primary
metaphone string from the numeric_expression returned by DBL_
MP.

SCORE_MP SCORE_MP (numeric_expression1, numeric_expression2) returns a
score for how closely the two numeric expressions match.

SEC_MP SEC_MP (numeric_expression) returns the four-character secondary
metaphone string from the numeric_expression returned by DBL_
MP.

SOUNDEX SOUNDEX function returns a four-character code to evaluate the
similarity of two expressions.

http://www-01.ibm.com/support/knowledgecenter/SSULQD_7.0.3/com.ibm.nz.dbu.doc/r_dbuser_functions_expressions_phonetic_funcs.html?lang=en

TIBCO® Data Virtualization Reference Guide

416 | TDV Support for SQL Functions

Phonetic Function Comments

DIFFERENCE Returns an integer value that indicates the difference between the
values returned by the SOUNDEX function for string_exp1 and
string_exp2.

DBL_MP
Refer Phonetic Functions

NYSIIS
Refer Phonetic Functions

PRI_MP
Refer Phonetic Functions

SCORE_MP
Refer Phonetic Functions

SEC_MP
Refer Phonetic Functions

SOUNDEX
Refer Phonetic Functions

TIBCO® Data Virtualization Reference Guide

417 | TDV Support for SQL Functions

DIFFERENCE
Refer Phonetic Functions

Utility Function
TDV supports a utility function named EXPLAIN. This function makes the query execution
plan available to JDBC clients (as well as Studio users). The actual query is not executed.

Option Description Example Syntax

show_source_
plan="true"

Retrieves the query plan. This can
also be used in the SQL
Scratchpad.

explain select

{option show_source_
plan="true"}

* from <view>

show_
runtime="true"

Retrieves the execution statistics
(plan and runtime statistics). This
can also be used in the SQL
Scratchpad.

explain select

{option show_
runtime="true"}

* from <view>

Syntax

EXPLAIN <any_SQL-statement>

TIBCO® Data Virtualization Reference Guide

418 | TDV Support for SQL Functions

Remarks

Preceding any SQL statement with the keyword EXPLAIN makes the query execution plan
available in a text format that can be displayed either in Studio or in a JDBC client.

XML Functions
TDV supports a number of functions that apply to XML content.

As part of generating a valid XML element name, characters that are not allowed in XML are
escaped.

The following sections provide information about escaping:

• Identifier Escaping

• Text Escaping

TDV supports the XML functions listed in the table.

XML Function Comments

XMLAGG See XMLAGG (where it is grouped with other
aggregate functions)

XMLATTRIBUTES See XMLATTRIBUTES

XMLCOMMENT See XMLCOMMENT

XMLCONCAT See XMLCONCAT

XMLDOCUMENT See XMLDOCUMENT

XMLELEMENT See XMLELEMENT

XML_EXTRACT See XML_EXTRACT

XMLFOREST See XMLFOREST

XMLNAMESPACES See XMLNAMESPACES

TIBCO® Data Virtualization Reference Guide

419 | TDV Support for SQL Functions

XML Function Comments

XMLPI See XMLPI

XMLQUERY See XMLQUERY

XMLTEXT See XMLTEXT

XPATH See XPATH

XSLT See XSLT

Note: The following functions are part of the ANSI specification but not supported in TDV:
XMLTABLE, XMLITERATE, XMLBINARY, XMLCAST, XMLEXISTS, XMLPARSE, XMLSERIALIZE,
XMLVALIDATE.

Identifier Escaping
When creating XML nodes with XML elements, the name of the node can be escaped
according to ANSI specification 9075-14, paragraph 4.10.3. The ANSI specification provides
two modes of escaping:

• full escaping

• partial escaping

TDV Server uses partial escaping. Only alphabetical characters and underscore can be
leading characters. All other characters are converted.

Partially escaped identifiers escape all nonleading numerical characters except minus (-),
underscore (_), and colon (:) with the format _xDDDD_ where DDDD is the hexadecimal
equivalent of the ASCII character. For example, the ampersand character (&) is converted to
x0026.

Examples

XMLELEMENT (NAME "29", 'text')

This results in <_x0032_9>text</_x0032_9>

TIBCO® Data Virtualization Reference Guide

420 | TDV Support for SQL Functions

XMLFOREST ('black' AS ":")

This results in <_x003A_>black</_x003A_>

XMLFOREST ('black' AS "a:-")

This results in <a:->black<a:->

Text Escaping
In an XML text, characters are replaced as listed in the following table.

Character in an XML Function Replacement

& &

> >

< <

" "

' '

Examples

XMLTEXT ('&')

The replacement results in &

XMLFOREST ('>' AS green)

The replacement results in <green>></green>

XMLELEMENT (NAME red, '"')

The replacement results in <red>"</red>

TIBCO® Data Virtualization Reference Guide

421 | TDV Support for SQL Functions

XMLATTRIBUTES
The XMLATTRIBUTES function constructs XML attributes from the arguments provided. The
result is an XML sequence with an attribute node for each input value.

Syntax

XMLATTRIBUTES (<XML_attribute_value> [AS <XML attribute_name>] [{ ,
<XML_attribute_value> [AS <XML attribute_name>] }...])

In the syntax, XML_attribute_value is a value expression, and XML_attribute_name is the
element identifier.

Remarks
• XMLATTRIBUTES can only be used as an argument of the XMLELEMENT function.

• This function requires the AS keyword if aliases are used. This is in contrast to the
select-list, which does not require the AS keyword for aliasing.

• This function cannot be used to insert blank spaces or newline characters.

• Any <value expression> that evaluates to NULL is ignored.

• Each <value expression> must have a unique attribute name.

• If the result of every <value expression> is NULL, the result is NULL.

Example

SELECT XMLELEMENT (name Details, XMLATTRIBUTES (product_id,name as
"Name"),

 XMLELEMENT (name orderno, OrderID),

 XMLELEMENT (name status, Status),

 XMLELEMENT (name price, UnitPrice)) myOutput

TIBCO® Data Virtualization Reference Guide

422 | TDV Support for SQL Functions

FROM /shared/examples/ds_orders/orderdetails

WHERE ProductID < 20

XMLCOMMENT
The XMLCOMMENT function generates an XML comment based on a value expression.

Syntax

XMLCOMMENT (value_expression)

Remarks
• The instruction argument is a string designating the processing instruction to

generate.

• The value_expression argument must resolve to a string.

• The value returned tales the form <--string-->.

XMLCONCAT
The XMLCONCAT function concatenates one or more XML fragments.

Syntax

XMLCONCAT (<XML value expression> { , <XML value expression> }...

 [<XML returning clause>])

TIBCO® Data Virtualization Reference Guide

423 | TDV Support for SQL Functions

Remarks
• If an argument evaluates to NULL, that argument is ignored.

• If all arguments are NULL, the result is NULL.

• If only one non-NULL argument is supplied, the result of the function is that
argument.

Example

SELECT XMLCONCAT (XMLTEXT (customers.ContactFirstName), XMLTEXT (' '),

 XMLTEXT (customers.ContactLastName)) AS CustomerName

FROM /shared/examples/ds_orders/customers customers

XMLDOCUMENT
The XMLDOCUMENT function generates an XML value with a single XQuery document node.
It is equivalent to running the XQUERY expression.

Syntax

XMLDOCUMENT (<XML_value_expression> [<XML_returning_clause>])

The <XML_value_expression> is a sequence of nodes of atomic values.

Example

SELECT XMLDOCUMENT (XMLELEMENT (name Details, XMLATTRIBUTES (ProductID
as product),

 XMLELEMENT (name orderno, OrderID),

TIBCO® Data Virtualization Reference Guide

424 | TDV Support for SQL Functions

 XMLELEMENT (name status, Status),

 XMLELEMENT (name price, UnitPrice))) myXMLDocument

FROM /shared/examples/ds_orders/orderdetails

WHERE ProductID < 20

XMLELEMENT
The XMLELEMENT function creates an XML node with an optional XML attributes node.

Syntax

XMLELEMENT (NAME <XML_element_name>

 [, <XML_namespace_declaration>] [, <XML_attributes>]

 [{ , <XML_element_content> }...

 [OPTION <XML_content_option>]]

 [<XML_returning_clause>])

Remarks
• The first argument, XML_element_name, is the name of the XML node. It can be

escaped if it contains certain characters. For details, see Identifier Escaping.

• The optional second argument, XML_namespace_declaration, is the XMLNAMESPACE
function.

• The optional third argument, XML_attributes, is the XMLATTRIBUTES function.

TIBCO® Data Virtualization Reference Guide

425 | TDV Support for SQL Functions

• The optional fourth argument, XML_element_content, is the content of the XML
node, which can be an XML, numeric, or character type.

• If XML_element_content evaluates to a character literal, it is escaped. For details,
see Text Escaping.

Example

SELECT XMLELEMENT (name Details, XMLATTRIBUTES (ProductID AS product),

XMLELEMENT (name orderno, OrderID),

XMLELEMENT (name status, Status),

XMLELEMENT (name price, UnitPrice)) myOutput

FROM /shared/examples/ds_orders/orderdetails

WHERE ProductID < 20

XML_EXTRACT
The XML_EXTRACT function extracts the XML nodes that are specified by an XPath
expression.

Syntax

XML_EXTRACT(xmlfile, xpath_expression [, separator])

where,

 1. xmlfile is a fragment of XML markup.

 2. xpath_expression is also known as a locator.

TIBCO® Data Virtualization Reference Guide

426 | TDV Support for SQL Functions

 3. separator has a default value is a comma and is an optional argument.

Example

select xml_extract('<?xml version="1.0"
standalone="no"?><emps><emp><interests><interest>i1</interest><interest>
i2</interest><interest>i3</interest></interests></emp></emps>','/emps/em
p/interests/interest/text()') a1

from

{path1 as table1}

The above example extracts the value of /emps/emp/interests/interest node.

XMLFOREST
The XMLFOREST function creates a series of XML nodes, with the arguments being the
children of each node. XMLFOREST accepts one or more arguments.

Syntax

XMLFOREST ([<XML_namespace_declaration>.] <forest_element_list>

 [OPTION <XML_content_option>]

 [<XML_returning_clause>]

)

Remarks
• Each argument to XMLFOREST can be followed by an optional alias. The alias

becomes the name of the XML node and the argument becomes a child of that node.

TIBCO® Data Virtualization Reference Guide

427 | TDV Support for SQL Functions

• If no alias is specified and the argument is a column, the name of the column is the
name of the XML node.

• If an argument is not a column, an error is generated.

• If an argument evaluates to a character literal, the resulting string is escaped.

Example

SELECT XMLFOREST (CompanyName AS name, City AS city) AS

NameAndCityOfCompany

FROM /shared/examples/ds_orders/customers

XMLNAMESPACES
XMLNAMESPACES constructs namespace declarations from the arguments provided.
Namespaces provide a way to distinguish names used in XML documents.

A namespace declaration can only be used as an argument for specific functions such as
XMLELEMENT and XMLFOREST. The result is one or more XML namespace declarations
containing in-scope namespaces for each non-NULL input value.

Example

SELECT CustomerID, XMLELEMENT (NAME customerName,

XMLNAMESPACES
('http://localhost:9400/services/webservices/ws/TestService/TestPort' AS
"customers"), XMLATTRIBUTES (City AS city, ContactLastName as name))
"Customer Details"

FROM /services/webservices/ws/TestService/TestPort/customers

WHERE StateOrProvince = 'CA'

TIBCO® Data Virtualization Reference Guide

428 | TDV Support for SQL Functions

XMLPI
The XMLPI function generates an XML processing instruction node and adds it to an XML
element being constructed with XMLELEMENT.

Syntax

XMLPI (instruction [, expression])

Remarks
• The instruction argument is a string designating the processing instruction to

generate.

• The string_expression argument returns a value of a built-in character or graphic
string.

XMLQUERY
The XMLQUERY function returns an XML value from the evaluation of an XQuery expression.
This function accepts one character literal argument, which is the XML query.

Syntax

XMLQUERY (<XQuery_expression> [<XML_query_argument list>]

 [<XML_returning_clause>

 [<XML_query_returning_mechanism>]]

 <XML_query_empty_handling_option>

)

TIBCO® Data Virtualization Reference Guide

429 | TDV Support for SQL Functions

Remarks
• Multiple arguments can be passed as input to the XML query.

• Each argument must be an XML data type, or be castable to an XML data type.

• Each argument can be followed by an optional identifier which gives the argument a
variable name.

• If an argument is missing the identifier, the argument becomes the context item.

• Only one context item per XMLQUERY function can exist.

• Each input must be resolved to an XML data type and must be aliased.

• Each alias must be unique, and is case-sensitive.

• TDV Server uses the Saxon as its XQuery parser. Saxon requires that all XQuery
variables be declared as external variables in the XQuery. (This is not an ANSI
requirement.)

• TDV Server also requires all noncontext item variables to be declared in the XQUERY
text. (This is not ANSI-specific.)

• Variables can be declared through the format declare variable $<name> external;
where <name> is the name of the variable. Multiple declarations can be separated
by a semicolon.

• XQuery keywords should be written in lowercase.

• The XML-passing mechanism is accepted but ignored.

If the empty handling option is NULL ON EMPTY, NULL is returned if the result of the
XQuery is an empty element.

Example

XMLQUERY ('declare variable $c external; for $i in $c

where $i /PDName = "Jean Morgan"

 order by $i/PDName

TIBCO® Data Virtualization Reference Guide

430 | TDV Support for SQL Functions

 return $i/PDName' passing XMLELEMENT(name PDRecord, XMLELEMENT(name
PDName, 'Jean Morgan')) as c)

This results in <PDName>Jean\ Morgan</PDName>.

XMLTEXT
The XMLTEXT function returns an XML value having the input argument as its content.
XMLTEXT accepts a character argument and returns the string after it has been escaped.
See section Text Escaping

Syntax

XMLTEXT (<character_value_expression> [<XML_returning_clause>])

Remark
• If the character argument evaluates to NULL, NULL is returned.

• The character value expression can accept NULL, INTEGER, FLOAT, DECIMAL, DATE,
TIMESTAMP, TIME, CLOB, BLOB, VARCHAR, and CHAR.

Example

SELECT XMLELEMENT (name company,

XMLTEXT (customers.CompanyName)) "Company Name", XMLTEXT
(customers.City) City

FROM /shared/examples/ds_orders/customers customers

XPATH
The XPATH function uses path expressions to navigate to nodes in an XML document.

TIBCO® Data Virtualization Reference Guide

431 | TDV Support for SQL Functions

Syntax

XPATH (sourceXml, xpathExpression)

Remarks
• The first argument is the name of an XML document.

• The second argument is a string value containing an XPATH expression.

• The function evaluates the XPATH expression against the supplied XML value and
returns the results as an XML value.

Example

PROCEDURE XpathFunctionExample (OUT resultXml XML)

BEGIN

DECLARE sourceXml XML;

DECLARE xpathExpression VARCHAR(4096);

-- Create an XML value to use in the XPATH function.

SET sourceXml = '<Book><Chapter>Test Data</Chapter></Book>';

-- Create an XPATH expression to evaluate.

SET xpathExpression = '//Chapter';

-- Evaluate the XPATH expression against the source XML value.

SET resultXml = XPATH (sourceXml, xpathExpression);

TIBCO® Data Virtualization Reference Guide

432 | TDV Support for SQL Functions

END

XSLT
The XSLT function creates a new XML document based on the content of a source XML
document. XSLT can be used to convert data from one XML schema to another, or to
convert XML data into web pages or PDF documents.

Syntax

XSLT (sourceXml, xsltExpression)

Remarks
• The first argument is the name of an XML document.

• The second argument is a string value containing an XSLT expression.

• The function evaluates the XSLT expression against the supplied XML value and
returns the results as an XML value.

Note: For further information, refer to the open-source Saxon XSLT home page,
http://saxon.sourceforge.net/.

Example

PROCEDURE XsltFunctionExample (OUT resultXml XML)

BEGIN

DECLARE sourceXml XML;

DECLARE xsltExpression VARCHAR(4096);

TIBCO® Data Virtualization Reference Guide

433 | TDV Support for SQL Functions

-- Create an XML value to use in the XSLT function.

SET sourceXml =

'<Book><Chapter>Test Data</Chapter></Book>';

-- Create an XSLT expression to evaluate.

SET xsltExpression =

'<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output omit-xml-declaration="true"/>

 <xsl:strip-space elements="*"/>

 <xsl:template match="/">

 <itemA>

 <xsl:for-each select="/Book">

 <itemB>

 <xsl:value-of select="Chapter"/>

 </itemB>

 </xsl:for-each>

TIBCO® Data Virtualization Reference Guide

434 | TDV Support for SQL Functions

 </itemA>

 </xsl:template>

</xsl:stylesheet>';

-- Evaluate the XSLT expression against the source XML value.

SET resultXml = XSLT (sourceXml, xsltExpression);

END

TIBCO® Data Virtualization Reference Guide

435 | TDV Support for SQL Operators

TDV Support for SQL Operators
TDV supports several types of operators that you can add to SQL statements to perform
arithmetic operations, compare values, combine them, or check for certain conditions. This
topic describes these operators, shows their syntax, lists their input and output data types
and gives examples of their use.

The arithmetic operators are built-in. For example, you can select them from a drop-down
list (Function > Operator) for a Column on a Grid panel.

You must manually type comparison, logical, and condition operators into a query on a
SQL or SQL Script panel.

TDV supports the following types of SQL operators:

• Arithmetic Operators

• Comparison Operators

• Logical Operators

• Condition Operators

Arithmetic Operators
The following arithmetic operators are built-in. You can select them from a cell drop-down
list on a Grid panel:

• Add

• Concatenation

• Divide

• Exponentiate

• Factorial

• Modulo

• Multiply

• Negate

TIBCO® Data Virtualization Reference Guide

436 | TDV Support for SQL Operators

• Subtract

The table below summarizes the operator names and their symbols.

Operator Name Symbol String or Symbol Name

Add + Plus sign

Concatenate || Double-pipe; two l bars

Divide / Forward slash

Exponentiate ** Double-asterisk

Factorial ! Exclamation mark

Factorial “FACTORIAL”

Modulo % Percent sign

Multiply * Asterisk

Negate - Hyphen (minus sign)

Subtract - Hyphen (minus sign)

Add
The add operator (+) adds two operands and returns the sum.

Note: A configuration parameter is available to control whether this operator allows
precision/scale to exceed 38. See Decimal Digit Limitation on Functions, for details.

DECIMAL and NUMERIC Data Types

When the add operator is applied to operands that include DECIMAL or NUMERIC data
types, the output data type, precision and scale might depend on the data type, precision
and scale of the operands, as shown below.

TIBCO® Data Virtualization Reference Guide

437 | TDV Support for SQL Operators

Syntax

operand1 + operand2

Remarks
• The order of the inputs (operands) has no effect on the output data type.

• The outputs for DECIMAL and NUMERIC data types combined with other operands
are shown in the table.

Inputs Output

DECIMAL(p1,s1) + DECIMAL(p2,s2) DECIMAL(p3,s3), with p3 the larger precision
of the inputs plus 1, and s3 the larger scale
of the inputs. DECIMAL(p1,s1) + NUMERIC

NUMERIC + NUMERIC NUMERIC

DECIMAL(p,s) + not-DECIMAL-or-
NUMERIC

DECIMAL(p,s)

NUMERIC + not-DECIMAL-or-NUMERIC NUMERIC

Example

DECIMAL(6,1) + NUMERIC(4,2) -> DECIMAL(7,2)

INTERVAL Type

INTERVAL can be added to DATE, TIME, TIMESTAMP or another INTERVAL.

Syntax

operand1 + operand2

TIBCO® Data Virtualization Reference Guide

438 | TDV Support for SQL Operators

Remarks
• INTERVAL days, hours, minutes, or seconds can only be added to other INTERVAL

days, hours, minutes, or seconds. INTERVAL years or months can only be added to
other INTERVAL years or months. The two groups of units are not interchangeable.

• When adding months, the TDV Server does not round down the day of the month,
and it might throw an error if the day of the month is invalid for the specified
month.

• The order of the inputs (operands) has no effect on the output data type.

• The outputs for INTERVAL added to various operands are shown in the table.

Inputs Output

INTERVAL + INTERVAL INTERVAL

INTERVAL + DATE
DATE + INTERVAL

DATE. Only days, months, and years can be
added to a DATE.

INTERVAL + TIME
TIME + INTERVAL

TIME

INTERVAL + TIMESTAMP
TIMESTAMP + INTERVAL

TIMESTAMP

Examples

DATE '1999-12-31' + INTERVAL '1' DAY = DATE '2000-01-01'

INTERVAL '1' MONTH + DATE '1999-12-31'= DATE '2000-01-31'

DATE '1989-03-15' + INTERVAL '1' YEAR = DATE '1990-03-15'

DATE '2000-01-31' + INTERVAL '1' MONTH = <Error: February only has 28
days>

TIBCO® Data Virtualization Reference Guide

439 | TDV Support for SQL Operators

INTERVAL '6000' SECOND(4) + INTERVAL '3000' DAY(4) = INTERVAL '3000
01:40:00' DAY(4) TO SECOND

INTERVAL '6000' SECOND(4) + TIME '7:00:00' = TIME '08:40:00'

Mixed Data Types

The add operator can be applied to operands that have a wide variety of data types,
including operands comparable or castable to data types that can accept arithmetic
operators.

Syntax

operand1 + operand2

Remarks

The operand data types and resulting output data types are shown in the table.

Operand1 Type Operand2 Type Output Type

TINYINT
SMALLINT
INTEGER
BIGINT

TINYINT
SMALLINT
INTEGER
BIGINT
STRING

INTEGER

TINYINT
SMALLINT
INTEGER
BIGINT

FLOAT
REAL

FLOAT

TINYINT
SMALLINT
INTEGER
BIGINT

DECIMAL
NUMERIC

DECIMAL

TIBCO® Data Virtualization Reference Guide

440 | TDV Support for SQL Operators

Operand1 Type Operand2 Type Output Type

TINYINT
SMALLINT
INTEGER
BIGINT
STRING

DATE DATE

TINYINT
SMALLINT
INTEGER
BIGINT
STRING

TIMESTAMP TIMESTAMP

FLOAT
REAL

TINYINT
SMALLINT
INTEGER
BIGINT
STRING

FLOAT

FLOAT
REAL

FLOAT
REAL

FLOAT
REAL

DECIMAL
NUMERIC

DECIMAL

FLOAT
REAL

DATE DATE

FLOAT
REAL

TIMESTAMP TIMESTAMP

DECIMAL
NUMERIC

TINYINT
SMALLINT
INTEGER
BIGINT

DECIMAL

DECIMAL
NUMERIC

FLOAT
REAL

TIBCO® Data Virtualization Reference Guide

441 | TDV Support for SQL Operators

Operand1 Type Operand2 Type Output Type

DECIMAL
NUMERIC

DECIMAL
NUMERIC

FLOAT

DECIMAL
NUMERIC

DATE DATE

DECIMAL
NUMERIC

TIMESTAMP TIMESTAMP

DATE INTERVAL DATE

DATE STRING DATE

TIMESTAMP INTERVAL TIMESTAMP

TIMESTAMP STRING TIMESTAMP

STRING STRING
TINYINT
SMALLINT
INTEGER
BIGINT
NUMERIC
FLOAT
REAL
DECIMAL
DATE
TIMESTAMP

DECIMAL
INTEGER
INTEGER
INTEGER
INTEGER
DECIMAL
FLOAT
FLOAT
DECIMAL
DATE
TIMESTAMP

NULL TINYINT
SMALLINT
INTEGER
BIGINT
NUMERIC
FLOAT
REAL
DECIMAL

NULL

TIBCO® Data Virtualization Reference Guide

442 | TDV Support for SQL Operators

Operand1 Type Operand2 Type Output Type

DATE
TIMESTAMP
NULL

TINYINT
SMALLINT
INTEGER
BIGINT
NUMERIC
FLOAT
REAL
DECIMAL
DATE
TIMESTAMP
STRING

NULL NULL

INTERVAL DATE
INTERVAL
TIME
TIMESTAMP

DATE
INTERVAL
TIME
TIMESTAMP

Concatenation
The concatenation operator (||) concatenates the first operand and second operand and
returns the combined operands.

Syntax

operand1 || operand2

Example

abc || def

This concatenation returns abcdef.

TIBCO® Data Virtualization Reference Guide

443 | TDV Support for SQL Operators

Divide
The divide operator (/) divides the first operand by the second and returns the quotient.

Note: A configuration parameter is available to control whether this operator allows
precision/scale to exceed 38. See Decimal Digit Limitation on Functions, for details.

DECIMAL and NUMERIC Data Types

When the divide operator is applied to operands that include DECIMAL or NUMERIC data
types, the output data type, precision and scale might depend on the data type, precision
and scale of the operands, as shown below.

Syntax

operand1 / operand2

Remarks
• The order of the inputs (operands) has no effect on the output data type.

• The outputs for dividing DECIMAL and NUMERIC data types are shown in the table.

operand1 operand2 Output

DECIMAL(p1,s1) DECIMAL(p2,s2) DECIMAL(p1+p2+s2,s1+p2)

DECIMAL(p,s) NUMERIC DECIMAL(p,s)

NUMERIC NUMERIC NUMERIC

If the input is DECIMAL or NUMERIC with any number data types other than DECIMAL or
NUMERIC, the output data type should be DECIMAL or NUMERIC, respectively, with the
same precision and scale as the DECIMAL or NUMERIC input.

TIBCO® Data Virtualization Reference Guide

444 | TDV Support for SQL Operators

Example

DECIMAL(12,3) / DECIMAL(45,2)

This division operation returns DECIMAL(59,48).

Note: If an expression that is computed, has an undefined result (for example, 0/0), the
classic query engine throws an exception. For a similar scenario, the MPP Engine returns
the value “NaN”. The results may vary if the query is pushed down to a datasource.

INTEGER Division

Division between two integers in TDV, results in an INTEGER. You can change this behavior
by tuning the configuration setting Administration -> Configuration -> Server -> SQL Engine
-> SQL Language -> Numeric Division to TRUE. By default this is set to FALSE.

INTERVAL Type

INTERVAL can be divided by numbers. The output is an INTERVAL.

Syntax

INTERVAL / NUMERIC

Example

INTERVAL '90' HOUR / 10 = INTERVAL '0 09:00:00' DAY TO SECOND

INTERVAL '1' YEAR / .1 = INTERVAL '10-00' YEAR TO MONTH

Exponentiate
Exponentiation (**) combines a number and an exponent. For example, 2**3 takes the
number 2 to the exponent 3 and returns two cubed, or 8.

TIBCO® Data Virtualization Reference Guide

445 | TDV Support for SQL Operators

Syntax

number ** exponent

Example

10**4

This expression returns 10 to the fourth power, or 1000.

Factorial
Factorial is an operator (!) and a function (FACTORIAL) that returns the factorial product
of an integer.

Note: Twenty-factorial (20! or 2.432902e+18) is the largest factorial product that TDV
natively supports. It is 9.223372e+18, which is within the range of BIGINT (-2**63 to +2**63 -
1). For maximum values in pushed functions, refer to the appropriate section of Function
Support for Data Sources

Syntax

operand !

FACTORIAL(n)

Examples

FACTORIAL(5)

5!

Both of these return 120 (1 * 2 * 3 * 4 * 5).

TIBCO® Data Virtualization Reference Guide

446 | TDV Support for SQL Operators

Modulo
The modulo operator (%) divides the first operand by the second operand (the modulus)
and returns the remainder.

Note: A configuration parameter is available to control whether this operator allows
precision/scale to exceed 38. See Decimal Digit Limitation on Functions, for details.

Syntax

operand1 % operand2

Example

11 % 3

Eleven modulo 3 is 2; that is, 11 divided by 3 has a remainder of 2.

Remarks

The input (operand1 and operand2) data types and resulting output data types are shown
in the table.

Operand1 Operand2 Output

TINYINT
SMALLINT
INTEGER
BIGINT
STRING

TINYINT
SMALLINT
INTEGER
BIGINT
STRING

INTEGER

NULL TINYINT
SMALLINT
INTEGER
BIGINT
STRING

NULL

TIBCO® Data Virtualization Reference Guide

447 | TDV Support for SQL Operators

Operand1 Operand2 Output

TINYINT
SMALLINT
INTEGER
BIGINT

NULL NULL

Multiply
The multiply operator (*) multiplies two operands and returns the product.

Note: A configuration parameter is available to control whether this operator allows
precision/scale to exceed 38. See Decimal Digit Limitation on Functions, for details.

DECIMAL and NUMERIC Data Types

When the multiply operator is applied to operands that include DECIMAL or NUMERIC data
types, the output data type, precision and scale might depend on the data type, precision
and scale of the operands, as shown below.

Syntax

operand1 * operand2

Remarks
• The order of the inputs (operands) has no effect on the output data type.

• The outputs for multiplying DECIMAL and NUMERIC data types with each other and
with other data types are shown in the table.

TIBCO® Data Virtualization Reference Guide

448 | TDV Support for SQL Operators

Inputs Output

DECIMAL(p1,s1) * DECIMAL(p2,s2) DECIMAL(p1+p2,s1+s2)

DECIMAL(p1,s1) * NUMERIC(p2,s2)

NUMERIC(p1,s1) * NUMERIC(p2,s2) NUMERIC(p1+p2,s1+s2)

DECIMAL(p1,s1) * TINYINT DECIMAL(p+3,s)

DECIMAL(p1,s1) * SMALLINT DECIMAL(p+5,s)

DECIMAL(p1,s1) * INTEGER DECIMAL(p+10,s)

DECIMAL(p1,s1) * BIGINT DECIMAL(p+19,s)

DECIMAL(p,s) * not-DECIMAL-or-
NUMERIC

DECIMAL(p,s)

NUMERIC(p,s) * not-DECIMAL-or-
NUMERIC

NUMERIC(p,s)

Examples

DECIMAL(6,2) * TINYINT -> DECIMAL(9,2)

DECIMAL(6,2) * SMALLINT -> DECIMAL(11,2)

INTERVAL Type

INTERVAL can be multiplied by numbers. The output data type is INTERVAL.

Syntax

INTERVAL * NUMERIC

TIBCO® Data Virtualization Reference Guide

449 | TDV Support for SQL Operators

Examples

INTERVAL '1' DAY * 10 = INTERVAL '10 00:00:00' DAY TO SECOND

INTERVAL '10' DAY * .1 = INTERVAL '1 00:00:00' DAY TO SECOND

Mixed Data Types

The multiply operator can be applied to operands that have a wide variety of data types,
including operands comparable or castable to data types that can accept arithmetic
operators.

Syntax

operand1 * operand2

Remarks

The operand data types and resulting output data types are shown in the table.

Operand1 Operand2 Output

TINYINT
SMALLINT
INTEGER
BIGINT

TINYINT
SMALLINT
INTEGER
BIGINT
STRING

INTEGER

TINYINT
SMALLINT
INTEGER
BIGINT

FLOAT
REAL

FLOAT

TINYINT
SMALLINT
INTEGER

DECIMAL
NUMERIC

DECIMAL

TIBCO® Data Virtualization Reference Guide

450 | TDV Support for SQL Operators

Operand1 Operand2 Output

BIGINT

FLOAT
REAL

TINYINT
SMALLINT
INTEGER
BIGINT
DECIMAL

FLOAT

FLOAT
REAL

FLOAT
REAL

FLOAT
REAL

DECIMAL
NUMERIC

DECIMAL

DECIMAL
NUMERIC

TINYINT
SMALLINT
INTEGER
BIGINT
STRING

DECIMAL
NUMERIC

FLOAT
REAL

DECIMAL
NUMERIC

DECIMAL
NUMERIC

FLOAT

STRING STRING
TINYINT
SMALLINT
INTEGER
BIGINT
NUMERIC
FLOAT
REAL
DECIMAL

DECIMAL
INTEGER
INTEGER
INTEGER
INTEGER
DECIMAL
FLOAT
FLOAT
DECIMAL

NULL TINYINT NULL

TIBCO® Data Virtualization Reference Guide

451 | TDV Support for SQL Operators

Operand1 Operand2 Output

SMALLINT
INTEGER
BIGINT
NUMERIC
FLOAT
REAL
DECIMAL
STRING
NULL

TINYINT
SMALLINT
INTEGER
BIGINT
NUMERIC
FLOAT
REAL
DECIMAL
STRING

NULL

INTERVAL NUMERIC INTERVAL

Negate
The negate operator (-) returns the negative value of an operand. Negate is a unary
operator: it acts on a single operand.

INTERVAL Type

INTERVAL can be negated in various ways, as shown in the following examples:

- INTERVAL '1' DAY

INTERVAL '-1' DAY

TIBCO® Data Virtualization Reference Guide

452 | TDV Support for SQL Operators

INTERVAL -'1' DAY

Other Data Types

Negate can be applied to the following data types: BIGINT, DECIMAL, FLOAT, INTEGER,
INTERVAL, NULL, NUMERIC, REAL, SMALLINT, STRING, and TINYINT.

Negate does not change the operand’s data type.

Subtract
The subtract operator (-) subtracts the second operand from the first operand and returns
the difference.

Note: A configuration parameter is available to control whether this operator allows
precision/scale to exceed 38. See Decimal Digit Limitation on Functions, for details.

DECIMAL and NUMERIC Data Types

When the subtract operator is applied to operands that include DECIMAL or NUMERIC data
types, the output data type, precision and scale might depend on the data type, precision
and scale of the operands, as shown below.

Syntax

operand1 - operand2

Remarks
• The order of the inputs (operands) has no effect on the output data type.

• The outputs for DECIMAL and NUMERIC data types combined with other operands
are shown in the table.

TIBCO® Data Virtualization Reference Guide

453 | TDV Support for SQL Operators

Inputs Output

DECIMAL(p1,s1) - DECIMAL(p2,s2) DECIMAL(p3,s3), with
p3 the larger precision
of the inputs, and s3
the larger scale of the
inputs.

DECIMAL(p1,s1) - NUMERIC(p2,s2)

NUMERIC - NUMERIC NUMERIC

DECIMAL(p,s) - not-DECIMAL-or-
NUMERIC

DECIMAL(p,s)

NUMERIC - not-DECIMAL-or-NUMERIC NUMERIC

Examples

DECIMAL(6,1) - DECIMAL(5,2) -> DECIMAL(6,2)

DECIMAL(6,1) - NUMERIC(5,2) -> DECIMAL(6,2)

NUMERIC(6,1) - NUMERIC(5,2) -> NUMERIC(6,2)

INTERVAL Type

INTERVAL can be subtracted from DATE, TIME, TIMESTAMP or another INTERVAL.

Syntax

operand1 - operand2

Remarks
• INTERVAL can be subtracted from DATE, TIME, TIMESTAMP, or another INTERVAL.

TIBCO® Data Virtualization Reference Guide

454 | TDV Support for SQL Operators

• Interval days, hours, minutes, or seconds can only be subtracted from other interval
days, hours, minutes, or seconds. Interval years or months can only be subtracted
from other interval years or months. The two groups of units are not
interchangeable.

• When subtracting months, the TDV Server does not round down the day of the
month, and it might throw an error if the day of the month is invalid for the
specified month.

• The order of the inputs (operands) has no effect on the output data type.

• The outputs for INTERVAL as a subtract operand are shown in the table.

Inputs Output

DATE - INTERVAL DATE. Only days, months, and years can be
subtracted from a DATE.

INTERVAL - INTERVAL INTERVAL

INTERVAL - DATE DATE. Dates can be subtracted from INTERVALs
only if the INTERVAL is days, months, or years.

INTERVAL - TIME TIME

INTERVAL -
TIMESTAMP

TIMESTAMP

Examples

TIME '7:00:00' - INTERVAL '0 3:00:00' DAY TO SECOND = TIME '4:00:00'

INTERVAL '10000-11' YEAR(5) TO MONTH - INTERVAL '1' MONTH(1) = INTERVAL
'10000-10'
 YEAR TO MONTH

DATE '1999-12-31' - INTERVAL '365' DAY(3) = DATE '1998-01-01'

TIBCO® Data Virtualization Reference Guide

455 | TDV Support for SQL Operators

Mixed Data Types

The subtract operator can be applied to operands that have a wide variety of data types,
including operands comparable or castable to data types that can accept arithmetic
operators.

Syntax

operand1 - operand2

Remarks

The operand data types and resulting output data types are shown in the table.

Operand1 Operand2 Output

TINYINT TINYINT INTEGER

SMALLINT SMALLINT

INTEGER INTEGER

BIGINT BIGINT

TINYINT
SMALLINT
INTEGER
BIGINT

STRING INTEGER

TINYINT FLOAT
REAL

FLOAT

SMALLINT

INTEGER

BIGINT

TINYINT DECIMAL (p,s) DECIMAL (p,s)

TIBCO® Data Virtualization Reference Guide

456 | TDV Support for SQL Operators

Operand1 Operand2 Output

SMALLINT
INTEGER
BIGINT

NUMERIC (p,s)

FLOAT
REAL

TINYINT
SMALLINT
INTEGER
BIGINT

FLOAT

FLOAT
REAL

FLOAT
REAL

FLOAT DECIMAL (p,s)

REAL DECIMAL (p,s)
NUMERIC (p,s)

DECIMAL

DECIMAL
NUMERIC

TINYINT
SMALLINT
INTEGER
BIGINT
STRING

DECIMAL
NUMERIC

FLOAT
REAL

DECIMAL

DECIMAL
NUMERIC

DECIMAL
NUMERIC

DECIMAL

DATE DATE An INTERVAL day: the number of days
between the two arguments.

DATE '2006-03-20' - DATE '2005-12-02' =
INTERVAL '108' DAY(3)

DATE TIMESTAMP
STRING

An INTEGER that represents the
difference between the dates in the two

TIBCO® Data Virtualization Reference Guide

457 | TDV Support for SQL Operators

Operand1 Operand2 Output

inputs.

TIME TIME An INTERVAL hour to second.

TIME '21:00:00' - TIME '19:00:00' =
INTERVAL '0 2:00:00' DAY TO SECOND

TIMESTAMP TIMESTAMP An INTERVAL day to second.

TIMESTAMP '2006-03-20 21:00:00' -
TIMESTAMP '2005-12-02 19:00:00' =
INTERVAL '108 02:00:00' DAY(3) TO
SECOND

TIMESTAMP DATE
STRING

An INTEGER that represents the
difference between the dates in the two
inputs.

STRING STRING
TINYINT
SMALLINT
INTEGER
BIGINT
NUMERIC
FLOAT
REAL
DECIMAL
DATE
TIMESTAMP

DECIMAL
INTEGER
INTEGER
INTEGER
INTEGER
DECIMAL
FLOAT
FLOAT
DECIMAL
INTEGER
INTEGER

NULL TINYINT
SMALLINT
INTEGER
BIGINT
NUMERIC
FLOAT
REAL
DECIMAL

NULL

TIBCO® Data Virtualization Reference Guide

458 | TDV Support for SQL Operators

Operand1 Operand2 Output

DATE
TIMESTAMP
STRING
NULL

TINYINT
SMALLINT
INTEGER
BIGINT
NUMERIC
FLOAT
REAL
DECIMAL
DATE
TIMESTAMP
STRING

NULL

Comparison Operators
TDV supports the following comparison operators:

• = (equal to)

• <> (not equal to)

• < (less than)

• > (greater than)

• <= (less than or equal to)

• >= (greater than or equal to)

These operators are not available through the Studio interface, so you must manually type
them into a query on a SQL or SQL Script panel.

If the value of the operand on either side of the comparison operator is NULL, the output
of the logical comparison is also NULL. In the examples below, any row with a ProductID
value of NULL does not return a result.

TIBCO® Data Virtualization Reference Guide

459 | TDV Support for SQL Operators

Example (Equal To)

SELECT ProductName, UnitPrice

FROM /shared/examples/ds_inventory/products products

WHERE ProductID = 5

Example (Not Equal To)

SELECT ProductName, UnitPrice

FROM /shared/examples/ds_inventory/products products

WHERE ProductID <> 10

Example (Less Than)

SELECT ProductName, UnitPrice

FROM /shared/examples/ds_inventory/products products

WHERE ProductID < 10

Example (Greater Than)

SELECT ProductName, UnitPrice

FROM /shared/examples/ds_inventory/products products

WHERE ProductID > 10

TIBCO® Data Virtualization Reference Guide

460 | TDV Support for SQL Operators

Example (Less Than Or Equal To)

SELECT ProductName, UnitPrice

FROM /shared/examples/ds_inventory/products products

WHERE ProductID <= 5

Example (Greater Than Or Equal To)

SELECT ProductName, UnitPrice

FROM /shared/examples/ds_inventory/products products

WHERE ProductID >= 5

Quantified Comparisons
When a comparison operator is used together with the words ALL, ANY, or SOME, the
comparison is known as being “quantified.” Such comparisons operate on subqueries that
could return multiple rows but would return a single column.

Syntax

<expression> <comparison-operator> {ALL |ANY |SOME} <column-subquery>

Remarks
• <comparison-operator> can be <, =, >, <=, >=, <>.

• ALL or ANY is applicable only to subqueries. When one of them is used, the
comparison converts a scalar subquery to a column subquery.

• Except for use in subqueries, ANY and SOME are equivalent.

TIBCO® Data Virtualization Reference Guide

461 | TDV Support for SQL Operators

• If ALL is used, the comparison must be true for all values returned by the subquery.

• If ANY or SOME is used, the comparison must be true for at least one value of the
subquery.

• A subquery using ANY must return a single column. ANY compares a single value to
the column of data values produced by the subquery.

If any of the comparisons yields a value of TRUE, the ANY comparison returns TRUE.
If the subquery returns NULL, the ANY comparison returns FALSE.

• ALL is used to compare a single value to the data values produced by the subquery.
The specified comparison operator is used to compare the given value to each data
value in the result set. If all of the comparisons returns a value of TRUE, the ALL test
also returns TRUE.

• If the subquery returns an empty result set, the ALL test returns a value of TRUE.

If the comparison test is false for any values in the result set, the ALL search returns
FALSE.

The ALL search returns TRUE if all the values are true. Otherwise, it returns
UNKNOWN. For example, if there is a NULL value in the subquery result set but the
search condition is TRUE for all non-null values, the ALL test returns UNKNOWN.

• Negating an ALL comparison is not equivalent to using an ALL comparison with any
other combination of operators. For example, NOT a = ALL (subquery) is not
equivalent to a <> ALL (subquery).

Example (Using ANY)

This query returns the order ID and customer ID for orders placed after at least one
product with an order ID of 500 was shipped.

SELECT ID, CustomerID

FROM SalesOrders

WHERE OrderDate > ANY (

 SELECT ShipDate

TIBCO® Data Virtualization Reference Guide

462 | TDV Support for SQL Operators

 FROM SalesOrderItems

 WHERE ID=500);

Example (Using SOME)

You can use SOME instead of ANY, as in the following example:

SELECT ID, CustomerID

FROM SalesOrders

WHERE OrderDate > SOME (

 SELECT ShipDate

 FROM SalesOrderItems

 WHERE ID=500);

Example (Using ALL)

The main query tests the order dates for each order against the shipping dates of every
product with the ID 500. If an order date is greater than the shipping date for every
shipment with order ID 500, the ID and customer ID from the SalesOrders table are
included in the result set.

SELECT ID, CustomerID

FROM SalesOrders

WHERE OrderDate > ALL (

TIBCO® Data Virtualization Reference Guide

463 | TDV Support for SQL Operators

 SELECT ShipDate

 FROM SalesOrderItems

 WHERE ID=500);

Logical Operators
TDV supports three logical operators:

• AND

• NOT

• OR

AND
AND returns rows that must satisfy all of the given conditions.

Syntax

condition1 AND condition2

Remark

This operator is not available through the Studio interface, so you must manually type it
into a query on a SQL or SQL Script panel.

Example

SELECT ProductID, ProductName, ProductDescription

TIBCO® Data Virtualization Reference Guide

464 | TDV Support for SQL Operators

FROM /shared/examples/ds_inventory/products products

WHERE ReorderLevel > 5 AND LeadTime = '1 Day'

NOT
NOT returns rows that do not satisfy a condition.

Syntax

NOT expression

NOT expression1 AND NOT expression2

Remarks
• This operator is not available through the Studio interface, so you must manually

type it into a query on a SQL or SQL Script panel.

• The expressions can be fixed values or comparisons.

Example (Single NOT)

SELECT orderdetails.*

FROM /shared/examples/ds_orders/orderdetails orderdetails

WHERE NOT (UnitPrice > 100.00)

Example (Two NOTs)

SELECT orderdetails.*

TIBCO® Data Virtualization Reference Guide

465 | TDV Support for SQL Operators

FROM /shared/examples/ds_orders/orderdetails orderdetails

WHERE NOT (UnitPrice > 100.00) AND NOT (Quantity < 2)

OR
OR returns rows that must satisfy at least one of the given conditions.

Syntax

condition1 OR condition2

Remarks
• This operator is not available through the Studio interface, so you must manually

type it into a query on a SQL or SQL Script panel.

Example

SELECT ProductID, ProductName, ProductDescription

FROM /shared/examples/ds_inventory/products products

WHERE ReorderLevel > 5 OR UnitPrice > 22.00

Condition Operators
TDV supports the following condition operators:

• CASE

• COALESCE

TIBCO® Data Virtualization Reference Guide

466 | TDV Support for SQL Operators

• DECODE

• IN and NOT IN

• IS NOT NULL

• IS NULL

• LIKE

• OVERLAPS

These operators are not available through the Studio interface, so you must manually type
them into a query on a SQL or SQL Script panel.

CASE
The CASE operator is used to evaluate several conditions and return a single value for the
first matched condition. The CASE expression is similar to an IF-THEN-ELSE or a SWITCH
statement used in many programming languages. However, in SQL, CASE is an expression,
not a statement.

CASE has two formats:

• Simple CASE

• Searched CASE

Simple CASE

A simple CASE compares an expression to a set of simple expressions.

Syntax

CASE <comparison-value>

 WHEN <conditional-expression 1> THEN <scalar-expression 1>

 WHEN <conditional-expression 2> THEN <scalar-expression 2>

TIBCO® Data Virtualization Reference Guide

467 | TDV Support for SQL Operators

 WHEN <conditional-expression 3> THEN <scalar-expression 3>

 [ELSE <default-scalar-expression>]

END

Remarks
• Using CASE, you can express an alternate value to an underlying value. For example,

if the underlying value is a code (such as 1, 2, 3), you can display it as a humanly
readable string value (Small, Medium, Large), without affecting the underlying value.

• If none of the test conditions is true, CASE returns the result contained in the
optional ELSE case, if one is specified.

• If no match is found and ELSE is not specified, ELSE NULL is assumed by default.

Example

SELECT ProductID, Status, UnitPrice,

 CASE Status

 WHEN 'open' THEN UnitPrice * 1.10

 WHEN 'closed' THEN UnitPrice * 1

 ELSE UnitPrice

 END

AS "New Price"

FROM /shared/examples/ds_orders/orderdetails

TIBCO® Data Virtualization Reference Guide

468 | TDV Support for SQL Operators

Searched CASE

A searched CASE compares an expression to a set of logical expressions.

Syntax

CASE

 WHEN <conditional_expression_1> THEN <scalar_expression_1>

 WHEN <conditional_expression_2> THEN <scalar_expression_2>

 WHEN <conditional_expression_3> THEN <scalar_expression_3>

 [ELSE <default_scalar_expression>]

END

Examples

SELECT ProductID, UnitPrice

 CASE

 WHEN UnitPrice <=100 THEN 'Between $1 and $100.00'

 WHEN UnitPrice <=200 THEN 'Between $100.01 and $200.00'

 ELSE 'Over $200.00'

 END

TIBCO® Data Virtualization Reference Guide

469 | TDV Support for SQL Operators

AS "Price Range"

FROM /shared/examples/ds_orders/orderdetails

SELECT ProductID, UnitPrice

 CASE

 WHEN UnitPrice > 400 THEN 'Above 400.00'

 WHEN UnitPrice >=300 THEN 'Between 300 and 400.00'

 END

AS "Price Range"

FROM /shared/examples/ds_orders/orderdetails

COALESCE
COALESCE returns the first non-null expression among its arguments.

Syntax

COALESCE (expression1, expression2, expression3…)

This is equivalent to:

CASE

 WHEN expression1 NOT NULL THEN expression1

TIBCO® Data Virtualization Reference Guide

470 | TDV Support for SQL Operators

 WHEN expression2 NOT NULL THEN expression2

 ELSE expression3

END

Remarks

TDV Server supports push of the COALESCE functional expression directly to the following
data sources to take advantage of any indices that might yield a performance advantage:
DB2, MySQL, Netezza, Oracle, SQL Server, Sybase, and Teradata.

Example

SELECT

CAST (COALESCE (hourly_wage * 40 * 52, salary, commission * num_sales)
AS money)

FROM wages

DECODE
DECODE allows data value transformation during run-time retrieval.

Syntax

DECODE (expression, string1, result1 [, stringN, resultN][, default])
columnNameAlias

TIBCO® Data Virtualization Reference Guide

471 | TDV Support for SQL Operators

Remarks

The DECODE function is similar to an IF-THEN-ELSE statement, where a regular expression
can be compared to one or more values, and if the expression equals a specified value, the
corresponding replacement value is returned.

• DECODE can be used to resolve strings into digital values for counting or other
purposes.

• The expression and any of the strings can be a table.column, a regular expression, or
values that are compared with each other for equality.

• The expression must resolve to a single value, but the string can be any value that
resolves to TRUE or FALSE in an equality function.

• If the compared arguments are equal, the value of the result corresponding to the
string is returned; otherwise, the specified default value or null is returned.

• Each string is compared with the expression in sequential order, even if the
expression does not match a prior string.

• If a default value is specified, it is returned if the expression does not match any of
the strings.

Example (Expanding a One-Letter Code)

This example performs a mapping from a one-letter code to a more meaningful value.

SELECT TBL_user.user_id "User ID",

DECODE (TBL_user.gender,

 'F', 'Female',

 'M', 'Male',

 'unspecified') Gender,

 TBL_user.first_name "First Name"

TIBCO® Data Virtualization Reference Guide

472 | TDV Support for SQL Operators

FROM /shared/examples/NORTHBAY/"user" TBL_user

Similar syntax could be used to convert a pair of one-letter Boolean values (T/F, 1/0, etc.)
to a value of TRUE or FALSE.

Example (Mapping States to Regions)

This example performs a mapping from states to regions.

SELECT *,

DECODE (customers.StateOrProvince,

 'Al', 'East',

 'Ak', 'North',

 'Ar', 'Midwest',

 'Az', 'West',

 'Somewhere else') Region

FROM /shared/examples/ds_orders/customers customers

ORDER BY Region

Example (Nesting DECODE in Other Functions)

DECODE can be nested within other functions. This can be useful for counting occurrences
of a particular value.

In this example, the number of suppliers in each of three states is counted after deriving a
string to either a 1 or a 0.

TIBCO® Data Virtualization Reference Guide

473 | TDV Support for SQL Operators

SELECT

 SUM (DECODE (suppliers.StateOrProvince, 'CA', 1, 0)) California,

 SUM (DECODE (suppliers.StateOrProvince, 'NY', 1, 0)) "New York",

 SUM (DECODE (suppliers.StateOrProvince, 'PA', 1, 0)) Pennsylvania

FROM /shared/examples/ds_inventory/suppliers

EXISTS and NOT EXISTS
The EXISTS keyword tests the existence of specific rows in the result of a subquery. The
NOT EXISTS keyword tests for the nonexistence of specific rows in the result of a subquery.

Syntax (EXISTS)

<source-expression>

WHERE EXISTS <subquery>

Syntax (NOT EXISTS)

<source-expression>

WHERE NOT EXISTS <subquery>

Remarks
• EXISTS checks for the existence of rows under conditions specified in the subquery;

the actual values in the rows are irrelevant. Therefore, the SELECT clause in the
subquery is SELECT * to retrieve all columns.

TIBCO® Data Virtualization Reference Guide

474 | TDV Support for SQL Operators

• The subquery can return any number of rows and columns.

• The subquery returns at least one row if the EXISTS condition is met and the NOT
EXISTS condition is false.

• If the subquery does not return any rows, the EXISTS condition is not met and the
NOT EXISTS condition is true.

• Even if the rows returned by the subquery contain NULL values, they are not
ignored. Such rows are considered normal rows.

Example (EXISTS)

SELECT *

FROM /shared/examples/ds_inventory/suppliers

WHERE EXISTS (SELECT *

 FROM /shared/examples/ds_inventory/purchaseorders

 WHERE purchaseorders.SupplierID = 5)

Example (NOT EXISTS)

SELECT *

FROM /shared/examples/ds_inventory/suppliers

WHERE NOT EXISTS (SELECT *

 FROM /shared/examples/ds_inventory/purchaseorders

 WHERE purchaseorders.SupplierID = 100)

TIBCO® Data Virtualization Reference Guide

475 | TDV Support for SQL Operators

IN and NOT IN
The IN operator is used to determine whether a given value matches any value in a list of
target values. The list of target values can be generated using a subquery.

The IN operator has two formats. One format uses an expression; the other uses a
subquery.

Syntax 1

<source-expression [, source-expression]>

[NOT] IN <scalar-expression-list>

Syntax 2

<source-expression [, source-expression]>

[NOT] IN <subquery [, subquery]>

Remarks
• IN is a comparison operator like < (less than) or LIKE.

• IN is valid anywhere a conditional expression can be used. That is, you can place IN
in a WHERE clause, a HAVING clause, or a JOIN ON clause, as well as in a CASE
expression.

• All the expressions in the target list (<scalar-expression-list>) must be compatible or
implicitly castable to the source expression (<source-expression>), or vice versa.

• If the items in the target list are not all of the same type, as in the following
example:

ID IN (1000, ‘X’, 12.0)

the list is translated to the following format:

TIBCO® Data Virtualization Reference Guide

476 | TDV Support for SQL Operators

(left = right1) OR (left = right2) OR (left = right3)

with CASE functions as necessary.

• You can use IN with data types that are comparable or implicitly castable to each
other.

• You can combine IN conditions with AND and OR conditions.

• The expression A IN (B, C) is equivalent to the expression A = B or A = C.

• You can use NOT IN to negate the IN condition. That is, NOT IN specifies values that
are not in the target list.

• The subquery can return only one column of a compatible data type. However, it
can return multiple rows.

• The subquery is run once prior to running the parent query, to populate the list of
values for the IN clause.

• You can combine IN conditions using AND and OR conditions.

• IN can take multiple source (left-side) expressions, and multiple values in the
subquery. However, the number of values on the right side must match the number
of values on the left side.

• Multiple sets of values are allowed.

Example (Syntax 1, Using IN with a String)

SELECT customers.CompanyName, customers.StateOrProvince

FROM /shared/examples/ds_orders/customers customers

WHERE StateOrProvince IN (‘CA’, ‘PA’)

Example (Syntax 1, Using IN with a Number)

SELECT ProductId, ProductName

TIBCO® Data Virtualization Reference Guide

477 | TDV Support for SQL Operators

FROM /shared/examples/ds_inventory/products

WHERE CategoryID IN (5,6)

Example (Syntax 1, Using IN with Date)

SELECT purchaseorders.ShipDate, SupplierID

FROM /shared/examples/ds_inventory/purchaseorders PurchaseOrders

WHERE ShipDate IN (CAST ('2003-02-06' AS DATE), CAST ('2003-02-07' AS
DATE))

Example (Syntax 1, Using IN with AND and OR)

SELECT purchaseorders.ShipDate, SupplierID

FROM /shared/examples/ds_inventory/purchaseorders PurchaseOrders

WHERE ShipDate IN (TO_DATE (‘2003-02-06’))

AND ShippingMethodID = 3

OR DatePromised = ‘2003-02-02’

OR ShipDate IN (‘2001-05-08’, DATE ‘2001-04-01’, ‘2000-02-25’)

Example (Syntax 2, Using IN)

SELECT Customers.ContactName

TIBCO® Data Virtualization Reference Guide

478 | TDV Support for SQL Operators

FROM /shared/examples/ds_orders/Customers Customers

WHERE City IN (SELECT City
 FROM /shared/examples/ds_orders/Customers Customers
 WHERE City = ‘New York’)

Example (Syntax 2, Using NOT IN)

SELECT Customers.ContactName, CompanyName

FROM /shared/examples/ds_orders/Customers Customers

WHERE City

NOT IN (SELECT City
 FROM /shared/examples/ds_orders/Customers Customers
 WHERE City = ‘New York’)

IS NOT NULL
The IS NOT NULL operator matches a non-null value.

Syntax

WHERE x IS NOT NULL

Example

SELECT Employees.FirstName, Employees.LastName, Employees.WorkPhone

FROM /services/databases/ds_service/Employees Employees

TIBCO® Data Virtualization Reference Guide

479 | TDV Support for SQL Operators

WHERE BillingRate IS NOT NULL

IS NULL
The IS NULL operator matches a null value.

Syntax

WHERE x IS NULL

Example

SELECT Employees.FirstName, Employees.LastName, Employees.WorkPhone

FROM /services/databases/ds_service/Employees Employees

WHERE BillingRate IS NULL

LIKE
The LIKE operator is used to match strings based on a pattern.

Syntax

column LIKE pattern [ESCAPE escape-character]

Remarks

The pattern string can contain wild-card characters that have special meaning:

• % (percent sign). Matches any sequence of zero or more characters.

TIBCO® Data Virtualization Reference Guide

480 | TDV Support for SQL Operators

• _ (underscore). Matches any single character.

Example (Like with Percent-Sign Match)

SELECT ProductID, ProductName, ProductDescription

FROM /shared/examples/ds_inventory/products products

WHERE ProductName LIKE 'Acme%'

The pattern matches Acme Memory, Acme Processor, and Acme Storage 40GB.

Example (Like with Underscore Match)

SELECT company, credit_limit

FROM customers

WHERE company LIKE 'Smiths_n'

The pattern matches Smithson and Smithsen, but not Smithsonian.

If the data value in the column is null, the LIKE test returns a NULL result.

You can locate strings that do not match a pattern by using NOT LIKE.

Example (Using The ESCAPE Character)

The ESCAPE character is used to match the wild-card characters themselves, as shown
here.

SELECT order_num, product

FROM orders

TIBCO® Data Virtualization Reference Guide

481 | TDV Support for SQL Operators

WHERE product LIKE 'A$%BC%' ESCAPE '$'

The first percent sign is not treated as wild-card character, because it is preceded by the $
escape character.

OVERLAPS
The OVERLAPS operator returns TRUE when two time periods (defined by their endpoints)
overlap, FALSE when they do not overlap.

Syntax

(start1, end1) OVERLAPS (start2, end2)

(start1, length1) OVERLAPS (start2, length2)

Remarks
• The endpoints can be specified as pairs of dates, times, or time stamps; or as a date,

time, or time stamp followed by an interval.

• When a pair of values is provided, either the start or the end can be written first.
OVERLAPS automatically takes the earlier value of the pair as the start.

• Each time period is considered to represent the half-open interval start <= time <
end, unless start and end are equal, in which case it represents that single time
instant. This means, for instance, that two time periods with only an endpoint in
common do not overlap.

Examples

SELECT (DATE '2016-04-16', DATE '2016-11-25') OVERLAPS

 (DATE '2016-11-28', DATE '2017-11-28');

The result is TRUE.

TIBCO® Data Virtualization Reference Guide

482 | TDV Support for SQL Operators

SELECT (DATE '2016-02-16', INTERVAL '120 days') OVERLAPS

 (DATE '2016-11-28', DATE '2017-11-28');

The result is FALSE.

SELECT (DATE '2016-09-29', DATE '2016-11-28') OVERLAPS

 (DATE '2016-11-28', DATE '2016-11-29');

The result is FALSE.

SELECT (DATE '2016-05-05', DATE '2016-05-05') OVERLAPS

 (DATE '2016-05-05', DATE '2016-05-05');

The result is TRUE.

TIBCO® Data Virtualization Reference Guide

483 | TDV Query Engine Options

TDV Query Engine Options
This topic describes the TDV SQL query engine hints (options) used to suggest how the
execution plan might be optimized.

Execution of SQL views, procedures, and transactions created with TDV-defined resources
follows an optimized execution plan. The execution plan is generated dynamically based
on how the SQL is written, what and how native resources are being used, TDV
configuration settings, the presence of data-source-specific statistical data, and the
presence of TDV SQL query engine options.

The following apply to this topic:

• Keywords (option names and values) are not case-sensitive. For example, "TRUE"
and "true" are equivalent. However, in this documentation, they are presented in all-
uppercase.

• If a TRUE/FALSE option is specified without a value, it is implicitly set to TRUE. For
example, the syntax definition CASE_SENSITIVE[={"TRUE"|"FALSE"}] means that you
can specify CASE_SENSITIVE (with no value) or CASE_SENSITIVE="TRUE" to set it to
TRUE, or specify CASE_SENSITIVE="FALSE" to set it to FALSE.

Query engine options let the developer influence the generation of the execution plan by
overriding, for specific SQL statements and keywords, TDV configuration settings. The
configuration settings can be found in Studio by navigating to the parameters under TDV
Server > SQL Engine.

• DATA_SHIP_MODE Values

• GROUP BY Options

• INSERT, UPDATE, and DELETE Options

• JOIN Options

• ORDER BY Options

• SELECT Options

• UNION, INTERSECT, and EXCEPT Options

TIBCO® Data Virtualization Reference Guide

484 | TDV Query Engine Options

DATA_SHIP_MODE Values
DATA_SHIP_MODE is a SELECT option that controls automatic rework of federated queries
across data sources. Reworked table selections can be shipped through an API to
temporary tables so that query nodes can be joined with local tables.

DATA_SHIP_MODE modifies how the query engine handles queries that are candidates for
data ship optimization.

When any of these DATA_SHIP_MODE options is specified in a query, it overrides the value
specified in the TDV Server > SQL Engine > Optimizations > Data Ship Query > Execution
Mode configuration parameter.

DATA_SHIP_MODE

DATA_SHIP_MODE Syntax Example

DATA_SHIP_MODE="DISABLED" SELECT {OPTION DATA_SHIP_
MODE="DISABLED"} foo FROM...

DATA_SHIP_MODE="EXECUTE_FULL_
SHIP_ONLY"

SELECT {OPTION DATA_SHIP_MODE="EXECUTE_
FULL_SHIP_ONLY"} foo FROM ...

DATA_SHIP_MODE="EXECUTE_
ORIGINAL"

SELECT {OPTION DATA_SHIP_MODE="EXECUTE_
ORIGINAL"} foo FROM...

DATA_SHIP_MODE="EXECUTE_
PARTIAL_SHIP"

SELECT {OPTION DATA_SHIP_MODE="EXECUTE_
PARTIAL_SHIP"} foo FROM ...

GROUP BY Options
The following query engine hints are available for GROUP BY:

TIBCO® Data Virtualization Reference Guide

485 | TDV Query Engine Options

Option |
Syntax

Description Example

DISABLE_PUSH DISABLE_PUSH causes the query engine to
process the GROUP BY operator locally in TDV
Server, instead of pushing it to the data
source. If DISABLE_PUSH is not specified, the
GROUP BY operator is pushed to the data
source whenever possible.

SELECT MAX
(column2)
FROM table1

 GROUP BY
{OPTION
DISABLE_
PUSH}
column1

DISABLE_
THREADS

DISABLE_THREADS prevents the query engine
from using background threads to speed up
processing of the GROUP BY operator. You can
use this option to prevent queries from using
excessive server resources.

If DISABLE_THREADS is not specified, the
query engine always uses background threads
to speed up processing.

This GROUP BY option takes precedence over
the SELECT-level DISABLE_THREADS option.

SELECT MAX
(column2)
FROM table1

GROUP BY
{OPTION DISABLE_
THREADS}
column1

FORCE_DISK FORCE_DISK causes the query engine to use
disk instead of memory for temporary storage
of data that is required to process the GROUP
BY operator. This frees up memory for other
server operations. FORCE_DISK is particularly
useful for queries that consume a large
amount of memory.

If FORCE_DISK is not specified, the query
engine uses memory instead of disk, whenever
possible, for maximum performance.

This GROUP BY option takes precedence over
the SELECT-level option of the same name.

SELECT MAX
(column2)
FROM table1

GROUP BY
{OPTION FORCE_
DISK} column1

TIBCO® Data Virtualization Reference Guide

486 | TDV Query Engine Options

INSERT, UPDATE, and DELETE Options
The following query engine hints are available for INSERT, UPDATE and DELETE. These
options are specified right after the INSERT, UPDATE and DELETE keywords.

INSERT,
UPDATE,
DELETE Option

Description Syntax Example

CASE_SENSITIVE CASE_SENSITIVE
forces string
comparisons to be
case-sensitive. This
option overrides the
TDV Server’s Case
Sensitivity
configuration setting
(under TDV Server >
SQL Engine > SQL
Language).

If CASE_SENSITIVE is
set to FALSE or not
specified, TDV
Server’s Case
Sensitivity
configuration setting
determines how
string comparisons
are evaluated.

CASE_SENSITIVE[=
{"TRUE"|"FALSE"}]

UPDATE {OPTION
CASE_
SENSITIVE="TRUE"}
table1

 SET column1 =
’BAR’

WHERE column1 = ’FOO’

CHECK_VIEW_
CONSTRAINTS

CHECK_VIEW_
CONSTRAINTS makes
TDV Server preserve
the data integrity of
the view definition;
in other words, it
prevents changes to
the view.

CHECK_VIEW_
CONSTRAINTS

UPDATE {OPTION
CHECK_VIEW_
CONSTRAINTS}
table1

 SET column1 =
’BAR ’

TIBCO® Data Virtualization Reference Guide

487 | TDV Query Engine Options

INSERT,
UPDATE,
DELETE Option

Description Syntax Example

If CHECK_VIEW_
CONSTRAINTS is not
specified, TDV Server
does not preserve
the data integrity of
the view definition.

Suppose a view V1 is
defined as follows:

SELECT
column1 FROM
table1 WHERE
column1 = 5

Suppose also that
someone then tries
to update V1 with
the following update
statement:

UPDATE V1

SET column1 =
5

WHERE column1
= 6

The UPDATE
statement fails if
CHECK_VIEW_
CONSTRAINTS was
specified, because a

WHERE column1 = ’FOO ’

TIBCO® Data Virtualization Reference Guide

488 | TDV Query Engine Options

INSERT,
UPDATE,
DELETE Option

Description Syntax Example

row with value
column1=6 is outside
the bounds of the
definition of the view
V1.

IGNORE_
TRAILING_
SPACES

IGNORE_TRAILING_
SPACES causes
comparisons to
ignore trailing
spaces. This option
overrides the TDV
Server’s Ignore
Trailing Spaces
configuration setting
(under TDV Server >
SQL Engine > SQL
Language).

If IGNORE_TRAILING_
SPACES is set to
FALSE or not
specified, TDV
Server’s Ignore
Trailing Spaces
configuration setting
determines how
string comparisons
are evaluated.

IGNORE_TRAILING_
SPACES[=
{"TRUE"|"FALSE"}]

UPDATE {OPTION
IGNORE_TRAILING_
SPACES="FALSE"}
table1

 SET column1 =
’BAR ’

WHERE column1 = ’FOO ’

STRICT STRICT prevents the
query engine from
pushing aspects of
SQL (such as
mathematical and

strict
UPDATE {OPTION
STRICT} table1

 SET column2 = ’S’

TIBCO® Data Virtualization Reference Guide

489 | TDV Query Engine Options

INSERT,
UPDATE,
DELETE Option

Description Syntax Example

string functions, and
the Oracle POSITION
function) to the
underlying data
source when the
source does not
adhere to strict SQL
92 behavior. This
could affect
performance. If
STRICT is not
specified, the query
engine relaxes SQL
92 rules to achieve
more push.

WHERE SIN(column1) = 1

JOIN Options
The following query engine hints are available for JOIN.

These options are specified using SQL 92 JOIN syntax. You can also have TDV automatically
add them to the query by double-clicking any JOIN line in the execution plan model and
making a selection.

• DISABLE_PUSH (JOIN Option)

• DISABLE_THREADS (JOIN Option)

• FORCE_DISK (JOIN Option)

• FORCE_ORDER (JOIN Option)

• HASH (JOIN Option)

• LEFT_CARDINALITY (JOIN Option)

• NESTEDLOOP (JOIN Option)

• PARTITION_SIZE (JOIN Option)

TIBCO® Data Virtualization Reference Guide

490 | TDV Query Engine Options

• RIGHT_CARDINALITY (JOIN Option)

• SEMIJOIN (JOIN Option)

• SORTMERGE (JOIN Option)

• SWAP_ORDER (JOIN Option)

DISABLE_PUSH (JOIN Option)
DISABLE_PUSH causes the query engine to process the JOIN operator locally instead of
pushing it to the data source. If DISABLE_PUSH is not specified, the JOIN operator is
pushed to the data source whenever possible.

Operator

JOIN

Syntax

disable_push

Example

SELECT column1 FROM table1 INNER {OPTION DISABLE_PUSH}

 JOIN table2 ON table1.id = table2.id

DISABLE_THREADS (JOIN Option)
DISABLE_THREADS can be used to prevent the query engine from using background
threads to speed up processing of queries. You can use this option to prevent resource-
intensive queries from using excessive server resources.

TIBCO® Data Virtualization Reference Guide

491 | TDV Query Engine Options

If DISABLE_THREADS is not specified, the query engine always uses background threads to
speed up processing.

This JOIN option takes precedence over the SELECT-level DISABLE_THREADS option.

Operator

JOIN

Syntax

disable_threads

Example

SELECT column1 FROM table1 INNER {OPTION DISABLE_THREADS}

 JOIN table2 ON table1.id = table2.id SELECT column1 FROM table2

FORCE_DISK (JOIN Option)
FORCE_DISK causes the query engine to use disk rather than memory for temporary
storage of the data required to process the JOIN operator. This frees up memory for other
server operations. It is useful for queries that consume a large amount of memory and
affect performance of other processes running on the server.

If FORCE_DISK is not specified, the query engine uses memory rather than disk, whenever
possible, to maximize performance.

This option takes precedence over the SELECT-level FORCE_DISK option.

Operator

JOIN

TIBCO® Data Virtualization Reference Guide

492 | TDV Query Engine Options

Syntax

force_disk

Example

SELECT column1 FROM table1 INNER {OPTION FORCE_DISK} JOIN table2

 ON table1.id = table2.id

FORCE_ORDER (JOIN Option)
FORCE_ORDER causes the query optimizer to honor the order of the joins specified in the
SQL statement, rather than reordering the join. If FORCE_ORDER is not specified, the
optimizer might switch the order of joins to improve the query execution plan.

This is currently used to prevent:

• Union join flipping

• Join reordering

• Reordering of join while selecting the join algorithm, even if a cardinality estimate is
provided.

For information on SQL join reordering, see the TDV User Guide.

Operator

JOIN

Syntax

force_order

TIBCO® Data Virtualization Reference Guide

493 | TDV Query Engine Options

Example

SELECT column1 FROM table1 INNER {OPTION FORCE_ORDER}

 JOIN table2 ON table1.id = table2.id

HASH (JOIN Option)
HASH causes the optimizer to choose a hash algorithm, if possible, for the join. If HASH is
not specified, the optimizer chooses the best algorithm for the join.

Operator

JOIN

Syntax

hash

Example

SELECT column1 FROM table1 INNER {OPTION HASH} JOIN table2

 ON table1.id = table2.id

LEFT_CARDINALITY (JOIN Option)
LEFT_CARDINALITY provides a cardinality hint for the left-hand side (LHS) of a join. The
optimizer uses this option’s value as a hint to help choose a better query execution plan.

If LEFT_CARDINALITY is not specified, the optimizer relies on statistics processing for
cardinality estimates.

TIBCO® Data Virtualization Reference Guide

494 | TDV Query Engine Options

Operator

JOIN

Syntax

LEFT_CARDINALITY=<int>

The <int> argument specifies the cardinality value to use for the left-hand side.

Example

SELECT column1 FROM table1 INNER {OPTION LEFT_CARDINALITY=10}

 JOIN table2 ON table1.id = table2.id

NESTEDLOOP (JOIN Option)
NESTEDLOOP forces the optimizer to choose a nested-loop algorithm for the join. If you do
not specify NESTEDLOOP, the optimizer chooses the best algorithm for the join.

Operator

JOIN

Syntax

nestedloop

Example

SELECT column1 FROM table1 INNER {OPTION NESTEDLOOP}

TIBCO® Data Virtualization Reference Guide

495 | TDV Query Engine Options

 JOIN table2 ON table1.id = table2.id

PARTITION_SIZE (JOIN Option)
PARTITION_SIZE restricts the size of the condition clause submitted to the right-hand side
(RHS) of a semijoin by specifying the maximum number of condition arguments that can be
sent in each batch request. This can be advantageous if a large cardinality result set is
expected from the left-hand side (LHS) of a semijoin, and the RHS SQL SELECT statement
must be limited in size. This option is also useful in cases where data resources are limited,
such as when the SQL string cannot exceed a certain length.

To limit the partition size sent to the RHS, set PARTITION_SIZE to an integer representing
the number of arguments in the condition clause submitted to the second data source.

Note: Limiting the number of arguments permitted in the condition clause does not
guarantee an acceptably short SQL string, but it does provide adequate control of the
submission to avoid problems.

Operator

JOIN

Syntax

PARTITION_SIZE=<int>

The <int> argument specifies the number of arguments in the condition clause submitted
to the second data source.

Example

SELECT TableX.col1 FROM /Folder/SomeResource/DatabaseX TableX
INNER {OPTION PARTITION_SIZE=9} JOIN
/FolderY/ResourceZ TableY.col2 ON TableX.oid = TableY.oid

TIBCO® Data Virtualization Reference Guide

496 | TDV Query Engine Options

RIGHT_CARDINALITY (JOIN Option)
RIGHT_CARDINALITY provides a cardinality hint for the right-hand side (RHS) of a join. The
optimizer uses this option’s value as a hint to help choose a better query execution plan.

If RIGHT_CARDINALITY is not specified, the optimizer relies on statistics processing for
cardinality estimates.

Operator

JOIN

Syntax

RIGHT_CARDINALITY=<int>

The <int> argument specifies the cardinality value to use for the right-hand side.

Example

SELECT column1 FROM table1 INNER {OPTION RIGHT_CARDINALITY=10000}

 JOIN table2 ON table1.id = table2.id

SEMIJOIN (JOIN Option)
SEMIJOIN causes the optimizer to try to perform a semijoin optimization. If SEMIJOIN is not
specified, the optimizer decides whether to apply semijoin optimization.

Note: Semijoin is an Information Integration tool. It is a fast algorithm that reduces the
number of rows retrieved from the right-hand side (RHS). It rewrites the FETCH pushed to
the second data source. For this it uses selective criteria provided by the unique values
returned from an initial query on the left-hand side (LHS). In a semijoin, LHS is evaluated
and loaded into a table in memory, and its cardinality is evaluated. If the cardinality is
small enough, an IN clause or an OR expression is created containing all the values in the
join criteria from LHS. The clause or expression is then appended to the WHERE clause on

TIBCO® Data Virtualization Reference Guide

497 | TDV Query Engine Options

RHS and pushed to the database. In this way, only rows with matches are retrieved from
RHS.

The semijoin can only be attempted if the RHS can be queried as a single node that fetches
against a data source that supports an IN clause or an OR expression.

Operator

JOIN

Syntax

semijoin

Example

SELECT column1 FROM table1 INNER {OPTION SEMIJOIN} JOIN table2 ON
table1.id = table2.id

SORTMERGE (JOIN Option)
SORTMERGE causes the optimizer to consider the sort-merge algorithm when choosing an
algorithm for evaluating the join.

If SORTMERGE is set to FALSE, the sort-merge algorithm is excluded from consideration.

Operator

JOIN

Syntax

sortmerge[={"TRUE"|"FALSE"}]

TIBCO® Data Virtualization Reference Guide

498 | TDV Query Engine Options

Example

SELECT column1 FROM table1 INNER {OPTION SORTMERGE}

 JOIN table2 ON table1.id = table2.id

SWAP_ORDER (JOIN Option)
SWAP_ORDER swaps the order of the join after the SQL is parsed. This can be useful for
queries with complex joins, where swapping join order might be easier than trying to move
a large amount of text in the SQL. If SWAP_ORDER is not specified, the parsed join order
applies.

Operator

JOIN

Syntax

SWAP_ORDER

Example

SELECT column1 FROM table1 INNER {OPTION SWAP_ORDER}

 JOIN table2 ON table1.id = table2.id

ORDER BY Options
The following query engine hints are available for ORDER BY.

• DISABLE_PUSH (ORDER BY Option)

TIBCO® Data Virtualization Reference Guide

499 | TDV Query Engine Options

• DISABLE_THREADS (ORDER BY Option)

• FORCE_DISK (ORDER BY Option)

DISABLE_PUSH (ORDER BY Option)
DISABLE_PUSH forces the ORDER BY operator to be processed locally in TDV Server instead
of being pushed to the data source. If DISABLE_PUSH is not specified, the ORDER BY
operator is pushed to the data source whenever possible.

Operator

ORDER BY

Syntax

disable_push

Example

SELECT column1 FROM table1

 ORDER BY {OPTION DISABLE_PUSH} column1

DISABLE_THREADS (ORDER BY Option)
DISABLE_THREADS prevents the query engine from using background threads to speed up
processing of the ORDER BY operator. You can use this option to prevent resource-intensive
queries from using excessive server resources.

If DISABLE_THREADS is not specified, the query engine uses background threads to speed
processing.

This ORDER BY option takes precedence over the SELECT-level DISABLE_THREADS option.

TIBCO® Data Virtualization Reference Guide

500 | TDV Query Engine Options

Operator

ORDER BY

Syntax

disable_threads

Example

SELECT column1 FROM table1

ORDER BY {OPTION DISABLE_THREADS} column1

FORCE_DISK (ORDER BY Option)
FORCE_DISK causes the query engine to use disk instead of memory for temporary storage
of the data required to process the ORDER BY operator. This frees up memory for other
server operations. FORCE_DISK is useful for queries that consume a large amount of
memory and affect performance of other processes running on the server.

If FORCE_DISK is not specified, the query engine uses memory instead of disk, whenever
possible, to speed performance.

This ORDER BY option takes precedence over the SELECT-level FORCE_DISK option.

Operator

ORDER BY

Syntax

force_disk

TIBCO® Data Virtualization Reference Guide

501 | TDV Query Engine Options

Example

SELECT column1 FROM table1

 ORDER BY {OPTION FORCE_DISK} column1

SELECT Options
The following query engine hints are available for SELECT. These options are specified
immediately following the SELECT keyword.

Examples

SELECT {OPTION FORCE_DISK}

SELECT {OPTION FORCE_DISK="FALSE"}

SELECT {OPTION STRICT}

Operator-level options (such as JOIN-level options) override SELECT-level options.

SELECT options should be specified at the root-level of the query. When SELECT options
are specified as part of a subquery or subselect, they might not affect the root-level query
execution plan.

• CASE_SENSITIVE (SELECT Option)

• DISABLE_CBO (SELECT Option)

• DISABLE_DATA_CACHE (SELECT Option)

• DISABLE_DATA_CACHE_IMMEDIATE (SELECT Option)

• DISABLE_JOIN_PRUNER (SELECT Option)

• DISABLE_PLAN_CACHE (SELECT Option)

• DISABLE_PUSH (SELECT Option)

• DISABLE_SELECTION_REWRITER (SELECT Option)

TIBCO® Data Virtualization Reference Guide

502 | TDV Query Engine Options

• DISABLE_SORT_REMOVAL (SELECT Option)

• DISABLE_STATISTICS (SELECT Option)

• DISABLE_THREADS (SELECT Option)

• FORCE_DISK (SELECT Option)

• FORCE_ESTIMATION (SELECT Option)

• IGNORE_TRAILING_SPACES (SELECT Option)

• MAX_ROWS_LIMIT (SELECT Option)

• ROWS_OFFSET (SELECT Option)

• STRICT (SELECT Option)

• PUSH_NULL_SELECTS (SELECT OPTION)

• DISABLE_CONSTANT_FUNCTION_INLINING (SELECT OPTION)

• DISABLE_UNION_PREAGGREGATOR (SELECT OPTION)

• USE_COMPARABLE_ESTIMATES (SELECT OPTION)

CASE_SENSITIVE (SELECT Option)
CASE_SENSITIVE forces string comparisons to be case-sensitive. This option overrides the
TDV Server’s Case Sensitivity configuration setting (under TDV Server > SQL Engine > SQL
Language).

If CASE_SENSITIVE is set to FALSE or not specified, TDV Server’s Case Sensitivity
configuration setting determines how string comparisons are evaluated.

Note: When SELECT options are specified as part of a subquery or subselect, they might
not affect the root-level query execution plan.

Operator

SELECT

TIBCO® Data Virtualization Reference Guide

503 | TDV Query Engine Options

Syntax

case_sensitive[={"TRUE"|"FALSE"}]

Example

SELECT {OPTION CASE_SENSITIVE="TRUE"} *

 FROM table1

 WHERE column1 = ’FOO’

DISABLE_CBO (SELECT Option)
Disabling cost-based optimizations (CBO) forces the execution plan to be generated from
rule-based heuristics. DISABLE_CBO causes the query optimizer to ignore any table
boundary statistics or other table statistics that might have been gathered; the query
optimizer applies only heuristics-based optimizations to the execution plan.

If DISABLE_CBO is not specified, the query optimizer applies cost-based optimizations in
addition to heuristics-based optimizations.

Note: When SELECT options are specified as part of a subquery or subselect, they might
not affect the root-level query execution plan.

Operator

SELECT

Syntax

disable_cbo

TIBCO® Data Virtualization Reference Guide

504 | TDV Query Engine Options

Example

SELECT {OPTION DISABLE_CBO} * FROM table1 INNER JOIN table2 ON table1.id
= table2.id

DISABLE_DATA_CACHE (SELECT Option)
DISABLE_DATA_CACHE causes the query to ignore cached views. This option is useful for
queries that require the latest data rather than cached data.

If this option is not specified, cached data is used whenever available.

Note: When SELECT options are specified as part of a subquery or subselect, they might
not affect the root-level query execution plan.

Operator

SELECT

Syntax

disable_data_cache

Example

SELECT {OPTION DISABLE_DATA_CACHE} * FROM cachedView1

DISABLE_DATA_CACHE_IMMEDIATE (SELECT Option)
DISABLE_DATA_CACHE_IMMEDIATE is similar to the DISABLE_DATA_CACHE Select option
and causes the query to ignore the cache setting of composite views. However, it only
disables the immediate cache at the top level and does not affect the nested views. The
lower level cache will be utilized in the query execution.

If this option is not specified, cached data is used whenever available.

TIBCO® Data Virtualization Reference Guide

505 | TDV Query Engine Options

Note: When SELECT options are specified as part of a subquery or subselect, they might
not affect the root-level query execution plan.

Operator

SELECT

Syntax

disable_data_cache_immediate

Example

SELECT {OPTION DISABLE_DATA_CACHE_IMMEDIATE} * FROM cachedView1

DISABLE_JOIN_PRUNER (SELECT Option)
DISABLE_JOIN_PRUNER

Note: When SELECT options are specified as part of a subquery or subselect, they might
not affect the root-level query execution plan.

Operator

SELECT

Syntax

disable_join_pruner

TIBCO® Data Virtualization Reference Guide

506 | TDV Query Engine Options

Example

SELECT { option DISABLE_JOIN_PRUNER="false" }

 t1.*

from /shared/"myquery"/testdb/my_product t1 inner join

 /shared/"myquery"/testdb/products t2

 on t2.productid = t1.productid

Relationship: my_product.productid is the foreign key for products.productidprimary key.

Result:

The PK table will participate in pruning. The resolved SQL is:

SELECT
"t1"."categoryid","t1"."categoryname","t1"."productid","t1"."supplierid"
FROM "tutorial"."my_product" "t1"

DISABLE_PLAN_CACHE (SELECT Option)
DISABLE_PLAN_CACHE causes the query engine to prepare a fresh query plan each time it
executes the query. If DISABLE_PLAN_CACHE is not specified, the query engine uses a
cached plan whenever one is available.

Note: When SELECT options are specified as part of a subquery or subselect, they might
not affect the root-level query execution plan.

Operator

SELECT

TIBCO® Data Virtualization Reference Guide

507 | TDV Query Engine Options

Syntax

disable_plan_cache

Example

SELECT {OPTION DISABLE_PLAN_CACHE} * FROM table1

DISABLE_PUSH (SELECT Option)
DISABLE_PUSH causes the SELECT to be processed locally in TDV Server instead of being
processed at the data source. If DISABLE_PUSH is not specified, the SELECT is pushed to
the data source whenever possible.

Note: When SELECT options are specified as part of a subquery or subselect, they might
not affect the root-level query execution plan.

Operator

SELECT

Syntax

disable_push

Example

SELECT {OPTION DISABLE_PUSH} column1 FROM table1 INNER JOIN table2 ON
table1.id = table2.id

TIBCO® Data Virtualization Reference Guide

508 | TDV Query Engine Options

DISABLE_SELECTION_REWRITER (SELECT Option)
DISABLE_SELECTION_REWRITER causes the SELECT to remove query hint corruption from
unexpected CROSS JOINS by restoring a prior query plan.

Operator

SELECT

Syntax

disable_selection_rewriter

Example

SELECT {OPTION DISABLE_SELECTION_REWRITER}

DISABLE_SORT_REMOVAL (SELECT Option)
DISABLE_SORT_REMOVAL causes the SELECT to retain the ORDER BY clause in the sub-
query.

Operator

SELECT

Syntax

disable_sort_removal

TIBCO® Data Virtualization Reference Guide

509 | TDV Query Engine Options

Example

SELECT {OPTION DISABLE_SORT_REMOVAL}

DISABLE_STATISTICS (SELECT Option)
DISABLE_STATISTICS causes the query engine to ignore table statistics when preparing a
query execution plan. This option can be useful for checking whether statistics gathering
improves the query execution plan.

If this option is not specified, the query engine uses all available statistics to optimize the
query execution plan.

Note: When SELECT options are specified as part of a subquery or subselect, they might
not affect the root-level query execution plan.

Operator

SELECT

Syntax

disable_statistics

Example

SELECT {OPTION DISABLE_STATISTICS} * FROM table1

 WHERE column1 = 5

TIBCO® Data Virtualization Reference Guide

510 | TDV Query Engine Options

DISABLE_THREADS (SELECT Option)
DISABLE_THREADS prevents the query engine from using background threads to speed up
processing. This option can be used to prevent resource-intensive queries from using
excessive TDV resources. If DISABLE_THREADS is not specified, the query engine always
uses background threads to speed up processing.

Note: When SELECT options are specified as part of a subquery or subselect, they might
not affect the root-level query execution plan.

Operator

SELECT

Syntax

disable_threads

Example

SELECT {OPTION DISABLE_THREADS} *

 FROM table1 INNER JOIN table2 ON table1.id = table2.id

 INNER JOIN table3 ON table1.id = table3.id

FORCE_DISK (SELECT Option)
FORCE_DISK forces the query engine to use disk instead of memory for temporary storage
of query data. This frees up memory for other server operations. This option is useful for
queries that can consume large amounts of memory and affect performance of other
processes running on the server.

If FORCE_DISK is not specified, the query engine uses memory rather than disk whenever
possible to maximize performance.

TIBCO® Data Virtualization Reference Guide

511 | TDV Query Engine Options

Note: When SELECT options are specified as part of a subquery or subselect, they might
not affect the root-level query execution plan.

Operator

SELECT

Syntax

force_disk

Example

SELECT {OPTION FORCE_DISK} *

 FROM table1 INNER JOIN table2 ON table1.id = table2.id

 INNER JOIN table3 ON table1.id = table3.id

FORCE_ESTIMATION (SELECT Option)
FORCE_ESTIMATION is used to control the level of statistics estimation to be performed on
the query execution plan. Possible values are “-1” (that indicates no estimation), "1"
(estimation done on each plan operator at the row level) and “2” (estimation done on each
plan operator at the column level). The default value is 2.

The default value can be overridden by specifying a different default value in the server
configuration setting “Default SQL Options”. In TDV Studio, go to Administration ->
Configuration -> Server -> SQL Engine -> Default SQL Options and add a key-value pair for
the FORCE_ESTIMATION option. Setting the option here can affect all SQL statements and
therefore should be used with care.

TIBCO® Data Virtualization Reference Guide

512 | TDV Query Engine Options

Operator

SELECT

Syntax

force_estimation

Example

SELECT {OPTION FORCE_ESTIMATION=2} *

 FROM table1 INNER JOIN table2 ON table1.id = table2.id

 INNER JOIN table3 ON table1.id = table3.id

Applying the query option "FORCE_ESTIMATION"=2 in the above query can give more
accurate statistical estimations.

IGNORE_TRAILING_SPACES (SELECT Option)
IGNORE_TRAILING_SPACES causes comparisons to ignore trailing spaces. This option
overrides the TDV Server’s Ignore Trailing Spaces configuration setting (under TDV Server >
SQL Engine > SQL Language).

If IGNORE_TRAILING_SPACES is set to FALSE or not specified, TDV Server’s Ignore Trailing
Spaces configuration setting determines how string comparisons are evaluated.

Note: When SELECT options are specified as part of a subquery or subselect, they might
not affect the root-level query execution plan.

Operator

SELECT

TIBCO® Data Virtualization Reference Guide

513 | TDV Query Engine Options

Syntax

ignore_trailing_spaces[={"TRUE"|"false"}]

Example

SELECT {OPTION IGNORE_TRAILING_SPACES="FALSE"} *

 FROM table1

 WHERE column1 = ’FOO ’

MAX_ROWS_LIMIT (SELECT Option)
MAX_ROWS_LIMIT limits the number of rows returned by a query. This is useful if a user is
interested in only the first n rows of the results returned.

This option is often used in conjunction with the ROWS_OFFSET (see ROWS_OFFSET
(SELECT Option)). How it works in combination with ROWS_OFFSET, OFFSET, FETCH and
the maxRows JDBC/ODBC parameter is shown in examples 2 through 9 at the end of this
section.

If this option is not specified, all selected rows are returned.

Operator

SELECT

Syntax

MAX_ROWS_LIMIT=<int>

The <int> argument specifies the maximum number of rows the query is to return.

TIBCO® Data Virtualization Reference Guide

514 | TDV Query Engine Options

Remarks
• When SELECT options are specified as part of a subquery or subselect, they might

not affect the root-level query execution plan.

• For better performance with row filtering, use OFFSET and FETCH rather than MAX_
ROWS_LIMIT and ROWS_OFFSET. The reason is that OFFSET and FETCH are SQL-
standard options that are pushed to the data source for pass-through queries. MAX_
ROWS_LIMIT and ROWS_OFFSET are TDV-only constructs that always perform
filtering in TDV (after a much larger number of rows may have been fetched).

• Refer to the SQL 2008 standard for syntax and usage of OFFSET and FETCH.

Example 1

This is a simple example illustrating syntax.

SELECT {OPTION MAX_ROWS_LIMIT=100} * FROM table1

Example 2

In this example, maxRows is too large to have an effect. MAX_ROWS_LIMIT allows 25 rows
beyond those skipped by OFFSET, and ROWS_OFFSET removes the first 10 of those.

Query:

SELECT {OPTION ROWS_OFFSET=10, MAX_ROWS_LIMIT=25} * FROM " + tableName +
"

OFFSET 50 FETCH NEXT 40 ROWS ONLY

Example 3

In this example, maxRows is too large to have an effect. MAX_ROWS_LIMIT allows 25 rows
beyond those skipped by OFFSET, and ROWS_OFFSET removes the first 10 of those.

Query:

SELECT {OPTION ROWS_OFFSET=10, MAX_ROWS_LIMIT=25} * FROM " + tableName +
"

TIBCO® Data Virtualization Reference Guide

515 | TDV Query Engine Options

OFFSET 50 FETCH NEXT 12 ROWS ONLY"

Example 4

Query:

SELECT {OPTION ROWS_OFFSET=10, MAX_ROWS_LIMIT=25} * FROM " + tableName +
"

OFFSET 50 FETCH NEXT 34 ROWS ONLY

Example 5

In this example, maxRows is too large to have an effect. MAX_ROWS_LIMIT allows 25 rows
beyond those skipped by OFFSET.

Query:

SELECT {OPTION MAX_ROWS_LIMIT=25} * FROM " + tableName + "

OFFSET 50 FETCH NEXT 34 ROWS ONLY

Example 6

Query:

SELECT {OPTION MAX_ROWS_LIMIT=25} * FROM " + tableName + "

OFFSET 50 FETCH NEXT 34 ROWS ONLY

Example 7

In this example, maxRows is too large to have an effect. MAX_ROWS_LIMIT allows 25 rows
beyond those skipped by OFFSET.

TIBCO® Data Virtualization Reference Guide

516 | TDV Query Engine Options

Query:

SELECT {OPTION MAX_ROWS_LIMIT=25} * FROM " + tableName + "

OFFSET 50 ROWS

Example 8

In this example, maxRows is too large to have an effect. ROWS_OFFSET removes the first
10 rows beyond those skipped by OFFSET.

Query:

SELECT {OPTION ROWS_OFFSET=10} * FROM " + tableName + "

OFFSET 50 FETCH NEXT 12 ROWS ONLY

Example 9

In this example, ROWS_OFFSET removes the first 10 rows beyond those skipped by
OFFSET, and maxRows allows 10 of the remaining rows to be returned.

Query:

SELECT {OPTION ROWS_OFFSET=10} * FROM " + tableName + "

OFFSET 50 FETCH NEXT 34 ROWS ONLY

ROWS_OFFSET (SELECT Option)
ROWS_OFFSET causes the query engine to discard the rows before the specified offset
integer, which reduces the returned data set.

The collection of rows returned begins with the row specified by the offset integer. For
example, if you include the option ROWS_OFFSET=5, the returned rows excludes the first 4
and begins with row 5.

TIBCO® Data Virtualization Reference Guide

517 | TDV Query Engine Options

Note: For a discussion of how this option, MAX_ROWS_LIMIT, OFFSET, FETCH and the
maxRows JDBC/ODBC parameter work together, see <xHyperLink>“MAX_ROWS_LIMIT
(SELECT Option)” on page 182.

Operator

SELECT

Syntax

ROWS_OFFSET=<int>

The <int> argument specifies the number of rows to discard from the returned data set.

Remarks
• You can combine this option with MAX_ROWS_LIMIT to return a restricted set of

rows.

• A query should not use the ROWS_OFFSET option with OFFSET/FETCH pagination.

• For better performance with row filtering, use OFFSET and FETCH rather than MAX_
ROWS_LIMIT and ROWS_OFFSET. The reason is that OFFSET and FETCH are SQL-
standard options that are pushed to the data source for pass-through queries, while
MAX_ROWS_LIMIT and ROWS_OFFSET are TDV-only constructs that always perform
filtering in TDV (after a much larger number of rows may have been fetched).

• Refer to the SQL 2008 standard for syntax and usage of OFFSET and FETCH.

Example

SELECT {OPTION ROWS_OFFSET=10, MAX_ROWS_LIMIT=25} ID, Details

 FROM tableZ order by ID

TIBCO® Data Virtualization Reference Guide

518 | TDV Query Engine Options

STRICT (SELECT Option)
STRICT prevents the query engine from pushing aspects of SQL (such as mathematical and
string functions, and the Oracle POSITION function) to the underlying data source when the
source does not adhere to strict SQL 92 behavior. This could affect performance. If STRICT
is not specified, the query engine relaxes SQL 92 rules to achieve more push.

Note: When SELECT options are specified as part of a subquery or subselect, they might
not affect the root-level query execution plan.

Operator

SELECT

Syntax

strict

Example

SELECT {OPTION STRICT} TAN(column1) FROM table1

PUSH_NULL_SELECTS (SELECT OPTION)
PUSH_NULL_SELECTS is an optimization option to push null scans to the target
datasource. This may help queries to push null select to the datasource.

Operator

SELECT

Syntax
push_null_selects

TIBCO® Data Virtualization Reference Guide

519 | TDV Query Engine Options

Example
SELECT {OPTION PUSH_NULL_SELECTS} TAN(column1) FROM table1

DISABLE_CONSTANT_FUNCTION_INLINING (SELECT
OPTION)
DISABLE_CONSTANT_FUNCTION_INLINING option is used to disable pre-evaluation of
CURRENT_TIMESTAMP, CURRENT_DATE, CURRENT_TIME.

Operator

SELECT

Syntax
disable_constant_function_inlining

Example
SELECT {OPTION DISABLE_CONSTANT_FUNCTION_INLINING} TAN(column1) FROM table1

DISABLE_UNION_PREAGGREGATOR (SELECT
OPTION)
DISABLE_UNION_PREAGGREGATOR option disables behavior that may inject GROUP BY below
UNION ALL nodes for min, max and count aggregates.

Operator
SELECT

Syntax
disable_union_function_inlining

Example
SELECT {OPTION DISABLE_UNION_PREAGGREGATOR} TAN(column1) FROM table1

TIBCO® Data Virtualization Reference Guide

520 | TDV Query Engine Options

USE_COMPARABLE_ESTIMATES (SELECT OPTION)
USE_COMPARABLE_ESTIMATES option is used for getting partition points for varchar
columns successfully. The distribution in the SelectableEstimate will therefore resolve to
StringIndex corresponding to varchar column.

Operator

SELECT

Syntax

use_comparable_estimates

Example
SELECT {OPTION USE_COMPARABLE_ESTIMATES} TAN(column1) FROM table1

UNION, INTERSECT, and EXCEPT Options
The following query engine hints are available for the three set operations UNION,
INTERSECT, and EXCEPT:

• DISABLE_PUSH (UNION, INTERSECT, and EXCEPT Option)

• FORCE_DISK (UNION, INTERSECT, and EXCEPT Option)

• PARALLEL (UNION, INTERSECT, and EXCEPT Option)

• ROUND_ROBIN (UNION, INTERSECT, and EXCEPT Option)

• SORT_MERGE (UNION, INTERSECT, and EXCEPT Option)

DISABLE_PUSH (UNION, INTERSECT, and EXCEPT
Option)
DISABLE_PUSH causes UNION, INTERSECT, and EXCEPT operators to be processed locally
in TDV Server instead of being pushed to the data source. If DISABLE_PUSH is not specified,

TIBCO® Data Virtualization Reference Guide

521 | TDV Query Engine Options

UNION, INTERSECT, and EXCEPT operators are pushed to the data source whenever
possible.

Operators

UNION, INTERSECT, EXCEPT

Syntax

disable_pusH

Example

SELECT column1 FROM table1

 UNION ALL {OPTION DISABLE_PUSH}

 SELECT column1 FROM table2

FORCE_DISK (UNION, INTERSECT, and EXCEPT
Option)
FORCE_DISK causes the query engine to use disk instead of memory for temporary storage
of the data required to process UNION, INTERSECT, or EXCEPT operators. This frees
memory for other server operations. FORCE_DISK is useful for queries that consume a large
amount of memory and affect performance of other processes running on the server.

Note: UNION ALL will not force data to disk unless PARALLEL is also specified in the
OPTION.

If FORCE_DISK is not specified, the query engine uses memory instead of disk whenever
possible.

When the FORCE_DISK option is specified on the SELECT level of a query, it is applied over
all nodes and takes precedence even if FORCE_DISK is set to FALSE elsewhere in the query.

TIBCO® Data Virtualization Reference Guide

522 | TDV Query Engine Options

Operators

UNION, INTERSECT, EXCEPT

Syntax

force_disk

Example

SELECT column1 FROM table1

 UNION {OPTION FORCE_DISK}

 SELECT column1 FROM table2

PARALLEL (UNION, INTERSECT, and EXCEPT Option)
PARALLEL, when used for a UNION operator, causes the query engine to stream the left-
hand side while buffering the right-hand side in memory using a background thread. (The
buffer is unbounded, and fails over to disk if necessary.) This can speed up query
performance. The trade-off is that the operator becomes memory-intensive. Use this option
only if you believe you can load the result set without reaching the managed memory limit.

If you want to minimize memory use while processing both children in parallel, refer to the
ROUND_ROBIN (UNION, INTERSECT, and EXCEPT Option) to see a description of a
technique that maintains a small, bounded buffer in memory for each child.

If the PARALLEL option is not specified, the query engine does not load the right-hand side
of the UNION while streaming the left-hand side.

Note: The PARALLEL option applies only to UNION—not to INTERSECT or EXCEPT.

TIBCO® Data Virtualization Reference Guide

523 | TDV Query Engine Options

Operators

UNION, UNION ALL

Syntax

parallel

Example

SELECT column1 FROM table1

 UNION ALL {OPTION PARALLEL}

 SELECT column1 FROM table2

ROUND_ROBIN (UNION, INTERSECT, and EXCEPT
Option)
ROUND_ROBIN sets round robin fetch mode, which wraps each child branch of the UNION
with a buffered pipe cursor. Each cursor spawns a background thread to prefetch data into
its own buffer. When the query is executed, the UNION operator reads from each child pipe
cursor in round-robin fashion.

Note: Specifying a fetch mode with SORTMERGE UNION is not usually advisable, because
the algorithm reads from both sides.

Operators

UNION, UNION ALL, UNION with DISTINCT, UNION ALL with DISTINCT

TIBCO® Data Virtualization Reference Guide

524 | TDV Query Engine Options

Syntax

ROUND_ROBIN=[<int>]

The <int> argument specifies the maximum number of rows that can be prefetched into
each buffer. Optional. The default value is 1000. The maximum value is 2000.

Example

SELECT TableX.col2 FROM /local/resource/DB14/TableX

 UNION ALL {OPTION ROUND_ROBIN=1500}

 SELECT col2 from TableY

SORT_MERGE (UNION, INTERSECT, and EXCEPT
Option)
SORT_MERGE causes the optimizer to consider sort-merge when choosing an algorithm for
evaluating the statement. This can improve efficiency if you want the final result set to be
ordered.

The sort-merge algorithm is considered only when the result of the UNION needs to be
ordered, such as when you see a SORT node somewhere above the UNION in your query
execution plan. If that is not the case, and you still want option SORT_MERGE to apply, you
can add an ORDER BY clause at the end of the expression that contains the UNION, or at a
level above it.

Note that if a SORT node is present, TDV automatically selects the UNION SORT_MERGE
algorithm (in other words, no user action is needed). If you set SORT_MERGE to FALSE, the
UNION SORT_MERGE algorithm is not used.

Note: An ORDER BY option is required at the end of the expression or at the level above in
order for the sort-merge to apply.

TIBCO® Data Virtualization Reference Guide

525 | TDV Query Engine Options

Operators

UNION, UNION ALL

Syntax

SORT_MERGE[={"TRUE"|"FALSE"}]

Example

SELECT column1 FROM table1

 UNION ALL {OPTION SORT_MERGE="TRUE"}

 ORDER BY column1

TIBCO® Data Virtualization Reference Guide

526 | TDV and Business Directory System Tables

TDV and Business Directory System Tables
This topic describes TDV and Business Directory system tables, which are used to manage
TDV software. This topic does not include all system tables—only those exposed in Studio.

The following sections describe the tables and their schemas:

• Accessing TDV and Business Directory System Tables

System Table

ALL_BD_RESOURCES BD only

ALL_CATALOGS

ALL_CATEGORIES BD only

ALL_CATEGORY_VALUES BD only

ALL_CLASSIFICATIONS BD only

ALL_COLUMNS

ALL_COMMENTS BD only

ALL_CUSTOM_PROPERTIES BD only

ALL_CUSTOM_PROPERTY_CLASSIFICATIONS BD only

ALL_CUSTOM_PROPERTY_GROUPS BD only

ALL_CUSTOM_PROPERTY_GROUPS_ASSOCIATIONS BD only

ALL_DATASOURCES

ALL_DOMAINS

TIBCO® Data Virtualization Reference Guide

527 | TDV and Business Directory System Tables

System Table

ALL_ENDPOINT_MAPPINGS DM only

ALL_FOREIGN_KEYS

ALL_GROUPS

ALL_INDEXES

ALL_LINEAGE BD only

ALL_PARAMETERS

ALL_PRINCIPAL_SET_MAPPINGS DM only

ALL_PRIVILEGES BD only

ALL_PROCEDURES

ALL_PUBLISHED_FOLDERS

ALL_RELATIONSHIP_COLUMNS

ALL_RELATIONSHIPS

ALL_RESOURCES

ALL_SCHEMAS

ALL_TABLES

ALL_USERS

ALL_WATCHES BD only

ALL_WSDL_OPERATIONS

DEPLOYMENT_PLAN_DETAIL_LOG DM only

TIBCO® Data Virtualization Reference Guide

528 | TDV and Business Directory System Tables

System Table

DEPLOYMENT_PLAN_LOG DM only

DUAL

LOG_DISK

LOG_EVENTS

LOG_IO

LOG_MEMORY

SYS_CACHES

SYS_CLUSTER

SYS_DATA_OBJECTS

SYS_DATASOURCES

SYS_DEPLOYMENT_PLANS DM only

SYS_PRINCIPAL_SETS DM only

SYS_REQUESTS

SYS_RESOURCE_SETS DM only

SYS_SESSIONS

SYS_SITES DM only

SYS_STATISTICS

SYS_TASKS

SYS_TRANSACTIONS

TIBCO® Data Virtualization Reference Guide

529 | TDV and Business Directory System Tables

System Table

SYS_TRANSIENT_COLUMNS MPP

SYS_TRANSIENT_SCHEMAS MPP

SYS_TRANSIENT_TABLES MPP

SYS_TRIGGERS

TEMPTABLE_LOG

TRANSACTION_LOG

USER_PROFILE

Accessing TDV and Business Directory System
Tables
Most system tables are in the Studio resource tree under /Desktop/Composite Data
Services/Databases/system/. Tables unique to Business Directory (and some tables visible
also on the Studio resource tree) can be accessed from BD under HELP > SYSTEM TABLES.
After opening a system table, you can show its contents, which include selected metadata
of resources defined for use by client applications.

Note: System tables are virtual tables. They map to a physical database table, a view, a
structure in server memory, or a combination of these. TIBCO reserves the right to change
the system tables at any time.

For system tables, what you see depends on the rights and privileges you have. Studio
users are limited to executing SQL SELECT statements on these tables. The rights and
privileges to change system tables are locked, to prevent changes that could compromise
functionality and performance.

For several tables, you see no rows unless you have the ACCESS_TOOLS right. If you have
this right, you see rows for all resources for which you have the READ privilege. Users with
both ACCESS_TOOLS and READ_ALL_STATUS rights can see all rows.

TIBCO® Data Virtualization Reference Guide

530 | TDV and Business Directory System Tables

To access a current list of system tables
1. Open Studio as the admin user.

2. In the resource tree, expand /Desktop/Composite Data Services/Databases/system/.

3. Select the system table you want to examine.

4. Double-click the table to open it.

5. Use the workspace pane to review details about the system table.

You can use Studio to view system table data. After opening the system table, click Show
Contents.

ALL_BD_RESOURCES
This Business Directory system table provides a list of Business Directory resources.

Column TDV
JDBC Data Type

Nullable Description

RESOURCE_ID INTEGER Resource identifier.

RESOURCE_NAME VARCHAR Resource name.

RESOURCE_TYPE VARCHAR Resource type.

PARENT_
DATASOURCE_ID

INTEGER Parent data source identifier.

PARENT_
DATASOURCE_
NAME

VARCHAR Parent data source name.

SITE_NAME VARCHAR Site name.

PARENT_PATH VARCHAR Resource’s parent path.

GUID CHAR Global unique identifier for the

TIBCO® Data Virtualization Reference Guide

531 | TDV and Business Directory System Tables

Column TDV
JDBC Data Type

Nullable Description

resource.

CREATION_
TIMESTAMP

BIGINT Resource creation time stamp.

MODIFICATION_
TIMESTAMP_ON_
SITE

BIGINT Resource modification time
stamp on site.

MODIFICATION_
TIMESTAMP

BIGINT Resource most recent
modification time stamp.

ANNOTATION VARCHAR Resource annotation.

ALL_CATALOGS
The ALL_CATALOGS system table exposes all published catalogs to which the current user
has access. Users can see catalogs for which they have at least one privilege.

Column TDV
JDBC Data Type

Nullable Description

CATALOG_ID INTEGER Identifier of the catalog.
Primary key.

CATALOG_NAME VARCHAR(255) Name of the catalog.

DATASOURCE_ID INTEGER Identifier of the data source.

DATASOURCE_NAME VARCHAR(255) Name of the data source.

BD_DATASOURCE_
NAME

VARCHAR(255) BD name of the data source.

TIBCO® Data Virtualization Reference Guide

532 | TDV and Business Directory System Tables

Column TDV
JDBC Data Type

Nullable Description

GUID VARCHAR(36) Nearly unique 128-bit
identifier.

ANNOTATION VARCHAR(36) Yes Annotation for the catalog.

OWNER_ID INTEGER Identifier of the user who
created or owns the catalog.

OWNER VARCHAR(255) User name of the user who
created or owns the catalog.

PARENT_PATH VARCHAR(255) Path to the parent container.

BD_PARENT_PATH VARCHAR(255) BD path to the parent
container.

ALL_CATEGORIES
This Business Directory System table provides a list of BD categories.

Column TDV JDBC Data Type Nullable Description

CATEGORY_ID INTEGER Category Identifier.

CATEGORY_NAME VARCHAR Category name.

ALL_CATEGORY_VALUES
This table provides a list of values for categories.

TIBCO® Data Virtualization Reference Guide

533 | TDV and Business Directory System Tables

Column TDV JDBC Data Type Nullable Description

CATEGORY_VALUE_ID INTEGER Category value Identifier.

CATEGORY_VALUE_
NAME

VARCHAR Category value name.

CATEGORY_ID INTEGER Category Identifier.

CATEGORY_NAME VARCHAR Category name.

ALL_CLASSIFICATIONS
This table provides a list of classifications for resources.

Column TDV JDBC Data Type Nullable Description

RESOURCE_ID INTEGER Resource identifier.

RESOURCE_NAME VARCHAR Resource name.

RESOURCE_TYPE VARCHAR Resource type.

PARENT_PATH VARCHAR Resource's parent path.

CATEGORY_VALUE_ID INTEGER Category value Identifier.

CATEGORY_VALUE_NAME VARCHAR Category value name.

CATEGORY_NAME VARCHAR Category name.

ALL_COLUMNS
The ALL_COLUMNS system table exposes all columns in all published tables in all
published data sources to which the current user has access.

TIBCO® Data Virtualization Reference Guide

534 | TDV and Business Directory System Tables

Column TDV JDBC
Data Type

Nullable Description

COLUMN_ID INTEGER Identifier of the column. Primary key.

COLUMN_
NAME

VARCHAR
(255)

 Name of the column.

DATA_TYPE VARCHAR
(255)

 String representation of the data type.

ORDINAL_
POSITION

INTEGER Position of this column in relation to other
columns in the same table.

JDBC_DATA_
TYPE

SMALLINT JDBC/ODBC data types.

For JDBC data types refer to:
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/T
ypes.html

For ODBC data types refer to:

http://msdn.microsoft.com/en-
us/library/bb630290.aspx

COLUMN_
LENGTH

INTEGER Yes For CHAR or VARCHAR columns, the max length
allowed.

For DECIMAL or NUMERIC columns, the total
number of digits is the column length value.

If it is not one of these four types, the value is
NULL.

COLUMN_
PRECISION

INTEGER Yes For a column of DECIMAL or NUMERIC data type,
the value is the number of digits.

For a column that is not a DECIMAL or NUMERIC
data type, the value is NULL.

COLUMN_
SCALE

INTEGER Yes For a column value of DECIMAL or NUMERIC data
type, this is the exponent.

http://msdn.microsoft.com/en-us/library/bb630290.aspx
http://msdn.microsoft.com/en-us/library/bb630290.aspx

TIBCO® Data Virtualization Reference Guide

535 | TDV and Business Directory System Tables

Column TDV JDBC
Data Type

Nullable Description

COLUMN_
RADIX

INTEGER Yes 10—for all NUMERIC data types.

Null—for all non-numeric data types.

NULLABLE SMALLINT Indicates whether the column is nullable:

0—NULL is not allowed.

1—NULL is allowed.

2—Unknown whether NULL is allowed or not.

IS_NULLABLE VARCHAR
(255)

 Indicates whether the column is nullable:

YES—Column is nullable.

NO—Column is not nullable.

Blank string is returned if it is not known.

TABLE_ID INTEGER Identifier of the table.

TABLE_NAME VARCHAR
(255)

 Name of the table.

SCHEMA_ID INTEGER Yes Identifier of the schema.

SCHEMA_
NAME

VARCHAR
(255)

Yes Name of the schema.

CATALOG_ID INTEGER Yes Identifier of the catalog.

CATALOG_
NAME

VARCHAR
(255)

Yes Name of the catalog.

DATASOURC
E_ID

INTEGER Identifier of the data source.

DATASOURC VARCHAR Name of the data source.

TIBCO® Data Virtualization Reference Guide

536 | TDV and Business Directory System Tables

Column TDV JDBC
Data Type

Nullable Description

E_NAME (255)

BD_
DATASOURC
E_NAME

VARCHAR
(255)

 BD name of the data source.

ANNOTATION VARCHAR
(214748364
7)

Yes Annotation for the column.

OWNER_ID INTEGER Identifier for the user who created or owns the
column.

OWNER VARCHAR
(255)

 User name of the person who created or owns the
column.

PARENT_
PATH

VARCHAR
(1043)

 Path to the parent container.

BD_PARENT_
PATH

VARCHAR
(1043)

 BD path to the parent container.

ALL_COMMENTS
This table provides a list of comments for resources.

Column TDV JDBC Data Type Nullable Description

RESOURCE_ID INTEGER Resource Identifier.

RESOURCE_NAME VARCHAR Resource name.

RESOURCE_TYPE VARCHAR Resource type.

TIBCO® Data Virtualization Reference Guide

537 | TDV and Business Directory System Tables

Column TDV JDBC Data Type Nullable Description

PARENT_PATH VARCHAR Resource's parent
path.

COMMENT_ID INTEGER Comment Identifier.

CREATED TIMESTAMP Comment creation
time stamp.

LAST_UPDATED TIMESTAMP Comment last
modified time
stamp.

COMMENT VARCHAR Comment text.

AUTHOR VARCHAR Author of the
comment.

AUTHOR_ID INTEGER Author identifier.

DOMAIN_NAME VARCHAR Name of domain in
which resource
resides.

ALL_CUSTOM_PROPERTIES
This table provides a list of custom properties.

Column TDV JDBC Data
Type

Nullable Description

CUSTOM_PROPERTY_ID INTEGER

CUSTOM_PROPERTY_
NAME

VARCHAR Custom Property name.

TIBCO® Data Virtualization Reference Guide

538 | TDV and Business Directory System Tables

Column TDV JDBC Data
Type

Nullable Description

CUSTOM_PROPERTY_
TYPE

VARCHAR Custom Property type.

CUSTOM_PROPERTY_
EXTENDED_TYPE

VARCHAR Custom Property Extended
type.

CUSTOM_PROPERTY_
GROUP

VARCHAR Custom Property group.

CUSTOM_PROPERTY_
DEFAULT_VALUE

VARCHAR Default value for Custom
Property.

ALL_CUSTOM_PROPERTY_CLASSIFICATIONS
This table provides a list of custom property classifications for resources.

Column TDV JDBC Data Type Nullable Description

RESOURCE_ID INTEGER

RESOURCE_NAME VARCHAR Resource name.

RESOURCE_TYPE VARCHAR Resource type.

SITE_NAME VARCHAR Site name.

PARENT_PATH VARCHAR Resource's parent path.

PROPERTY_ID INTEGER Property Identifier.

PROPERTY_NAME VARCHAR Property name.

PROPERTY_GROUP_ID INTEGER Property group identifier.

TIBCO® Data Virtualization Reference Guide

539 | TDV and Business Directory System Tables

Column TDV JDBC Data Type Nullable Description

PROPERTY_GROUP VARCHAR Property group.

PROPERTY_TYPE VARCHAR Property type.

PROPERTY_VALUE VARCHAR Property value.

ALL_CUSTOM_PROPERTY_GROUPS
This table provides a list of custom property groups.

Column TDV JDBC Data
Type

Nullable Description

GROUP_ID INTEGER Group identifier.

GROUP_NAME VARCHAR Group name.

GROUP_
ANNOTATION

VARCHAR Group annotation.

ALL_CUSTOM_PROPERTY_GROUPS_
ASSOCIATIONS
This table provides a list of custom property group associations.

Column TDV JDBC Data Type Nullable Description

GROUP_ID INTEGER Group identifier.

GROUP_NAME VARCHAR Group name.

TIBCO® Data Virtualization Reference Guide

540 | TDV and Business Directory System Tables

Column TDV JDBC Data Type Nullable Description

RESOURCE_NAME VARCHAR Resource name.

RESOURCE_TYPE VARCHAR Resource type.

SITE_NAME VARCHAR Site name.

PARENT_PATH VARCHAR Resource's parent path.

ALL_DATASOURCES
The ALL_DATASOURCES system table exposes all published data sources to which the
current user has access. Users can see those data sources for which they have at least one
privilege.

Column TDV JDBC Data Type Nullable Description

DATASOURCE_ID INTEGER Identifier of the data source.
Primary key.

DATASOURCE_NAME VARCHAR(255) Name of the data source.

BD_DATASOURCE_
NAME

VARCHAR(255) BD name of the data source.

DATASOURCE_TYPE VARCHAR(255) Data type of the data source.
The number and variety of
supported data source types
are growing with each release.

GUID VARCHAR(36) Nearly unique 128-bit
identifier.

ANNOTATION VARCHAR
(2147483647)

Yes Annotation for the data
source.

TIBCO® Data Virtualization Reference Guide

541 | TDV and Business Directory System Tables

Column TDV JDBC Data Type Nullable Description

OWNER_ID INTEGER Identifier of the user who
created or owns the data
source.

OWNER VARCHAR(255) User name of the person that
owns/created the data source.

PARENT_PATH VARCHAR
(2147483647)

 Path to the parent container.

DATASOURCE_
CREATOR_ID

INTEGER Identifier of the user who
created this data source. Same
as USER_ID in ALL_USERS
table.

DATASOURCE_
CREATION_
TIMESTAMP

BIGINT Timestamp when the data
source was created.

DATASOURCE_
MODIFIER_ID

INTEGER Identifier of the user who last
modified this data source.
Same as USER_ID in ALL_
USERS table.

DATASOURCE_
MODIFICATION_
TIMESTAMP

BIGINT Timestamp of the last
modification of this data
source.

ALL_DOMAINS
The ALL_DOMAINS system table exposes all domains that have been added to the TDV
Server. The default domain is composite, which is installed during product installation.

Users can see their own domain and the domain of any group to which they belong. Users
with the READ_ALL_USERS right can see all domains.

TIBCO® Data Virtualization Reference Guide

542 | TDV and Business Directory System Tables

Column TDV JDBC Data Type Nullable Description

DOMAIN_ID INTEGER Identifier of the domain. Primary
key.

DOMAIN_TYPE VARCHAR(255) Domain type. Possible values:
composite, dynamic, ldap.

DOMAIN_NAME VARCHAR(255) Name of the domain.

GUID VARCHAR(36) Nearly unique 128-bit identifier.

ANNOTATION VARCHAR(2147483647) Yes Annotation for the domain.

ALL_ENDPOINT_MAPPINGS
(Deployment Manager) The ALL_ATTRIBUTE_MAPPINGS system table lists all end-point
mapping definitions. Users see no rows unless they have the ACCESS_TOOLS right. Users
with this right can see all rows.

Note: Unlike most system tables, this table is under /system/deployment in the Studio
resource tree.

Column TDV JDBC Data Type Nullable Description

TARGET_SITE VARCHAR(2147483647) Name of target site.

SOURCE_SITE VARCHAR(2147483647) Name of source site.

RESOURCE_PATH VARCHAR(2147483647) Resource path.

RESOURCE_TYPE VARCHAR(2147483647) Resource type.

ENDPOINT_NAME VARCHAR(2147483647) Name of the end point.

ENDPOINT_VALUE VARCHAR(2147483647) Value of the end point.

TIBCO® Data Virtualization Reference Guide

543 | TDV and Business Directory System Tables

Column TDV JDBC Data Type Nullable Description

IS_ATTRIBUTE SMALLINT Indicates whether the end
point is an attribute.

RESOURCE_ID INTEGER Identifier of the resource.

ALL_FOREIGN_KEYS
The ALL_FOREIGN_KEYS system table exposes foreign keys discovered on all published
tables in all the data sources for which the current user has access privileges.

Users can see foreign keys on tables for which they have at least one privilege.

Column TDV JDBC Data
Type

Nullable Description

FK_ID INTEGER Identifier of the foreign key.
Primary key.

FK_NAME VARCHAR(255) Name of the foreign key.

ORDINAL_POSITION SMALLINT Position of the foreign key
column in relation to other
columns in the same foreign key
table.

FK_COLUMN_NAME VARCHAR(255) Name of the foreign key column.

FK_TABLE_ID INTEGER Identifier of the table of the
foreign key.

FK_TABLE_NAME VARCHAR(255) Name of the table of the foreign
key.

FK_SCHEMA_ID INTEGER Yes Identifier of the schema of the
foreign key.

TIBCO® Data Virtualization Reference Guide

544 | TDV and Business Directory System Tables

Column TDV JDBC Data
Type

Nullable Description

FK_SCHEMA_NAME VARCHAR(255) Yes Name of the schema of the
foreign key.

FK_CATALOG_ID INTEGER Yes Identifier of the catalog of the
foreign key.

FK_CATALOG_NAME VARCHAR(255) Yes Name of the catalog of the
foreign key.

FK_DATASOURCE_ID INTEGER Identifier of the data source of
the foreign key.

FK_DATASOURCE_
NAME

VARCHAR(255) Name of the data source of the
foreign key.

BD_FK_
DATASOURCE_
NAME

VARCHAR(255) BD name of the data source of
the foreign key.

PK_NAME VARCHAR(255) Name of the primary key.

PK_COLUMN_NAME VARCHAR(255) Name of the column in the table
with the primary key.

PK_TABLE_ID INTEGER Identifier of the table of the
primary key.

PK_TABLE_NAME VARCHAR(255) Name of the table of the primary
key.

PK_SCHEMA_ID INTEGER Yes Identifier of the schema of the
primary key.

PK_SCHEMA_NAME VARCHAR(255) Yes Name of the schema of the
primary key.

TIBCO® Data Virtualization Reference Guide

545 | TDV and Business Directory System Tables

Column TDV JDBC Data
Type

Nullable Description

PK_CATALOG_ID INTEGER Yes Identifier of the catalog of the
primary key.

PK_CATALOG_NAME VARCHAR(255) Yes Name of the catalog of the
primary key.

PK_DATASOURCE_ID INTEGER Identifier of the data source of
the primary key.

PK_DATASOURCE_
NAME

VARCHAR(255) Name of the data source of the
primary key.

BD_PK_
DATASOURCE_
NAME

VARCHAR(255) BD name of the data source of
the primary key.

OWNER_ID INTEGER Identifier for the owner/creator
of the foreign key.

OWNER VARCHAR(255) User name of the owner/creator
of the foreign key.

PARENT_PATH VARCHAR(1043) Path to the parent container.

BD_PARENT_PATH VARCHAR(255) BD path to the parent container.

ALL_GROUPS
The ALL_GROUPS system table exposes all the groups that have been added to TDV Server.

Users can see groups in which they are a member. Users with the READ_ALL_USERS right
can see all groups.

TIBCO® Data Virtualization Reference Guide

546 | TDV and Business Directory System Tables

Column TDV JDBC Data Type Nullable Description

GROUP_ID INTEGER Identifier of
the group.
Primary key.

GROUP_NAME VARCHAR(255) Name of the
group.

DOMAIN_ID INTEGER Unique
domain
identifier.

DOMAIN_NAME VARCHAR(255) Name of the
domain.

ANNOTATION VARCHAR(2147483647) Yes Group
description.

ALL_INDEXES
The ALL_INDEXES system table exposes all the indexes on all published tables in published
data sources to which the current user has access. Users can see indexes on tables for
which they have at least one privilege.

Column TDV JDBC Data Type Nullable Description

INDEX_ID INTEGER Identifier of the index. Primary
key.

INDEX_NAME VARCHAR(255) Name of the index.

INDEX_TYPE VARCHAR(11) Type of the index, whether
primary key or other.

COLUMN_NAME VARCHAR(255) Name of the indexed column.

TIBCO® Data Virtualization Reference Guide

547 | TDV and Business Directory System Tables

Column TDV JDBC Data Type Nullable Description

ORDINAL_
POSITION

SMALLINT Position of the indexed column
in relation to other columns in
the same index.

SORT_ORDER CHAR(1) Sort order: A for ascending or D
for descending.

TABLE_ID INTEGER Identifier of the table.

TABLE_NAME VARCHAR(255) Name of the table.

SCHEMA_ID INTEGER Yes Identifier of the schema.

SCHEMA_NAME VARCHAR(255) Yes Name of the schema.

CATALOG_ID INTEGER Yes Identifier of the catalog.

CATALOG_NAME VARCHAR(255) Yes Name of the catalog.

DATASOURCE_ID INTEGER Identifier of the data source.

DATASOURCE_
NAME

VARCHAR(255) Name of the data source.

BD_DATASOURCE_
NAME

VARCHAR(255) BD name of the data source.

IS_UNIQUE SMALLINT Indicates whether the index
returns unique values.

IS_PRIMARY_KEY SMALLINT Indicates whether the index is a
primary index.

OWNER_ID INTEGER Identifier for the owner/creator
of the index.

OWNER VARCHAR(255) User name of the owner/creator

TIBCO® Data Virtualization Reference Guide

548 | TDV and Business Directory System Tables

Column TDV JDBC Data Type Nullable Description

of the index.

PARENT_PATH VARCHAR(1043) Path to the parent container.

BD_PARENT_PATH VARCHAR(255) BD path to the parent container.

ALL_LINEAGE
This Business Directory system table provides information on lineage for resources.

Column TDV JDBC Data Type Nullable Description

LINEAGE_RESOURCE_ID INTEGER Resource identifier.

LINEAGE_RESOURCE_
NAME

VARCHAR Resource name.

LINEAGE_PARENT_PATH VARCHAR Resource's parent path.

LINEAGE_SITE_NAME VARCHAR Site name.

LINEAGE_DEPENDENCY_
PATH

VARCHAR Lineage dependency path.

LINEAGE_DEPENDENCY_
TYPE

VARCHAR Lineage dependency type.

LINEAGE_DEPENDENCY_
SUBTYPE

VARCHAR Lineage dependency
subtype.

LINEAGE_DEPENDENCY_
ATTRIBUTES

VARCHAR Lineage dependency
attributes.

TIBCO® Data Virtualization Reference Guide

549 | TDV and Business Directory System Tables

ALL_PARAMETERS
The ALL_PARAMETERS system table exposes all the parameters that are used in published
procedures to which the current user has access. Users can see procedures for which they
have at least one privilege.

Column TDV JDBC
Data Type

Nullable Description

PARAMETER_
ID

INTEGER Identifier of the parameter. Primary key.

PARAMETER_
NAME

VARCHAR
(255)

 Name of the parameter.

DATA_TYPE VARCHAR
(255)

 String representation of the data type.

DIRECTION SMALLINT Value indicates the parameter type:

0—Unknown
1—IN
2—INOUT
3—RESULT
4—OUT
5—RETURN

ORDINAL_
POSITION

INTEGER Yes Position of the parameter in relation to other
parameters in the same procedure.

JDBC_DATA_
TYPE

SMALLINT JDBC/ODBC data types. For JDBC data types refer
to:
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Ty
pes.html.

PARAMETER_
LENGTH

INTEGER Yes For a CHAR or VARCHAR parameter, the maximum
length allowed; otherwise NULL.

PARAMETER_
PRECISION

INTEGER Yes Value is the number of digits for DECIMAL or
NUMERIC data types. If the data type is not

TIBCO® Data Virtualization Reference Guide

550 | TDV and Business Directory System Tables

Column TDV JDBC
Data Type

Nullable Description

DECIMAL or NUMERIC, it is NULL.

PARAMETER_
SCALE

INTEGER Yes For a DECIMAL or NUMERIC data type, it is the
number of digits. If the data type is not DECIMAL
or NUMERIC, it is NULL.

PAREMETER_
RADIX

INTEGER Yes Value is 10 for all numeric data types. For non-
numeric data types, it is NULL.

NULLABLE SMALLINT Indicates whether the column is nullable:

0—NULL is not allowed.
1—NULL is allowed.
2—Unknown whether NULL is allowed or not.

IS_NULLABLE VARCHAR
(255)

 Indicates whether the column is nullable:

YES—Column is nullable.
NO—Column is not nullable.
Blank string is returned if it is not known.

PROCEDURE_
ID

INTEGER Identifier of the procedure.

PROCEDURE_
NAME

VARCHAR
(255)

 Name of the procedure.

SCHEMA_ID INTEGER Yes Identifier of the schema.

SCHEMA_
NAME

VARCHAR
(255)

Yes Name of the schema.

CATALOG_ID INTEGER Yes Identifier of the catalog.

CATALOG_
NAME

VARCHAR
(255)

Yes Name of the catalog.

TIBCO® Data Virtualization Reference Guide

551 | TDV and Business Directory System Tables

Column TDV JDBC
Data Type

Nullable Description

DATASOURC
E_ID

INTEGER Identifier of the data source.

DATASOURC
E_NAME

VARCHAR
(255)

 Name of the data source.

BD_
DATASOURC
E_
NAME

VARCHAR
(255)

 BD name of the data source.

ANNOTATION VARCHAR
(214748364
7)

Yes Annotation for the parameter.

OWNER_ID INTEGER Identifier of the person who created or owns the
stored procedure in which the parameter is used.

OWNER VARCHAR
(255)

 User name of the person who created or owns the
procedure in which the parameter is used.

PARENT_
PATH

VARCHAR
(1043)

 Path to the parent container.

BD_PARENT_
PATH

VARCHAR
(255)

 BD path to the parent container.

ALL_PRINCIPAL_SET_MAPPINGS
The ALL_PRINCIPAL_SET_MAPPINGS system table lists all principal mapping definitions.
Users see no rows unless they have the ACCESS_TOOLS right. Users with this right can see
all rows.

Note: Unlike most system tables, this table is under /system/deployment in the Studio
resource tree.

TIBCO® Data Virtualization Reference Guide

552 | TDV and Business Directory System Tables

Column TDV JDBC Data Type Nullable Description

TARGET_SITE VARCHAR(2147483647) Name of target site.

SOURCE_SITE VARCHAR(2147483647) Name of source site.

SOURCE_PRINCIPAL VARCHAR(2147483647) Source site principal.

TARGET_PRINCIPAL VARCHAR(2147483647) Target site principal.

ALL_PRIVILEGES
This table provides a list of resource privileges.

Column TDV JDBC Data Type Nullable Description

RESOURCE_ID INTEGER Identifier of the resource.

RESOURCE_NAME VARCHAR Name of the resource.

COLUMN_ID INTEGER Identifier of the column, -1 if not a
column.

COLUMN_NAME VARCHAR Name of the column, NULL if not a
column.

OWNER_ID INTEGER Identifier of the user who
created/owns the resouce. Same
as USER_ID in the ALL_USERS
table.

OWNER VARCHAR User name of the user who
created/owns the resouce. Same
as USERNAME in the ALL_USERS
table.

MEMBER_ID INTEGER Identifier of the user who has

TIBCO® Data Virtualization Reference Guide

553 | TDV and Business Directory System Tables

Column TDV JDBC Data Type Nullable Description

privilege on the resource. Same as
USER_ID in the ALL_USERS table.

MEMBER VARCHAR User name of the user who has
privileges on the resouce. Same as
USERNAME in the ALL_USERS
table.

MEMBER_TYPE VARCHAR The member type; can be either
GROUP or USER.

PRIVILEGE INTEGER Privilege bitmask value.

ALL_PROCEDURES
The ALL_PROCEDURES system table exposes all published procedures to which the current
user has access. Users can see procedures for which they have at least one privilege.

Column TDV JDBC Data Type Nullable Description

PROCEDURE_ID INTEGER Identifier of the procedure.
Primary key.

PROCEDURE_NAME VARCHAR(255) Name of the procedure.

PROCEDURE_TYPE SMALLINT Procedure type. Possible
values:

1—A relational data source.
2—A WSDL type of data
source.
3—A flat file.
4—The workspace.
5—An LDAP data source.

TIBCO® Data Virtualization Reference Guide

554 | TDV and Business Directory System Tables

Column TDV JDBC Data Type Nullable Description

BD_PROCEDURE_TYPE CHAR BD type of the procedure.

SCHEMA_ID INTEGER Yes Identifier of the schema.

SCHEMA_NAME VARCHAR(255) Yes Name of the schema.

CATALOG_ID INTEGER Yes Identifier of the catalog.

CATALOG_NAME VARCHAR(255) Yes Name of the catalog.

DATASOURCE_ID INTEGER Identifier of the data source.

DATASOURCE_NAME VARCHAR(255) Name of the data source.

BD_DATASOURCE_
NAME

VARCHAR(255) BD name of the data source.

GUID VARCHAR(36) Nearly unique 128-bit
identifier.

ANNOTATION VARCHAR
(2147483647)

 Annotation for the procedure.

OWNER_ID INTEGER Identifier of the person who
created or owns the
procedure.

OWNER VARCHAR(255) User name of the person who
created or owns the
procedure.

PARENT_PATH VARCHAR(787) Path to the parent container.

BD_PARENT_PATH VARCHAR BD path to the parent
container.

PROCEDURE_ INTEGER Identifier of the user who

TIBCO® Data Virtualization Reference Guide

555 | TDV and Business Directory System Tables

Column TDV JDBC Data Type Nullable Description

CREATOR_ID created this procedure. Same
as USER_ID in ALL_USERS.

PROCEDURE_
CREATION_TIMESTAMP

BIGINT Timestamp when the
procedure was created.

PROCEDURE_
MODIFIER_ID

INTEGER Identifier of the user who last
modified this procedure.
Same as USER_ID in ALL_
USERS.

PROCEDURE_
MODIFICATION_
TIMESTAMP

BIGINT Timestamp when the
procedure was modified.

ALL_PUBLISHED_FOLDERS
The ALL_PUBLISHED_FOLDERS system table exposes all of the user-created folders under
/services.

Column TDV JDBC Data Type Nullable Description

FOLDER_ID INTEGER ID of the folder. Primary key.

FOLDER_NAME VARCHAR
(2147483647)

 Name of the folder.

GUID CHAR(2147483647) Nearly unique 128-bit identifier.

ANNOTATION VARCHAR
(2147483647)

 Annotation for the folder.

OWNER_ID INTEGER ID of the person who created/owns
the folder. Same as USER_ID in ALL_
USERS.

TIBCO® Data Virtualization Reference Guide

556 | TDV and Business Directory System Tables

Column TDV JDBC Data Type Nullable Description

OWNER VARCHAR(255) Name of the person who
created/owns the folder. Same as
USER_NAME in ALL_USERS.

PARENT_PATH VARCHAR
(2147483647)

 Path to the parent container.

BD_PARENT_
PATH

VARCHAR(255) BD path to the parent container.

ALL_RELATIONSHIP_COLUMNS
The ALL_RELATIONSHIP_COLUMNS system table exposes the columns of all relationships
to which the current user has access. Users can see relationship columns if they have
privileges on the tables involved.

For further information about this system table, see the Discovery User Guide.

Column TDV JDBC Data
Type

Nullable Description

RELATIONSHIP_ID INTEGER Identifier of the relationship.

ORDINAL_POSITION INTEGER The order in which this column
appears in the relationship.

FROM_COLUMN_ID INTEGER Identifier of the “from” column in
the relationship.

FROM_COLUMN_
NAME

VARCHAR(255) Name of the “from” column in
the relationship.

FROM_COLUMN_
DATA_TYPE

VARCHAR(255) Data type of the “from” column
in the relationship.

TIBCO® Data Virtualization Reference Guide

557 | TDV and Business Directory System Tables

Column TDV JDBC Data
Type

Nullable Description

FROM_TABLE_ID INTEGER Identifier of the “from” table in
the relationship.

FROM_TABLE_
NAME

VARCHAR(255) Name of the “from” table in the
relationship.

FROM_SCHEMA_ID INTEGER Yes Identifier of the “from” schema in
the relationship.

FROM_SCHEMA_
NAME

VARCHAR(255) Yes Name of the “from” schema in
the relationship.

FROM_CATALOG_ID INTEGER Yes Identifier of the “from” catalog in
the relationship.

FROM_CATALOG_
NAME

VARCHAR(255) Yes Name of the “from” catalog in the
relationship.

FROM_
DATASOURCE_ID

INTEGER Identifier of the “from” data
source in the relationship.

FROM_
DATASOURCE_
NAME

VARCHAR(255) Name of the “from” data source
in the relationship.

TO_COLUMN_ID INTEGER Identifier of the “to” column in
the relationship.

TO_COLUMN_NAME VARCHAR(255) Name of the “to” column in the
relationship.

TO_COLUMN_
DATA_TYPE

VARCHAR(255) Yes Data type of the “to” column in
the relationship.

TO_TABLE_ID INTEGER Identifier of the “to” table in the
relationship.

TIBCO® Data Virtualization Reference Guide

558 | TDV and Business Directory System Tables

Column TDV JDBC Data
Type

Nullable Description

TO_TABLE_NAME VARCHAR(255) Name of the “to” table in the
relationship.

TO_SCHEMA_ID INTEGER Yes Identifier of the “to” schema in
the relationship.

TO_SCHEMA_NAME VARCHAR(255) Yes Name of the “to” schema in the
relationship.

TO_CATALOG_ID INTEGER Yes Identifier of the “to” catalog in
the relationship.

TO_CATALOG_
NAME

VARCHAR(255) Yes Name of the “to” catalog in the
relationship.

TO_DATASOURCE_
ID

INTEGER Identifier of the “to” data source
in the relationship.

TO_DATASOURCE_
NAME

VARCHAR(255) Name of the “to” data source in
the relationship.

OWNER_ID INTEGER Identifier of the person who
created or owns the procedure.

OWNER VARCHAR(255) User name of the person who
created or owns the procedure.

FROM_DATA_
OBJECT_NAME

VARCHAR
(2147483647)

 Name of the “from” data object
in the relationship.

TO_DATA_OBJECT_
NAME

VARCHAR
(2147483647)

 Name of the “to” data object in
the relationship.

TIBCO® Data Virtualization Reference Guide

559 | TDV and Business Directory System Tables

ALL_RELATIONSHIPS
The ALL_RELATIONSHIPS system table exposes all relationships to which the current user
has access. Users can see relationships if they have privileges on the tables involved.

For further information about this system table, see the Discovery User Guide.

Column TDV JDBC Data
Type

Nullable Description

RELATIONSHIP_ID INTEGER Identifier of the relationship.

RELATIONSHIP_TYPE VARCHAR(40) Relationship type.

RELATIONSHIP_
CARDINALITY

VARCHAR(32) Relationship cardinality.

RELATIONSHIP_
STATUS

VARCHAR(40) Relationship status.

FROM_TABLE_ID INTEGER Identifier of the “from” table in
the relationship.

FROM_TABLE_NAME VARCHAR(255) Name of the “from” table in the
relationship.

FROM_SCHEMA_ID INTEGER Yes Identifier of the “from” schema
in the relationship.

FROM_SCHEMA_
NAME

VARCHAR(255) Yes Name of the “from” schema in
the relationship.

FROM_CATALOG_ID INTEGER Yes Identifier of the “from” catalog
in the relationship.

FROM_CATALOG_
NAME

VARCHAR(255) Yes Name of the “from” catalog in
the relationship.

FROM_
DATASOURCE_ID

INTEGER Identifier of the “from” data
source in the relationship.

TIBCO® Data Virtualization Reference Guide

560 | TDV and Business Directory System Tables

Column TDV JDBC Data
Type

Nullable Description

FROM_
DATASOURCE_NAME

VARCHAR(255) Name of the “from” data
source in the relationship.

TO_TABLE_ID INTEGER Identifier of the “to” table in
the relationship.

TO_TABLE_NAME VARCHAR(255) Name of the “to” table in the
relationship.

TO_SCHEMA_ID INTEGER Yes Identifier of the “to” schema in
the relationship.

TO_SCHEMA_NAME VARCHAR(255) Yes Name of the “to” schema in the
relationship.

TO_CATALOG_ID INTEGER Yes Identifier of the “to” catalog in
the relationship.

TO_CATALOG_NAME VARCHAR(255) Yes Name of the “to” catalog in the
relationship.

TO_DATASOURCE_ID INTEGER Identifier of the “to” data
source in the relationship.

TO_DATASOURCE_
NAME

VARCHAR(255) Name of the “to” data source
in the relationship.

NUM_MATCHES INTEGER Number-of-matches factor used
in calculating a relationship
probability score.

KEY_FACTOR NUMERIC(7,4) Index key factor used in
calculating a relationship
probability score.

NAME_FACTOR NUMERIC(7,4) Column name comparison

TIBCO® Data Virtualization Reference Guide

561 | TDV and Business Directory System Tables

Column TDV JDBC Data
Type

Nullable Description

factor used in calculating a
relationship probability score.

MATCH_
PERCENTAGE_
FACTOR

NUMERIC(7,4) Match percentage factor used
in calculating a relationship
probability score.

LOCALITY_FACTOR NUMERIC(7,4) Schema locality factor used in
calculating a relationship
probability score.

KEY_FACTOR_
WEIGHT

NUMERIC(7,4) Percentage importance to
apply to KEY_FACTOR when
calculating a relationship
probability score.

NAME_FACTOR_
WEIGHT

NUMERIC(7,4) Percentage importance to
apply to NAME_FACTOR when
calculating a relationship
probability score.

NUM_MATCHES_
WEIGHT

NUMERIC(7,4) Percentage importance to
apply to NUM_MATCHES when
calculating a relationship
probability score.

MATCH_
PERCENTAGE_
WEIGHT

NUMERIC(7,4) Percentage importance to
apply to MATCH_PERCENTAGE_
FACTOR when calculating a
relationship probability score.

LOCALITY_WEIGHT NUMERIC(7,4) Percentage importance to
apply to LOCALITY_FACTOR
when calculating a relationship
probability score.

TIBCO® Data Virtualization Reference Guide

562 | TDV and Business Directory System Tables

Column TDV JDBC Data
Type

Nullable Description

SCORE NUMERIC(7,4) Relationship probability score.

SCAN_ID INTEGER Identifier for the scan that
created the relationship.

OWNER_ID INTEGER Identifier for the person who
created or owns the procedure.

OWNER VARCHAR(255) User name of the person who
created or owns the procedure.

CID INTEGER For internal use only.

ALL_RESOURCES
The ALL_RESOURCES system table exposes all TDV resources to which the current user has
access.

Users cannot see any rows from this table unless they have the ACCESS_TOOLS right. All
resources are shown for administrators with the READ_ALL_RESOURCES right. Users
without the READ_ALL_RESOURCES right can view resource rows in the system table for
which they have read privileges both on the resource and on all parent nodes of that
resource.

For performance reasons, column and parameter metadata are not returned.

Column TDV JDBC Data
Type

Nullable Description

RESOURCE_ID INTEGER Identifier of the resource. Primary
key.

RESOURCE_
NAME

VARCHAR(255) Name of the resource.

TIBCO® Data Virtualization Reference Guide

563 | TDV and Business Directory System Tables

Column TDV JDBC Data
Type

Nullable Description

RESOURCE_
TYPE

VARCHAR(255) Type of the resource.

ANNOTATION VARCHAR(65535) Yes Annotation for the resource.

DEFINITION VARCHAR(16777215) Yes Definition of the resource. Applicable
only to certain resources such as
SQL Scripts, packaged queries, XSLT-
based transformations.

OWNER_ID INTEGER Identifier of the user who created or
owns the data source.

OWNER VARCHAR(60) User name of the person that
owns/created the data source.

PARENT_PATH VARCHAR(65535) Path to the parent container.

GUID VARCHAR(65535) Nearly unique 128-bit identifier.

RESOURCE_
SUBTYPE

VARCHAR(255) Subtype of the resource.

ALL_SCHEMAS
The ALL_SCHEMAS system table exposes all published schemas to which the current user
has access. Users can see schemas for which they have at least one privilege.

Column TDV JDBC Data Type Nullable Description

SCHEMA_ID INTEGER Identifier of the schema.
Primary key.

TIBCO® Data Virtualization Reference Guide

564 | TDV and Business Directory System Tables

Column TDV JDBC Data Type Nullable Description

SCHEMA_NAME VARCHAR(255) Name of the schema.

CATALOG_ID INTEGER Yes Identifier of the catalog.

CATALOG_NAME VARCHAR(255) Yes Name of the catalog.

DATASOURCE_ID INTEGER Identifier of the data source.

BD_DATASOURCE_
NAME

VARCHAR(255) BD name of the data source.

DATASOURCE_NAME VARCHAR(255) Name of the data source.

GUID VARCHAR(36) Nearly unique 128-bit identifier.

ANNOTATION VARCHAR(2147483647) Yes Annotation for the schema.

OWNER_ID INTEGER Identifier of the user who
created or owns the schema.

OWNER VARCHAR(255) User name of the user who
created or owns the schema.

PARENT_PATH VARCHAR(531) Path to the parent container.

BD_PARENT_PATH VARCHAR(531) BD path to the parent
container.

ALL_TABLES
The ALL_TABLES system table exposes all published tables to which the current user has
access. Users can see tables for which they have at least one privilege.

TIBCO® Data Virtualization Reference Guide

565 | TDV and Business Directory System Tables

Column TDV JDBC Data
Type

Nullable Description

TABLE_ID INTEGER Identifier of the table. Primary
key.

TABLE_NAME VARCHAR(255) Name of the table.

TABLE_TYPE VARCHAR(24) Data type of the table.

BD_TABLE_TYPE VARCHAR(24) BD table type.

SCHEMA_ID INTEGER Yes Identifier of the schema.

SCHEMA_NAME VARCHAR(255) Yes Name of the schema.

CATALOG_ID INTEGER Yes Identifier of the catalog.

CATALOG_NAME VARCHAR(255) Yes Name of the catalog.

DATASOURCE_ID INTEGER Identifier of the data source.

DATASOURCE_NAME VARCHAR(255) Name of the data source.

BD_DATASOURCE_
NAME

VARCHAR(255) BD name of the data source.

GUID VARCHAR(36) Nearly unique 128-bit identifier.
(CHAR in BD.)

ANNOTATION VARCHAR
(2147483647)

Yes Annotation for the table.

OWNER_ID INTEGER Identifier of the person who
created or owns the table.

OWNER VARCHAR(255) Name of the person who
created or owns the table.

TIBCO® Data Virtualization Reference Guide

566 | TDV and Business Directory System Tables

Column TDV JDBC Data
Type

Nullable Description

PARENT_PATH VARCHAR(787) Path to the parent container.

BD_PARENT_PATH VARCHAR(787) BD path to the parent
container.

TABLE_CREATOR_ID INTEGER Identifier of the user who
created this table. Same as
USER_ID in ALL_USERS.

TABLE_
CREATION_
TIMESTAMP

BIGINT Timestamp when the table was
created.

TABLE_MODIFIER_ID INTEGER Identifier of the user who last
modified this table. Same as
USER_ID in ALL_USERS.

TABLE_
MODIFICATION_
TIMESTAMP

BIGINT Timestamp when the table was
modified.

ALL_USERS
The ALL_USERS system table exposes all the users in all the domains in the TDV Server.
Administrators with the READ_ALL_USERS right can see all users. Users with limited rights
can read only their own user rows.

Column TDV JDBC Data Type Nullable Description

USER_ID INTEGER Identifier of the user.
Primary key.

USERNAME VARCHAR(255) Log-in name of the user.

TIBCO® Data Virtualization Reference Guide

567 | TDV and Business Directory System Tables

Column TDV JDBC Data Type Nullable Description

DOMAIN_ID INTEGER Identifier of user’s domain.

DOMAIN_NAME VARCHAR(255) Name of user’s domain.

ANNOTATION VARCHAR(2147483647) Yes Annotation for the user.

ALL_USER_PROFILES
This table provides a list of user profiles.

Column TDV JDBC Data
Type

Nullable Description

USER_ID INTEGER User Identifier.

FIRST_NAME VARCHAR First name of the user.

LAST_NAME VARCHAR Last name of the user.

EMAIL VARCHAR Email address of the user. Useful for
receiving watch notifications.

LOGIN_NAME VARCHAR Login name of the user.

ALL_WATCHES
This table provides a list of Watches for resources.

Column TDV JDBC Data Type Nullable Description

RESOURCE_ID INTEGER Resource identifier.

TIBCO® Data Virtualization Reference Guide

568 | TDV and Business Directory System Tables

Column TDV JDBC Data Type Nullable Description

RESOURCE_NAME VARCHAR Resource name.

RESOURCE_TYPE VARCHAR Resource type.

PARENT_PATH VARCHAR Resource's parent path.

WATCH_ID INTEGER Comment identifier.

CREATED TIMESTAMP Comment creation time stamp.

INCLUDE_
CHILDREN

BOOLEAN Flag to include watching child
resources.

OWNER VARCHAR Owner of the watch.

OWNER_ID INTEGER Owner identifier.

DOMAIN_NAME VARCHAR Name of domain name in which
resource resides.

ALL_WSDL_OPERATIONS
The ALL_WSDL_OPERATIONS system table exposes all published WSDL operations (of Web
Services and WSDL data sources) to which the current user has access. Users can see WSDL
operations for which they have at least one privilege.

Column TDV JDBC Data
Type

Nullable Description

OPERATION_ID INTEGER Identifier of the operation.
Primary key.

OPERATION_NAME VARCHAR(255) Name of the operation.

DATASOURCE_ID INTEGER Primary key that identifies the

TIBCO® Data Virtualization Reference Guide

569 | TDV and Business Directory System Tables

Column TDV JDBC Data
Type

Nullable Description

data source.

DATASOURCE_NAME VARCHAR(255) Name of the data source.

BD_DATASOURCE_
NAME

VARCHAR(255) BD name of the data source.

GUID VARCHAR(36) Nearly unique 128-bit identifier.

ANNOTATION VARCHAR
(2147483647)

Yes Annotation for the operation.

OWNER_ID INTEGER Identifier of the user who
created or owns the WSDL
operation.

OWNER VARCHAR(255) User name of the user who
created or owns the WSDL
operation.

PARENT_PATH VARCHAR
(2147483647)

 Path to the parent container.

BD_PARENT_PATH VARCHAR
(2147483647)

 BD path to the parent container.

OPERATION_
CREATOR_ID

INTEGER Identifier of the user who
created this operation. Same as
USER_ID in ALL_USERS.

OPERATION_
CREATION_
TIMESTAMP

BIGINT Timestamp when the operation
was created.

OPERATION_
MODIFIER_ID

INTEGER Identifier of the user who last
modified this operation. Same as

TIBCO® Data Virtualization Reference Guide

570 | TDV and Business Directory System Tables

Column TDV JDBC Data
Type

Nullable Description

USER_ID in ALL_USERS.

OPERATION_
MODIFICATION_
TIMESTAMP

BIGINT Timestamp when the operation
was modified.

DEPLOYMENT_PLAN_DETAIL_LOG
This table provides a list of detailed logs for deployment plan executions. Users see no
rows unless they have ACCESS_TOOLS right. If they have this right, they see all rows.

Note: Unlike most system tables, this table is under /system/deployment in the Studio
resource tree.

Column TDV
JDBC Data
Type

Nullable Description

DEPLOYMENT_PLAN_
LOG_ID

INTEGER Log identifier of the deployment
plan.

FROM_SITE VARCHAR
(2147483647)

 Source site.

TO_SITE VARCHAR
(2147483647)

 Target site.

USER_NAME VARCHAR
(2147483647)

 Name of the user who executed
the plan.

DEPLOYMENT_PLAN_
NAME

VARCHAR(255) Name given to the deployment
plan.

OPERATION_ID INTEGER Identifier of the operation. Primary

TIBCO® Data Virtualization Reference Guide

571 | TDV and Business Directory System Tables

Column TDV
JDBC Data
Type

Nullable Description

key.

OPERATION_TYPE VARCHAR
(2147483647)

 Operation type.

OPERATION_STEP INTEGER Operation step.

OPERATION_STEP_
TYPE

VARCHAR
(2147483647)

 Operation step type.

START_TIME TIMESTAMP Start time.

END_TIME TIMESTAMP End time.

CAR BLOB The name of the CAR file that
contains the moved resources.

RESOURCE_INFO VARCHAR
(2147483647)

 The resources removed from the
target site.

SETTINGS VARCHAR
(2147483647)

 The settings at the target site
during the import process.

STATUS VARCHAR
(2147483647)

 Status of the deployment plan.

MESSAGE VARCHAR
(2147483647)

 Message to accompany the
deployment plan.

DEPLOYMENT_PLAN_LOG
This table provides a list of deployment plan execution logs. For details such as CAR file
name and operation steps, see the DEPLOYMENT_PLAN_DETAIL_LOG table.

TIBCO® Data Virtualization Reference Guide

572 | TDV and Business Directory System Tables

Users see no rows unless they have ACCESS_TOOLS right. If they have this right, they see
all rows.

Note: Unlike most system tables, this table is under /system/deployment in the Studio
resource tree.

Column TDV JDBC Data Type Nullable Description

LOG_ID INTEGER Log identifier of the
deployment plan.

FROM_SITE VARCHAR(2147483647) Source site.

TO_SITE VARCHAR(2147483647) Target site.

DEPLOYMENT_
PLAN_ID

INTEGER Identifier for the deployment
plan.

DEPLOYMENT_
PLAN_NAME

VARCHAR(255) Name given to the deployment
plan.

USER_NAME VARCHAR(2147483647) Name of the user who
executed the plan.

START_TIME TIMESTAMP Start time.

END_TIME TIMESTAMP End time.

STATUS VARCHAR(2147483647) Status of the deployment plan.

MESSAGE VARCHAR(2147483647) Message to accompany the
deployment plan.

DUAL
The DUAL system table is a special one-column table with one row. It is similar to the table
present in all Oracle database installations. It is useful in situations where the SELECT
syntax requires a FROM clause but the query does not require a table.

TIBCO® Data Virtualization Reference Guide

573 | TDV and Business Directory System Tables

Column TDV JDBC Data Type Nullable Description

DUMMY CHAR(1) Value is the character X.

LOG_DISK
The LOG_DISK system table exposes the log of disk space available on the server. Users see
no rows unless they have the ACCESS_TOOLS right.

Column TDV JDBC
Data Type

Nullable Description

EVENT_TIME TIMESTAMP The time when the data was logged.

CONF_DISK_SIZE BIGINT The size of the disk where conf is
located.

CONF_DISK_USED BIGINT The amount of space used on the disk.

TMP_DISK_SIZE BIGINT The size of the disk where tmp is
located.

TMP_DISK_USED BIGINT The amount of space used on the disk.

LOG_DISK_SIZE BIGINT The size of the disk where logs is
located.

LOG_DISK_USED BIGINT The amount of space used on the disk.

LOG_EVENTS
The LOG_EVENTS system table exposes views of events produced by the server. Users see
no rows unless they have the ACCESS_TOOLS and READ_ALL_STATUS rights.

TIBCO® Data Virtualization Reference Guide

574 | TDV and Business Directory System Tables

Column TDV JDBC Data Type Nullable Description

EVENT_ID BIGINT The unique ID for this event.

PARENT_ID BIGINT The ID for the parent of this event.
Same as the EVENT_ID if the event
has no parent.

TYPE_ID INTEGER The ID of the type of event that
occurred.

TYPE_NAME VARCHAR(24) A string name for the type of event
that occurred. For example,
START.

CATEGORY VARCHAR(11) A string name for the category of
event that occurred. For example,
REQUEST.

EVENT_TIME TIMESTAMP The time when the data was
logged.

SEVERITY VARCHAR(24) The severity of the event.

OWNER_ID INTEGER The ID of the user who generated
the event.

OWNER VARCHAR(255) The name of the user who
generated the event.

DESCRIPTION VARCHAR(4000) The short description of the event.

DETAIL VARCHAR
(2147483647)

 The complete details of the event.

LOG_IO
The LOG_IO system table exposes the log of I/O produced on the server. Users see no rows
unless they have the ACCESS_TOOLS right.

TIBCO® Data Virtualization Reference Guide

575 | TDV and Business Directory System Tables

Column TDV JDBC Data
Type

Nullable Description

EVENT_TIME TIMESTAMP The time when the data was
logged.

FROM_CLIENTS BIGINT Estimated number of bytes sent by
clients to the server.

TO_CLIENTS BIGINT Estimated number of bytes sent by
the server to clients.

FROM_
DATASOURCES

BIGINT Estimated number of bytes sent by
data sources to the server.

TO_DATASOURCES BIGINT Estimated number of bytes sent by
the server to data sources.

LOG_MEMORY
The LOG_MEMORY system table exposes the log of memory available on the server. Users
see no rows unless they have the ACCESS_TOOLS right.

Column TDV JDBC
Data Type

Nullable Description

EVENT_TIME TIMESTAMP The time when the data was logged.

MEMORY_BYTES BIGINT The amount of Java heap memory used.

MEMORY_MAX BIGINT The maximum amount of Java heap
memory available.

MANAGED_BYTES BIGINT The amount of managed memory used.

MANAGED_MAX BIGINT The maximum amount of managed
memory available.

TIBCO® Data Virtualization Reference Guide

576 | TDV and Business Directory System Tables

SYS_CACHES
The SYS_CACHES system table provides a list of all cached resources and their current
status.

Users see no rows unless they have the ACCESS_TOOLS right. If they have this right, they
see rows for all resources for which they have the READ privilege. Users with both ACCESS_
TOOLS and READ_ALL_STATUS rights can see all rows.

Column TDV
JDBC Data
Type

Nullable Description

RESOURCE_ID INTEGER The cached resource ID.

RESOURCE_NAME VARCHAR(255) The cached resource name.

RESOURCE_TYPE VARCHAR(255) The cached resource type. Can be
TABLE or PROCEDURE.

OWNER_ID INTEGER The cached resource owner’s user ID.

OWNER VARCHAR(255) The cached resource owner’s name.

PARENT_PATH VARCHAR
(65535)

 The path to the cached resource.

STATUS VARCHAR(20) The status of the cache. Value can be:

DISABLED—The cache is disabled.

NOT LOADED—The cache is enabled, but
not loaded.

UP—The cache is enabled and loaded.

STALE—The cache is enabled and
loaded, but the data has expired

DOWN—The cache failed its most recent
attempt to load

TIBCO® Data Virtualization Reference Guide

577 | TDV and Business Directory System Tables

Column TDV
JDBC Data
Type

Nullable Description

CONFIG ERROR—The cache is not
configured properly

VARIANT VARCHAR(255) Yes NULL for TABLE views. NULL if no
PROCEDURE variants are being
tracked.

For a PROCEDURE, a comma-separated
list of parameter values submitted for
generation of the cache.

LAST_REFRESH_
END

TIMESTAMP Yes The time the most recent refresh
finished.

LAST_SUCCESS_
END

TIMESTAMP Yes The time the most recent successful
refresh finished.

LAST_FAIL_END TIMESTAMP Yes The time the most recent failed refresh
finished.

LAST_ACCESS TIMESTAMP Yes The time the cache was most recently
read from.

LAST_SUCCESS_
DURATION

BIGINT The number of milliseconds the most
recent successful refresh took to
complete.

LAST_FAIL_
DURATION

BIGINT The number of milliseconds the most
recent failed refresh took to complete.

NUM_SUCCESS INTEGER The number of times the cache was
successfully refreshed since the server
was started.

NUM_FAIL INTEGER The number of times the cache failed

TIBCO® Data Virtualization Reference Guide

578 | TDV and Business Directory System Tables

Column TDV
JDBC Data
Type

Nullable Description

to refresh since the server was started.

NUM_ACCESS INTEGER The number of times the cache was
accessed for read since the server was
started.

STORAGE_USED BIGINT The approximate byte size of the cache
data.

MESSAGE VARCHAR
(65535)

Yes A failure message if the cache is in an
error state. NULL if there is no
message.

INITAL_TIME TIMESTAMP Yes The time the trigger is configured to
first start. NULL if not condition type
TIMER.

NEXT_TIME TIMESTAMP Yes The time the trigger will next fire. NULL
if not condition type TIMER.

FREQUENCY VARCHAR(255) Yes Human-readable description of the
frequency of the trigger. NULL if not
condition type TIMER.

CURRENT_
REFRESH_START

TIMESTAMP Yes The time the current in-progress
refresh started. NULL if not currently
refreshing.

CURRENT_
DURATION

BIGINT Yes The number of milliseconds the in-
progress refresh has been running.
NULL if not currently refreshing.

CURRENT_
STORAGE

BIGINT Yes The approximate byte size of the cache
data currently being refreshed. NULL if
not currently refreshing.

TIBCO® Data Virtualization Reference Guide

579 | TDV and Business Directory System Tables

Column TDV
JDBC Data
Type

Nullable Description

CURRENT_CAUSE VARCHAR(20) Yes The reason the cache is refreshing.
NULL if not currently refreshing. Can
be MANUAL, SCHEDULED, EXPIRED, or
ON_DEMAND.

SYS_CLUSTER
The SYS_CLUSTER system table provides information about cluster status. It contains one
row for each server in the cluster. Users see no rows unless they have the ACCESS_TOOLS
and READ_ALL_STATUS rights.

Refer to the TDV Active Cluster Guide for more information on the SYS_CLUSTER system
table.

SYS_DATA_OBJECTS
The SYS_DATA_OBJECTS system table provides a list of data object definitions. Users see
no rows unless they have the ACCESS_TOOLS right. Users with this right can see all rows.

Column TDV JDBC Data
Type

Nullable Description

DATA_OBJECT_ID INTEGER Data object identifier.

DATA_OBJECT_
TYPE

INTEGER Data object type.

DATA_OBJECT_
NAME

VARCHAR(255) Data object name.

DATA_OBJECT_ VARCHAR(255) Data object description.

TIBCO® Data Virtualization Reference Guide

580 | TDV and Business Directory System Tables

Column TDV JDBC Data
Type

Nullable Description

DESC

DATA_OBJECT_
DEFN_NAME

VARCHAR(255) Data object definition function name.

DATA_OBJECT_
DEFN_1

VARCHAR
(2147483647)

Yes Discovery data domain patterns and
column.

DATA_OBJECT_
DEFN_2

VARCHAR
(2147483647)

Yes Discovery data domain
transformations. See “Using Data
Domains” in the Discovery User Guide.

ENABLED SMALLINT Data object enabled flag.

SYS_DATASOURCES
The SYS_DATASOURCES system table provides a list of all data sources and their current
status.

Users see no rows unless they have the ACCESS_TOOLS right. If they have this right, they
see rows for all resources for which they have READ privilege. Users with both ACCESS_
TOOLS and READ_ALL_STATUS rights can see all rows.

Column TDV
JDBC Data
Type

Nullable Description

SOURCE_ID INTEGER The data source’s resource ID.

SOURCE_NAME VARCHAR
(255)

 The data source’s resource name.

SOURCE_TYPE VARCHAR(60) The data source’s data source type—for
example, MySql.

TIBCO® Data Virtualization Reference Guide

581 | TDV and Business Directory System Tables

Column TDV
JDBC Data
Type

Nullable Description

SOURCE_CATEGORY VARCHAR(60) The data source category. Value can be
RELATIONAL, FILE, or SERVICE.

OWNER_ID INTEGER The data source’s resource owner ID.

OWNER VARCHAR
(255)

 The data source’s resource owner
name.

PARENT_PATH VARCHAR
(65535)

Yes The path of the data source resource.
Can be NULL for system-owned data
sources.

STATUS VARCHAR(20) Data source current status:

DISABLED—Data source disabled.

UP—Data source enabled and running.

DOWN—Data source down when last
tested.

NOT_TESTED—Data source not tested; status
unknown.

NUM_REQUESTS INTEGER The number of requests processed since
the server started.

ACTIVE_REQUESTS INTEGER The number of requests currently in
progress.

MAX_CONN INTEGER The maximum size of the data source’s
connection pool.

NUM_CURRENT_
CONN

INTEGER The current size of the data source’s
connection pool.

NUM_IN_USE_CONN INTEGER The number of data source connections

TIBCO® Data Virtualization Reference Guide

582 | TDV and Business Directory System Tables

Column TDV
JDBC Data
Type

Nullable Description

currently in use.

NUM_LOGINS INTEGER The number of times new connections
were opened since the server started.

NUM_LOGOUTS INTEGER The number of times connections were
closed since the server started.

BYTES_TO BIGINT The estimated number of bytes sent to
the data source since the server started.

BYTES_FROM BIGINT The estimated number of bytes
retrieved from the data source since the
server started.

MESSAGE VARCHAR
(65535)

Yes A message about the data source. NULL
if no message is available.

SYS_DEPLOYMENT_PLANS
The SYS_DEPLOYMENT_PLANS system table provides a list of deployment plan definitions.
Users see no rows unless they have the ACCESS_TOOLS right. Users with this right can see
all rows.

Note: Unlike most system tables, this table is under /system/deployment in the Studio
resource tree.

Column TDV
JDBC Data
Type

Nullable Description

DEPLOYMENT_PLAN_
ID

INTEGER Identifier for the deployment plan.

TIBCO® Data Virtualization Reference Guide

583 | TDV and Business Directory System Tables

Column TDV
JDBC Data
Type

Nullable Description

DEPLOYMENT_PLAN_
NAME

VARCHAR(255) Name of the deployment plan.

TARGET_SITE_NAME VARCHAR(255) Name of the target site.

SOURCE_SITE_NAME VARCHAR(255) Name of the source site.

DEFINITION VARCHAR
(2147483647)

 JSON string defining the
deployment plan.

ANNOTATION VARCHAR
(2147483647)

 Annotation.

STATUS VARCHAR
(2147483647)

 Impact status.

OWNER VARCHAR
(2147483647)

 Owner of the deployment plan.

CREATE_TIME BIGINT Deployment plan creation time.

MODIFY_TIME BIGINT Time of last plan modification.

MODIFY_USER VARCHAR
(2147483647)

 Name of last person to modify the
plan.

SYS_PRINCIPAL_SETS
The SYS_PRINCIPAL_SETS system table provides a list of principal set definitions. Users see
no rows unless they have the ACCESS_TOOLS right. Users with this right can see all rows.

Note: Unlike most system tables, this table is under /system/deployment in the Studio
resource tree.

TIBCO® Data Virtualization Reference Guide

584 | TDV and Business Directory System Tables

Column TDV
JDBC Data
Type

Nullable Description

PRINCIPAL_SET_
NAME

VARCHAR(255) Name of the resource set.

SITE_NAME VARCHAR(255) Name of the site.

DEFINITION VARCHAR
(2147483647)

 Definition of principal set.

ANNOTATION VARCHAR
(2147483647)

 Annotation.

STATUS VARCHAR
(2147483647)

 Impact status.

OWNER VARCHAR
(2147483647)

 Owner of the principal set.

CREATE_TIME BIGINT Principal set creation time.

MODIFY_TIME BIGINT Time of last modification to the
principal set.

MODIFY_USER VARCHAR
(2147483647)

 Name of last person to modify the
principal set.

SYS_REQUESTS
The SYS_REQUESTS system table provides a list of current and recent requests and their
current status.

Users see no rows unless they have the ACCESS_TOOLS right. If they have this right, they
see rows for all requests they own. Users with both ACCESS_TOOLS and READ_ALL_STATUS
rights can see all rows.

TIBCO® Data Virtualization Reference Guide

585 | TDV and Business Directory System Tables

Column TDV
JDBC Data
Type

Nullable Description

REQUEST_ID BIGINT The request's ID.

PARENT_ID BIGINT Yes The parent request’s ID. NULL if there is
no parent request.

SESSION_ID BIGINT The request's session ID.

TRANSACTION_ID BIGINT The request's transaction ID.

OWNER_ID INTEGER The request session’s user ID.

OWNER VARCHAR(255) The request session’s user name.

REQUEST_TYPE VARCHAR(255) The request type. For example, SQL or
SQL Script.

STATUS VARCHAR(20) The request status can be one of the
following:

STARTED—The request is in the process
of starting. This status usually lasts only
a short time.

WAITING—The request is waiting for
enough system resources to start
running.

RUNNING—The request is currently
executing.

READY—The request has completed
execution and results are available.

CLOSING—The request is in the process
of closing. This status usually lasts only
a short time.

SUCCESS—The request was completed

TIBCO® Data Virtualization Reference Guide

586 | TDV and Business Directory System Tables

Column TDV
JDBC Data
Type

Nullable Description

successfully.

FAILED—The request failed.

TERMINATED—The request was terminated.

DESCRIPTION VARCHAR(65535) The request’s source, or a description
of what was called.

START_TIME TIMESTAMP The time when the request started.

END_TIME TIMESTAMP The time when the request ended.
NULL if it is still running.

TOTAL_DURATION BIGINT The number of milliseconds the request
required to execute.

SERVER_
DURATION

BIGINT The number of milliseconds of server-
side time that elapsed during request
execution.

ROWS_AFFECTED BIGINT The number of rows affected by the
request. For SQL SELECT statements, this
is the number of rows read. For other
requests, this is the number of rows
modified. A value of -1 indicates that
the number is not known.

MAX_MEMORY BIGINT Yes The maximum amount of memory
reserved by the request during
execution.

MAX_DISK BIGINT Yes The maximum amount of disk used by
the request during execution.

CURRENT_ BIGINT The current amount of memory

TIBCO® Data Virtualization Reference Guide

587 | TDV and Business Directory System Tables

Column TDV
JDBC Data
Type

Nullable Description

MEMORY reserved by the request.

CURRENT_DISK BIGINT Yes The current amount of disk in use by
the request.

MESSAGE VARCHAR(65535) Yes A message that is usually set on failure
to provide additional information. NULL
if no message is available.

MAX_USED_
MEMORY

BIGINT The maximum amount of memory used
by the request during execution.

CURRENT_USED_
MEMORY

BIGINT The current amount of memory in use
by the request.

PROCEDURE_ID INTEGER Identifier of the procedure.

SYS_RESOURCE_SETS
The SYS_RESOURCE_SETS system table provides a list of resource set definitions.

Users see no rows unless they have ACCESS_TOOLS right. If they have this right, they see
all rows.

Note: Unlike most system tables, this table is under /system/deployment in the Studio
resource tree.

Column TDV
JDBC Data Type

Nullable Description

RESOURCE_
SET_NAME

VARCHAR(255) Name of the resource set.

TIBCO® Data Virtualization Reference Guide

588 | TDV and Business Directory System Tables

Column TDV
JDBC Data Type

Nullable Description

SITE_NAME VARCHAR(255) Name of the site.

DEFINITION LONGVARCHAR JSON string defining the resource
set.

ANNOTATION VARCHAR
(2147483647)

 Annotation.

STATUS VARCHAR
(2147483647)

 Impact status of the resource set.

OWNER VARCHAR
(2147483647)

 Owner of the resource set.

CREATE_TIME BIGINT Resource set creation time.

MODIFY_TIME BIGINT Time of last resource set
modification.

MODIFY_USER VARCHAR
(2147483647)

 Name of last person to modify the
resource set.

SYS_SESSIONS
The SYS_SESSIONS system table provides a list of current and recent sessions and their
current status.

Users see no rows unless they have the ACCESS_TOOLS right. If they have this right, they
see rows for all sessions they own. Users with both ACCESS_TOOLS and READ_ALL_STATUS
rights see all rows.

TIBCO® Data Virtualization Reference Guide

589 | TDV and Business Directory System Tables

Column TDV
JDBC Data Type

Nullable Description

SESSION_ID BIGINT Unique session ID.

OWNER_ID INTEGER The ID of the user logged into this
session.

OWNER VARCHAR(255) The name of the user logged into this
session.

SESSION_TYPE VARCHAR(20) The session type can be one of the
following:

HTTP—A web services client.

INTERNAL—A session started within the
server.

JDBC—A JDBC client.

ODBC—An ODBC client.

STUDIO—The Studio tool.

SESSION_NAME VARCHAR(255) Yes The name of the session. NULL if not
provided by the client.

HOST VARCHAR(255) Yes The host the client is connecting from.
NULL for INTERNAL sessions.

DATASOURCE_ID INTEGER Yes The data service ID the client is
connecting on. NULL if no data service
is in use.

LOGIN_TIME TIMESTAMP The time at which the session started.

LOGOUT_TIME TIMESTAMP Yes The time at which the session ended.
NULL if the session is still active.

STATUS VARCHAR(20) The session status can be one of the

TIBCO® Data Virtualization Reference Guide

590 | TDV and Business Directory System Tables

Column TDV
JDBC Data Type

Nullable Description

following:

ACTIVE—The session is still active.

CLOSED—The session was closed in an
orderly fashion.

DISCONNECTED—The session was
disconnected.

TERMINATED—The session was
terminated.

TIMED_OUT—The session timed out.

IDLE_DURATION BIGINT The number of milliseconds the
session has been idle.

TIMEOUT_
DURATION

BIGINT The number of milliseconds after
which the session will time out.

TOTAL_REQUESTS INTEGER The number of requests created on
this session.

ACTIVE_
REQUESTS

INTEGER The number of requests open on this
session.

TOTAL_
TRANSACTIONS

INTEGER The number of transactions created on
this session.

ACTIVE_
TRANSACTIONS

INTEGER The number of transactions open on
this session.

BYTES_TO_
CLIENT

BIGINT The estimated number of bytes sent to
the client.

BYTES_FROM_
CLIENT

BIGINT The estimated number of bytes
received from the client.

TIBCO® Data Virtualization Reference Guide

591 | TDV and Business Directory System Tables

SYS_SITES
The SYS_SITES system table provides a list of site definitions.

Users see no rows unless they have the ACCESS_TOOLS right. If they have this right, they
see all rows.

Note: Unlike most system tables, this table is under /system/deployment in the Studio
resource tree.

Column TDV
JDBC Data Type

Nullable Description

SITE_NAME VARCHAR(255) Name of the site.

HOST_NAME VARCHAR(255) Name of the site host.

PORT INTEGER Host port through which to connect to
the site.

DOMAIN VARCHAR(255) Domain of the user who can log in to the
site host.

USER_NAME VARCHAR(255) Name of the user who can log in to the
site host.

ANNOTATION VARCHAR
(2147483647)

 Notes about the site.

STATUS VARCHAR
(2147483647)

 Impact status.

MODIFY_TIME TIMESTAMP Time of last plan modification.

OFFLINE BOOLEAN Whether the site is offline (0) or online
(1). (BD only.)

TIBCO® Data Virtualization Reference Guide

592 | TDV and Business Directory System Tables

SYS_STATISTICS
The SYS_STATISTICS system table provides a list of current and recent sessions and their
current status.

Users see no rows unless they have the ACCESS_TOOLS right. If they have this right, they
see rows for all resources for which they have READ privilege. Users with both ACCESS_
TOOLS and READ_ALL_STATUS rights can see all rows.

Column TDV JDBC Data
Type

Nullable Description

RESOURCE_ID INTEGER The resource ID.

RESOURCE_NAME VARCHAR(255) The resource name.

RESOURCE_TYPE VARCHAR(255) The resource type. Can be TABLE
or DATASOURCE.

OWNER_ID INTEGER Owner’s user ID.

OWNER VARCHAR(255) Owner’s name.

PARENT_PATH VARCHAR(255) Path to the folder that contains
the resource.

IS_ENABLED VARCHAR(20) Indicates if statistics data will be
used. Can be true or false.

STATUS VARCHAR(20) Statistics status: STALE, NOT_
LOADED, FAILED, UNKNOWN, or
UP.

LAST_REFRESH_END TIMESTAMP The time the last gather process
finished.

LAST_SUCCESS_END TIMESTAMP The last time gather process
finished successfully.

LAST_FAIL_END TIMESTAMP The last time gather process

TIBCO® Data Virtualization Reference Guide

593 | TDV and Business Directory System Tables

Column TDV JDBC Data
Type

Nullable Description

finished with an error.

LAST_SUCCESS_
DURATION

BIGINT Elapsed time (in milliseconds) of
the last successful statistics
gather process.

LAST_FAIL_DURATION BIGINT Elapsed time (in milliseconds) of
the last failed statistics gather
process.

NUM_SUCCESS INTEGER Number of times stats data was
successfully refreshed since last
server start.

NUM_FAIL INTEGER Number of times statistics data
failed to refresh since the last
time the server started.

MESSAGE VARCHAR(255) Message that provides additional
information for some status
types.

CURRENT_REFRESH_
START

TIMESTAMP Yes The time currently running stats
gather process started. NULL if
not currently running.

CURRENT_DURATION BIGINT Yes Elapsed time of currently running
stats gather process. NULL if not
currently running.

SYS_TASKS
The SYS_TASKS system table provides a list of all tasks running in the system. Users see no
rows unless they have the ACCESS_TOOLS right. Users with this right can see all rows.

TIBCO® Data Virtualization Reference Guide

594 | TDV and Business Directory System Tables

Column TDV JDBC Data
Type

Nullable Description

TASK_ID BIGINT Task identifier.

TASK_CATEGORY VARCHAR(60) No Task category.

TASK_TYPE VARCHAR(255) No Task type.

NAME VARCHAR
(16777215)

 Task name.

RESOURCE_IDS VARCHAR
(16777215)

 Comma-separated list of
identifiers of resources
involved.

FROM_RESOURCE_IDS VARCHAR
(16777215)

 Comma-separated list of
identifiers of “from” resources
involved.

TO_RESOURCE_IDS VARCHAR
(16777215)

 Comma-separated list of
identifiers of “to” resources
involved.

PARENT_TASK_ID BIGINT Parent task identifier.

DEPENDENT_TASK_IDS VARCHAR
(16777215)

 Dependent task identifiers.

STATUS VARCHAR(60) No The status of the task.

START_TIME TIMESTAMP Time when the task started.

END_TIME TIMESTAMP Time when the task ended.

DURATION BIGINT Total processing time, in
milliseconds.

SCAN_ID INTEGER ID for associated groups of

TIBCO® Data Virtualization Reference Guide

595 | TDV and Business Directory System Tables

Column TDV JDBC Data
Type

Nullable Description

tasks.

PROCESSING_TIME_
REMAINING

BIGINT Time remaining to execute this
task.

TOTAL_TIME_
REMAINING

BIGINT Time remaining to execute a
parent task and all of its
offspring.

ROWS_PROCESSED BIGINT Yes Number of table rows already
processed.

OWNER_ID INTEGER ID of the user who created the
task.

OWNER VARCHAR(255) Name of the user who created
the task.

ERROR_CODE INTEGER Yes Error code if task failed.

ERROR_MESSAGE VARCHAR
(16777215)

Yes Error message if task failed.

FLAGS INTEGER For internal use only.

CID INTEGER For internal use only.

CLEARED BIT Yes Blocks display of this task in
user interface.

SYS_TRANSACTIONS
The SYS_TRANSACTIONS system table provides a list of current and recent transactions
and their current status.

TIBCO® Data Virtualization Reference Guide

596 | TDV and Business Directory System Tables

Users see no rows unless they have the ACCESS_TOOLS right. If they have this right, they
see rows for all transactions they own. Users with both ACCESS_TOOLS and READ_ALL_
STATUS rights can see all rows.

Column TDV JDBC Data
Type

Nullable Description

TRANSACTION_ID BIGINT The unique ID for the transaction to
which this log entry applies.

SESSION_ID BIGINT The transaction’s session ID.

OWNER_ID INTEGER The ID of the user logged into this
session.

OWNER VARCHAR(255) The name of the user logged into
this session.

MODE VARCHAR(255) The mode of the transaction, which
can be:

AUTO—The transaction will
automatically commit or roll back at
the end of the primary request.

EXPLICIT—The transaction will not
commit or roll back until explicitly
told to do so.

STATUS VARCHAR(20) Status of the transaction, which can
be:

ACTIVE—The transaction is still being
executed.

COMMITTED—The transaction has been
committed.

ROLLED_BACK—The transaction has
been rolled back.

TERMINATED—The transaction was
terminated.

TIBCO® Data Virtualization Reference Guide

597 | TDV and Business Directory System Tables

Column TDV JDBC Data
Type

Nullable Description

START_TIME TIMESTAMP The time when the transaction was
started.

END_TIME TIMESTAMP Yes The time when the transaction
completed. NULL if it is still in
progress.

DURATION BIGINT The number of milliseconds the
transaction was running.

TOTAL_REQUESTS INTEGER The number of requests created in
the transaction.

ACTIVE_REQUESTS INTEGER The number of requests active in the
transaction.

SYS_TRANSIENT_COLUMNS
Used to hold data for the MPP engine.

Column TDV JDBC Data
Type

Nullable Description

COLUMN_ID INTEGER

COLUMN_NAME VARCHAR(255)

DATA_TYPE VARCHAR(255)

ORDINAL_POSITION INTEGER

JDBC_DATA_TYPE SMALLINT

TIBCO® Data Virtualization Reference Guide

598 | TDV and Business Directory System Tables

Column TDV JDBC Data
Type

Nullable Description

COLUMN_LENGTH INTEGER Yes

COLUMN_
PRECISION

INTEGER Yes

COLUMN_SCALE INTEGER Yes

COLUMN_RADIX INTEGER Yes

NULLABLE SMALLINT Indicates whether the column is
nullable
-0 if NULL is not allowed
-1 if NULL is allowed
- 2 if it is unknown

IS_NULLABLE VARCHAR(255) Indicates whether the column is
nullable
- YES if it is nullable
-NO if it is not nullable
-Blank string is returned if value is
not known

TABLE_ID INTEGER

TABLE_NAME VARCHAR(255)

SCHEMA_ID INTEGER Yes

SCHEMA_NAME VARCHAR(255) Yes

CATALOG_ID INTEGER Yes

CATALOG_NAME VARCHAR(255) Yes

DATASOURCE_ID INTEGER

TIBCO® Data Virtualization Reference Guide

599 | TDV and Business Directory System Tables

Column TDV JDBC Data
Type

Nullable Description

DATASOURCE_NAME VARCHAR(255)

ANNOTATION VARCHAR(65535) Yes Annotation for the column.

OWNER_ID INTEGER Identifier for the user who
created/owns the column. Same as
USER_ID in Table: ALL_USERS

CID INTEGER Commit ID

HAS_COL_PRIV SMALLINT Not used

SYS_TRANSIENT_SCHEMAS
Used to hold data for the MPP engine.

Column TDV JDBC Data
Type

Nullable Description

SCHEMA_ID INTEGER Primary key identifier of the
schema

SCHEMA_NAME VARCHAR(255)

CATALOG_ID INTEGER Yes

CATALOG_NAME VARCHAR(255) Yes

DATASOURCE_ID INTEGER

DATASOURCE_NAME VARCHAR(255)

ANNOTATION VARCHAR(65535) Yes

TIBCO® Data Virtualization Reference Guide

600 | TDV and Business Directory System Tables

Column TDV JDBC Data
Type

Nullable Description

OWNER_ID INTEGER Identifier for the user who
created/owns the column.
Same as USER_ID in Table:
ALL_USERS

CID INTEGER Commit ID

GUID VARCHAR(36) 128 bit identifier that is
practically unique

SYS_TRANSIENT_TABLES
Used to hold data for the MPP engine.

Column TDV JDBC Data
Type

Nullable Description

TABLE_ID INTEGER

TABLE_NAME VARCHAR(255)

TABLE_TYPE VARCHAR(255) The only possible value of this
column is "TABLE".

CARDINALITY INTEGER Yes Number of rows in the table
since last introspection. If the
CARDINALITY is unknown then
the value is null.

SCHEMA_ID INTEGER Yes

SCHEMA_NAME VARCHAR(255) Yes

TIBCO® Data Virtualization Reference Guide

601 | TDV and Business Directory System Tables

Column TDV JDBC Data
Type

Nullable Description

CATALOG_ID INTEGER Yes

CATALOG_NAME VARCHAR(255) Yes

DATASOURCE_ID INTEGER

DATASOURCE_NAME VARCHAR(255)

ANNOTATION Yes

OWNER_ID INTEGER

CID INTEGER Commit ID

TABLE_CREATOR_ID INTEGER

TABLE_CREATION_
TIMESTAMP

BIGINT

TABLE_MODIFIER_ID INTEGER

TABLE_
MODIFICATION_
TIMESTAMP

BIGINT Timestamp of the last
modification of this table.

GUID VARCHAR(36) 128 bit identifier that is
practically unique

SYS_TRIGGERS
The SYS_TRIGGERS system table provides a list of triggers defined in the system and their
current status.

Users see no rows unless they have the ACCESS_TOOLS right. If they have this right, they
see rows for all resources they have READ privilege to. Users with both ACCESS_TOOLS and
READ_ALL_STATUS rights can see all rows.

TIBCO® Data Virtualization Reference Guide

602 | TDV and Business Directory System Tables

Column TDV
JDBC Data
Type

Nullable Description

RESOURCE_ID INTEGER The trigger’s resource ID.

RESOURCE_
NAME

VARCHAR(255) The trigger’s resource name.

OWNER_ID INTEGER The trigger resource owner ID.

OWNER VARCHAR(255) The trigger resource owner name.

PARENT_PATH VARCHAR
(65535)

 The path of the trigger resource. Field
length: 65535.

PARENT_TYPE VARCHAR(255) The type of the trigger’s parent resource.

CONDITION_
TYPE

VARCHAR(60) The trigger’s condition type. For example,
TIMER.

ACTION_TYPE VARCHAR(60) The trigger’s action type. For example,
PROCEDURE.

STATUS VARCHAR(20) The trigger’s current status:
DISABLED—The trigger is disabled.
ACTIVE—The trigger is enabled.

LAST_TIME TIMESTAMP The most recent time the trigger fired.

LAST_SUCCESS TIMESTAMP The most recent time the trigger
succeeded.

LAST_FAIL TIMESTAMP The most recent time the trigger failed.

NUM_TOTAL INTEGER The number of times the trigger has fired.

NUM_SUCCESS INTEGER The number of times the trigger has
succeeded.

TIBCO® Data Virtualization Reference Guide

603 | TDV and Business Directory System Tables

Column TDV
JDBC Data
Type

Nullable Description

NUM_FAIL INTEGER The number of times the trigger has failed.

INITAL_TIME TIMESTAMP Yes The time the trigger was configured to first
start. NULL if not condition type TIMER.

NEXT_TIME TIMESTAMP Yes The time the trigger will next fire. NULL if
not condition type TIMER.

FREQUENCY VARCHAR(255) Yes Human-readable description of the
frequency of the trigger. NULL if not
condition type TIMER.

MESSAGE VARCHAR
(65535)

Yes A message about the trigger status that is
often set on failure. NULL if no message is
available. Field length: 65535.

TEMPTABLE_LOG
The TEMPTABLE_LOG provides a read-only view of all active temporary tables on a specific
TDV server node. TDV uses this information during a server restart to clean up any
temporary tables left behind when a server is shut down or killed during a transaction.

Users need ACCESS_TOOLS and READ_ALL_STATUS rights to see the table rows.

Column TDV JDBC Data
Type

Nullable Description

SESSION_ID BIGINT The session’s identification
number.

TABLE_PATH VARCHAR(255) Full path of the temporary table.

CREATION _ TIMESTAMP The time that the table was

TIBCO® Data Virtualization Reference Guide

604 | TDV and Business Directory System Tables

Column TDV JDBC Data
Type

Nullable Description

TIMESTAMP created.

TARGET_
DATASOURCE_PATH

VARCHAR
(2147483647)

 The data source where the temp
table data is stored.

TARGET _TABLE_
PATH

VARCHAR
(2147483647)

 The physical location of the
temporary table.

TRANSACTION_LOG
The TRANSACTION_LOG system table provides a read-only view of the transaction log,
which stores transaction states during its lifecycle in case transaction commit fails. You can
use log data to recover data manually from a transaction failure. In some cases the system
can use this data to complete an interrupted transaction.

Successful transactions are automatically removed from the log upon completion of the
commit or rollback operation. Failed transactions remain in the log.

Table view requires the ACCESS_TOOLS and READ_ALL_STATUS rights.

Column TDV JDBC
Data Type

Nullable Description

TYPE VARCHAR
(28)

 Indicates the type of transaction log entry,
which can be:

Begin transaction (manual)—
Start a transaction supporting
manual recovery.

Begin transaction (auto)—Start
a transaction supporting both
manual recovery and automatic
compensation.

TIBCO® Data Virtualization Reference Guide

605 | TDV and Business Directory System Tables

Column TDV JDBC
Data Type

Nullable Description

Execute SQL—Execute a SQL
statement.

Add work unit—Add a work unit
(an insert, update, or delete
action on a data source).

Begin commit

End commit

Fail commit

Begin rollback

End rollback

Fail rollback

Server restart

Begin work unit commit

End work unit commit

Work unit commit failure

TIBCO® Data Virtualization Reference Guide

606 | TDV and Business Directory System Tables

Column TDV JDBC
Data Type

Nullable Description

Work unit commit in doubt

Begin work unit rollback

End work unit rollback

Work unit rollback failure

Being work unit compensate

End work unit compensate

Work unit compensate failure

SERIAL BIGINT Unique serial number for the transaction
log entry.

TIMESTAMP BIGINT The time when the log entry was made, to
the millisecond.

TRANSACTION_ID BIGINT The unique ID for the transaction to which
this log entry applies.

WORK_UNIT_ID BIGINT Yes For work unit entries, this is the unique ID;
otherwise NULL.

MESSAGE BLOB Yes Contains a SQL statement for Execute SQL
and Add Work Unit. Contains the exception
message for any failure type; otherwise
NULL.

TIBCO® Data Virtualization Reference Guide

607 | TDV and Business Directory System Tables

USER_PROFILE
This table provides a list of user profiles.

Column TDV
JDBC Data
Type

Nullable Description

USER_ID INTEGER User Identifier.

USER_NAME VARCHAR Name of the user.

DOMAIN_NAME VARCHAR Domain for which the user is a
member.

ATTRIBUTE_NAME VARCHAR Profile attribute.

ATTRIBUTE_VALUE VARCHAR Profile value.

TIBCO® Data Virtualization Reference Guide

608 | TDV SQL Script

TDV SQL Script
SQL Script is TDV’s stored procedure language. It is intended for use in procedural data
integration, aggregation, and transformation. It allows conditional logic, looping, and
pipelining to be performed in the server. The TDV SQL Script language is similar to the
stored procedure languages offered by relational database management systems
(RDBMSs).

This topic provides reference to the SQL Script language with several basic examples. It
does not provide advanced-level programming tutorials.

Topics for the SQL Script language include:

• SQL Script Overview

• SQL Language Concepts

• SQL Script Procedures and Structure

• SQL Script Statement Reference

• SQL Script Examples

SQL Script Overview
A SQL Script is a procedure that employs procedure declaration, parameters, statements,
variables, data types, procedure calls, SQL keywords, dynamic SQL, conditionals, loops,
cursors (simple and streaming), exceptions, and transactions. The following lists the TDV
SQL Script keywords.

Procedure Declaration and Parameters

By default (and as required), the procedure name is the same as the name assigned to it in
the resource tree.

PROCEDURE; IN, INOUT, OUT

TIBCO® Data Virtualization Reference Guide

609 | TDV SQL Script

Procedure Call

CALL

Compound Statement

BEGIN/END

Variables

DECLARE can only follow BEGIN.

DECLARE, SET, DEFAULT

Data Types

DECLARE TYPE, BOOLEAN, ROW, XML

Path to a Resource

PATH

SQL Keywords

SELECT INTO, INSERT, UPDATE, DELETE

Dynamic SQL

EXECUTE IMMEDIATE

TIBCO® Data Virtualization Reference Guide

610 | TDV SQL Script

Conditionals

IF/THEN/ELSE, CASE/WHEN

Loops

LOOP, WHILE, REPEAT/UNTIL, FOR, ITERATE, LEAVE

Cursors

ROW, CURSOR, OPEN, CLOSE, FETCH, SELECT, PIPE (for streaming)

Exceptions

RAISE, EXCEPTION, CURRENT_EXCEPTION

Transactions

TRANSACTION, INDEPENDENT, COMMIT, ROLLBACK

SQL Language Concepts
The following sections cover the basic elements of the SQL Script language.

• Identifiers

• Data Types

• Value Expressions

• Conditional Expressions

• Literal Values

• Noncursor Variables

TIBCO® Data Virtualization Reference Guide

611 | TDV SQL Script

• Cursor Variables

• Attributes of Cursors

• Attributes of CURRENT_EXCEPTION

• SQL Script Keywords

Identifiers
An identifier is a user-defined unique name for an object in SQL Script.

• Identifiers can contain one or more characters.

• Identifiers must begin with an alphabetical character (a-z, A-Z).

• After the initial character, the following characters are valid:

— Alphanumeric characters: a-z, A-Z, 0-9

— Separators: , (comma), ; (semicolon), ' ' (pairs of single quotes)

— Special characters: _ (underscore), / (forward slash), $ (dollar sign), # (hash
symbol)

• An identifier cannot be a SQL Script keyword (see SQL Script Keywords), unless the
keyword is escaped using double quotes.

Examples of declared variables whose names are SQL Script keywords:

DECLARE "VALUE" INTEGER;

DECLARE "CURSOR" CURSOR;

Here the SQL Script keywords VALUE and CURSOR are enclosed in double quotes.

• Escaping an identifier with double quotes also allows it to contain characters that
would otherwise not be legal, such as spaces, dashes, or characters from other
languages.

Examples of declarations of variables that contain otherwise illegal characters:

DECLARE "First Name" VARCHAR(40);

TIBCO® Data Virtualization Reference Guide

612 | TDV SQL Script

DECLARE "% Returned" DOUBLE;

• An identifier can be used for a procedure name, parameter name, cursor name, field
name, variable name, cursor variable name, data type name, exception name, or
label for a block (such as BEGIN/END, LOOP, WHILE, REPEAT, FOR, LEAVE, ITERATE)

• TDV SQL Script resolves identifiers by a set of processing rules.

— Identifiers are not case-sensitive.

— Identifiers within SQL expressions are first evaluated by looking locally in the
SQL context. If an identifier is resolved within the local SQL context, the SQL
engine does not continue searching.

For example, identifier name matches in database columns in the SQL WHERE clause
take precedence over the names of local variables, procedure names, or formal
parameters.

— If the identifier is not resolved in the local context, the search proceeds to parent
contexts using the smallest prefix basis, moving outward to schema-level scope.

— The SQL context space is not case-sensitive, so differences in capitalization do
not distinguish names that match an identifier within the SQL context.

— If no matches are found, an Undeclared Identifier error is returned.

Data Types
TDV supports several data types in SQL Script:

• All of the character strings, numeric, date, time, and TIMESTAMP data types that SQL
supports, plus BLOB, CLOB, ROW, and XML. For details, see Supported Data Types.

• Custom data types. SQL Script lets you declare custom data types for convenience
and clarity. You can declare them locally or make them PUBLIC. For details, see
DECLARE TYPE.

The following guidelines apply to TDV data type support:

• References to PUBLIC types must be fully qualified. Such references are valid
anywhere the target data type is valid.

• You can use a modifier named PIPE in procedure parameter declarations to pipeline
(stream) the output. For details, see PIPE Modifier.

TIBCO® Data Virtualization Reference Guide

613 | TDV SQL Script

• After you have declared a custom data type, you can use its name anywhere in the
script that you can use a built-in type.

• A PUBLIC type in another procedure can be accessed by specifying the fully qualified
path to that procedure, followed by a period, followed by the name of the type.

Supported Data Types

The following table lists all the data types supported in SQL Scripts. All types with optional
sizes have default values, as noted.

Data Type Range or List of Values

Integer Numeric Types

BIT 0 or 1

TINYINT -128 to 127

SMALLINT -32768 to 32767

INTEGER -231 to +231 - 1

INT An alias for INTEGER

BIGINT -263 to +263 - 1

Non-integer Numeric Types

FLOAT Approximately 7-digit-precision floating point

REAL An alias for FLOAT

DOUBLE Approximately 17-digit-precision floating point

DECIMAL[(p,s)] Fixed precision number with up to p (precision) digits total
and up to s (scale) digits to the right of the decimal point.
Default: DECIMAL(32,2).

TIBCO® Data Virtualization Reference Guide

614 | TDV SQL Script

Data Type Range or List of Values

NUMERIC[(p,s)] Same as DECIMAL, except default is NUMERIC(32,0)

Date and Time Types

DATE

TIME

TIMESTAMP

String and Binary Types

CHAR[(n)] Character string of exactly n characters, padded with spaces.
Default for n: 255.

VARCHAR[(n)]

Also, CLOB

Unpadded character string of up to n characters. Default for
n: 255.

BINARY[(n)] Binary string of exactly n bytes, right-padded as necessary
with bytes of zeroes. Default for n: 255.

VARBINARY(n)
Also, BLOB

Unpadded binary string of up to n bytes. Default for n: 255.

Other Types

BOOLEAN A value of TRUE or FALSE. (‘BOOLEAN’ is not a valid value.)

CURSOR An untyped cursor (because no list of fields is provided)

CURSOR(...) A cursor defined as a set of fields (‘columns’)

CURSOR(rowType) A CURSOR declared by referencing a ROW type (instead of
specifying fields directly)

ROW(...) A set of fields (also called ‘columns’)

TIBCO® Data Virtualization Reference Guide

615 | TDV SQL Script

Data Type Range or List of Values

XML [(
{ DOCUMENT | CONTENT
| SEQUENCE }
[(ANY | UNTYPED |
XMLSCHEMA schema-
details)]
)]

schema-details:

URI target-namespace-
uri
[LOCATION schema-
location]
[{ ELEMENT element-
name
| NAMESPACE
namespace-uri
[ELEMENT element-
name] }]

| NO NAMESPACE
[LOCATION schema-
location]
[{ ELEMENT element-
name
| NAMESPACE
namespace-uri
[ELEMENT element-
name] }]

An XMLvalue. Default: ‘No Schema.’

• target-namespace-uri: a string literal that represents
a valid URI

• schema-location: a string literal that represents a
valid URI

• namespace-uri: a string literal that represents a valid
URI

• element-name: any valid identifier

Example (Declaring a Custom Data Type)

You can declare a custom data type in SQL Script for later referencing:

DECLARE TYPE SocialSecurityType VARCHAR(12);

DECLARE ssn SocialSecurityType;

TIBCO® Data Virtualization Reference Guide

616 | TDV SQL Script

DECLARE data ROW (name VARCHAR(40), ssn SocialSecurityType);

Example (Referencing a Custom Data Type)

If you have declared a custom data type in SQL Script named SocialSecurityType in a
procedure named TypeSample in the folder /shared/examples, you can reference the type
as follows:

DECLARE ssn /shared/examples/TypeSample.SocialSecurityType;

Example (XML Data Type)

You can declare an XML data type in SQL Script as follows:

cast ('<item> </item>' as XML (SEQUENCE))

cast('<bar></bar>' as XML(SEQUENCE(ANY)))

PROCEDURE item()

BEGIN

DECLARE item
XML (SEQUENCE (XMLSCHEMA URI LOCATION 'http://www.w3.org/2001/
XMLSchema-instance' [^] ELEMENT xsi));

END

Value Expressions
A value expression in a SQL Script is anything that resolves to a value.

TIBCO® Data Virtualization Reference Guide

617 | TDV SQL Script

Syntax

The syntax for a value expression is identical to a projection in a SELECT statement, except
that instead of using column names you can use variable names in a value expression.

Remarks
• Cursor variables cannot be used in a value expression by themselves, although

attributes of cursor variables can be used. See DECLARE CURSOR of Type Variable
for information on declaring cursor variables, and Attributes of Cursors for
information on cursor attributes.

• The keyword CURRENT_EXCEPTION cannot be used in a value expression by itself,
although attributes of it can be used. For details, see Attributes of CURRENT_
EXCEPTION.

Errors

The following table describes the errors that can occur while resolving a value expression.

Error Message Cause

Undefined variable An identifier is encountered that is not defined in the
current scope.

Incorrect use of a cursor A cursor is used in a value expression.

Incorrect use of CURRENT_
EXCEPTION

The keyword CURRENT_EXCEPTION is used in a value
expression.

Conditional Expressions
A conditional expression in a SQL Script is anything that resolves to a boolean value.

Syntax

The syntax for a conditional expression is identical to what you can use as a WHERE clause,
except that instead of using column names you use variable names in a conditional

TIBCO® Data Virtualization Reference Guide

618 | TDV SQL Script

expression.

Remarks
• Cursor variables can be used in a conditional expression only with the keyword IS

NULL or IS NOT NULL. Cursor variables cannot be used in other conditional
expressions, although attributes of cursor variables can be used. See DECLARE
CURSOR of Type Variable, for information on declaring cursor variables, and
Attributes of Cursors, for information on cursor attributes.

• A boolean variable or literal can be used as a condition. See Literal Values, for
information on declaring literals.

• The keyword CURRENT_EXCEPTION cannot be used in a conditional expression by
itself, although attributes of it can be used. For details, see Attributes of CURRENT_
EXCEPTION.

Errors

The following table describes the errors that can occur while resolving a conditional
expression.

Error Message Cause

Undefined variable An identifier is encountered that is not defined in the current
scope.

Incorrect use of a cursor A cursor is used in a conditional expression with something
other than IS NULL or IS NOT NULL.

Incorrect use of
CURRENT_EXCEPTION

The keyword CURRENT_EXCEPTION is used in a conditional
expression.

Literal Values
A SQL Script can contain any literal value that is valid in SQL, plus type ROW or XML (which
need to be defined).

TIBCO® Data Virtualization Reference Guide

619 | TDV SQL Script

Syntax (ROW-Type Literal Value)

ROW(<valueExpression>, …)

Syntax (XML-Type Literal Value)

There is no literal format for an XML type. Use the following syntax to create an XML type.

CAST ('xml_string' AS XML)

Remarks
• The symbols TRUE and FALSE are reserved for use as literal boolean values.

• Literal values are delimited by single quotes ('string'). To specify an apostrophe
within a string, use two apostrophes in a row ('').

• There is no literal format for a cursor type. For details, see DECLARE CURSOR of Type
Variable.

Noncursor Variables
Noncursor variables in SQL Script are expressions or other elements that resolve to single
values. You can define a noncursor variable by specifying its name and data type.

Syntax

DECLARE <varName>[,…] <dataType>

[DEFAULT <valueExpression>]

Remarks
• The DEFAULT syntax is optional. It is used to initialize a variable.

• Any variable that is not initialized with a DEFAULT clause has the value NULL.

TIBCO® Data Virtualization Reference Guide

620 | TDV SQL Script

• Variables can be used in SQL Script expressions anywhere a literal value is valid. For
example, both 1 + 1 and x + y are valid expressions (assuming x and y are declared
variables).

• Variables in SQL Scripts are subject to scoping rules.

• A variable can be declared within a block that has the same name as a variable in a
parent block. Parameters are treated as if they were defined in the main block of the
procedure.

• String-type variables are delimited by single quotes ('string'). To specify an
apostrophe within a string, use two apostrophes in a row ('').

• You can declare variables, parameters, and column definitions that are of type BLOB
or CLOB.

• You can declare multiple variables at one time, provided all the variables are of the
same data type and each has a unique name.

• The <valueExpression> can use IN parameters, previously declared variables in this
block, and any variables in parent blocks. In the current block, the value expression
cannot use variables that are defined later. If the value expression’s type does not
match the variable’s type, an implicit cast is performed (if possible). For information
about IN parameters, see SQL Script Procedure Header.

• If the evaluation of the value expression causes an exception, any other declared
variables that have not yet been initialized are set to NULL before entering the
exception handler.

Examples

PROCEDURE p ()

BEGIN

 DECLARE a INTEGER;

 DECLARE b DATE;

 DECLARE c TIME;

TIBCO® Data Virtualization Reference Guide

621 | TDV SQL Script

 DECLARE d TIMESTAMP;

 DECLARE e DECIMAL;

 DECLARE f FLOAT;

 DECLARE g VARCHAR;

 DECLARE h CHAR;

END

PROCEDURE p ()

BEGIN

 DECLARE x INTEGER;

 SET x = 1;

 DECLARE x INTEGER; --illegal

END

Cursor Variables
Cursor variables in SQL Script are expressions or other elements that resolve to cursors.
You can define a cursor variable by providing a unique name and optionally specifying its
data type, as described in DECLARE CURSOR of Type Variable.

TIBCO® Data Virtualization Reference Guide

622 | TDV SQL Script

Syntax

DECLARE <varName> CURSOR

[<dataType>]

Remarks
• The optional <dataType> can be a named ROW data type, or the syntax for a ROW

data type.

• The syntax for a ROW data type is: <colName> <dataType> [,…].

• There are no attributes on a ROW variable.

• You access a row using rowVar.columnName to get a column.

• When declared, cursor variables are initialized to NULL. They cannot be initialized to
any other value at declaration.

• A cursor variable with a type can be assigned from any cursor with the same ROW
type, or to any cursor variable with the same ROW type.

• A cursor variable without a type can be assigned from any cursor, or to any cursor.
Assigning to a typed cursor forces a run-time schema match comparison and raises
an exception on a mismatch.

• Assigning a cursor creates a reference to the original cursor’s state. This means that
opening, closing, or fetching from the original cursor or the variable has the same
effect, and alters what the other would see.

• For further information, see Attributes of Cursors, OPEN, FETCH, and CLOSE.

Attributes of Cursors
You can obtain the attributes of a cursor in SQL Script. See DECLARE CURSOR of Type
Variable, OPEN, FETCH, and CLOSE for details about cursors.

TIBCO® Data Virtualization Reference Guide

623 | TDV SQL Script

Syntax

<cursor>.<attribute>

Remarks

The following table describes cursor attributes

Attribute Description

ISOPEN A boolean that indicates whether the cursor is open
or not.

ROWTYPE The ROW data type for the cursor. NULL for an
untyped cursor.

ROWCOUNT Number of rows fetched from the cursor if it is open.
NULL if it is not open.

FOUND A boolean that is true if the last fetch from the cursor
found a row. NULL if not open, or open and not
fetched from.

Example

The following example returns the nth value of a cursor of VARCHARs.

PROCEDURE nth (IN n INTEGER, IN crs CURSOR(name VARCHAR), OUT name
VARCHAR)

a_lab:

BEGIN

IF NOT crs.ISOPEN THEN

TIBCO® Data Virtualization Reference Guide

624 | TDV SQL Script

OPEN crs;

END IF;

LOOP

FETCH crs INTO name;

IF NOT crs.FOUND OR nth >=crs.ROWCOUNT THEN

LEAVE a_lab;

END IF;

END LOOP;

CLOSE crs;

END

The following example makes use of the ROWTYPE attribute:

CURSOR m1 IS

 SELECT last_name, hire_date, job_id

 FROM employees

 WHERE employee_id = 5446;

 employee_rec m1%ROWTYPE;

TIBCO® Data Virtualization Reference Guide

625 | TDV SQL Script

BEGIN

 OPEN m1;

 FETCH m1 INTO employee_rec;

 DBMS_OUTPUT.PUT_LINE('Employee name: ' || employee_rec.last_name);

END;

Attributes of CURRENT_EXCEPTION
In SQL Script, you can obtain the attributes of an exception while within the exception
handler.

For details, also see:

• SQL Script Exceptions

• Raising and Handling Exceptions

• External Exceptions

• DECLARE EXCEPTION

Syntax

CURRENT_EXCEPTION.<attribute>

Remarks

The following table describes cursor exception attributes.

TIBCO® Data Virtualization Reference Guide

626 | TDV SQL Script

Attribute Description

NAME A string that is the exception’s name. This name is fully qualified, as follows:

/ns1/ns2/procedure.s1.s2.exceptionName

The ns1 and ns2 are namespace elements of the path. The s1 and s2 are
compound statement blocks and are either named according to the label on
that block or as unnamed# where # is an integer value.

ID An integer that is the exception’s system ID. All user exceptions have the ID -
1 (negative one). System exceptions all have unique IDs.

MESSAGE The VARCHAR(255) value defined for the current exception. If no value is
defined for the exception, then this attribute is NULL.

TRACE The VARCHAR(32768) value defined contains the exception stack trace as a
string.

If the exception handler includes a compound statement, CURRENT_EXCEPTION within the
BEGIN portion refers to the current exception of the parent scope, but within the exception
handler portion of the child scope CURRENT_EXCEPTION refers to the local exception and
there is no way to access the parent exception. For details, see Compound Statements.

Example

PROCEDURE p (IN x INTEGER, OUT result VARCHAR)

BEGIN

 CALL /shared/f(x);

EXCEPTION

 ELSE

 IF CURRENT_EXCEPTION.MESSAGE IS NOT NULL THEN

TIBCO® Data Virtualization Reference Guide

627 | TDV SQL Script

 SET result = CURRENT_EXCEPTION.MESSAGE;

 ELSE

 SET result = CURRENT_EXCEPTION.NAME;

 END

END

MESSAGE: 'x must be > 0. x = -123'

NAME: '/shared/f.illegal_arg_ex'

SQL Script Exceptions

The following is a list of SQL Script exceptions that can be thrown. The message that is
passed is left to the author of the SQL Script.

Exception Message Description

CannotExecuteSelectException An attempt is made to execute a SELECT statement.
SELECT statements are opened, not executed.
INSERT, UPDATE, and DELETE statements are
executed.

CannotOpenCursorException An attempt is made to open a cursor that is either a
NULL reference variable, or is a cursor that is not
defined within the current procedure that has
already been closed.

CannotOpenNonSelectException An attempt is made to open an INSERT, UPDATE, or
DELETE statement. INSERT, UPDATE, and DELETE
statements are executed, not opened. SELECT

TIBCO® Data Virtualization Reference Guide

628 | TDV SQL Script

Exception Message Description

statements are opened.

CursorAlreadyOpenException An attempt is made to open a cursor that is already
open.

CursorNotOpenException An attempt is made to fetch from or to close a cursor
that is closed, or to insert into or close a PIPE that is
closed.

CursorTypeMismatchException An attempt is made to open a cursor using dynamic
SQL and the projections from the SQL do not match
the cursor’s type definition.

DuplicateNameException An attempt is made to name something and that
name is already in use.

EvaluationException An error is encountered evaluating an expression.

IllegalArgumentException An argument is passed into a procedure with an
illegal value.

IllegalStateException A procedure cannot perform its task due to some
unexpected state.

NotAllowedException An attempt is made to perform a task that is not
allowed due to policy restrictions or other
limitations.

NotFoundException An attempt is made to use a resource or other item
that does not exist.

NotSupportedException An attempt is made to use a feature that is not
supported.

NullVariableException An attempt is made to access a data member of a
NULL variable. For example, to access a data
member of a ROW variable that is currently NULL.

TIBCO® Data Virtualization Reference Guide

629 | TDV SQL Script

Exception Message Description

ParseException A dynamic SQL statement fails to parse or resolve
correctly. This can be due to a syntax error or a
reference to a nonexistent column, table, procedure,
or function.

PipeNotOpenException An attempt is made to insert into or to close a PIPE
that is already closed.

ProcedureClosedException A procedure is closed forcibly by the system due to
being aborted by the caller or an administrator.

ProtocolException A task fails due to a processing error on a data
protocol.

SecurityException An attempt is made to perform an action without
proper privileges.

SystemException A general failure in the runtime is encountered

TransactionClosedException An attempt is made to perform a transactional task
(such as fetching from a cursor) after the transaction
has been committed or rolled back.

TransactionFailureException A transaction failure occurs.

UnexpectedRowCountException A cursor has an unexpected number of rows
returned. For example, the SELECT INTO statement
requires the cursor to return exactly one row.

UnopenedCursorReturnedException An unopened cursor is returned from a procedure.
Cursors must be NULL or be open when returned.

SOAPFaultException A SOAP Fault is returned from a Web service.

SQL Script Keywords
SQL Script keywords are the character strings that SQL Script treats as reserved words.

TIBCO® Data Virtualization Reference Guide

630 | TDV SQL Script

Note: TDV does not treat all SQL-99 reserved words as SQL Script keywords.

SQL Script keywords are not case-sensitive. However, TDV documentation uses uppercase
letters to distinguish keywords from other words.

Although it is not recommended, you can use SQL Script keywords in roles other than their
intended syntax, as long as you set them off in double quotes. For example:

SELECT "BEGIN" INTO ...

The following table lists the SQL Script keywords.

SQL Script Keywords

AS BEGIN CALL CASE

CAST CLOSE COMMIT CREATE

DROP CURRENT_
EXCEPTION

CURSOR DO

DECLARE DEFAULT DELETE ELSE

ELSE IF END EXCEPTION EXECUTE

FALSE FETCH FOR IF

IMMEDIATE IN INDEPENDENT INOUT

INSERT INTO INTO ITERATE LEAVE

LOOP OPEN OUT PIPE

PROCEDURE PUBLIC RAISE REPEAT

ROLLBACK ROW SELECT SET

THEN TRANSACTION TRUE TRUNCATE

TYPE UNTIL UPDATE VALUE

TIBCO® Data Virtualization Reference Guide

631 | TDV SQL Script

SQL Script Keywords

WHEN WHILE

SQL Script Procedures and Structure
The following sections cover the syntactic details of a procedure.

• Basic Structure of a SQL Script Procedure

• SQL Script Procedure Header

• Compound Statements

• Independent Transactions

• Compensating Transactions

• Exceptions

Basic Structure of a SQL Script Procedure
The basic structure of a SQL Script procedure begins with the word PROCEDURE, followed by
the name of the procedure, an open parenthesis, and a closed parenthesis. Next is a block
that begins with the word BEGIN and ends with the word END. The code for the procedure is
placed between the BEGIN and END statements.

Syntax

PROCEDURE myProcedure()

 BEGIN

 -- Add your code here

 END

TIBCO® Data Virtualization Reference Guide

632 | TDV SQL Script

Commenting SQL Script Code

A line that begins with two dashes (--) is a comment (annotation) line. Comment lines are
not executed.

Another way of commenting, similar to the style followed in Java programming, is shown
in the following example:

PROCEDURE myProc2()

 BEGIN

 /*

 * This is a multiline comment

 */

 DECLARE x INTEGER; -- This is a comment

 CALL /shared/procedures/aProcedure(x /* param1*/);

 END

SQL Script Statement Delimiter

The statement delimiter is a semicolon (;).

SQL Script Procedure Header
A procedure declaration in SQL Script defines the input parameters and output parameters
of the procedure. To call a procedure, see CALL.

TIBCO® Data Virtualization Reference Guide

633 | TDV SQL Script

Syntax

PROCEDURE <procedureName> ([<parameterList>])]

 <statement>

The parentheses in the procedure’s syntax are optional. If there are parentheses, they can
be empty or they can contain a list of parameters.

Remarks
• A parameter list (<paramList>) is a comma-separated list of parameters of the form:

{ IN | INOUT | OUT } <parameterName> <dataType>

• The data type of a parameter (<dataType>) can be any type listed in Data Types,
except ROW.

• You can use any PUBLIC data type defined in the main compound statement within
the procedure declaration (indicated by <compoundStatement> in the syntax for a
procedure). This way a parameter can be defined to be of a named type instead of
always being primitive.

Examples

PROCEDURE init_table (IN employee_id INTEGER)

 BEGIN

 INSERT INTO T (empid) VALUES (employee_id);

 END

PROCEDURE cur_month (OUT x INTEGER)

TIBCO® Data Virtualization Reference Guide

634 | TDV SQL Script

 BEGIN

 SET x = MONTH (CURRENT_DATE());

 END

PROCEDURE inc (INOUT x INTEGER)

 BEGIN

 SET x = x + 1;

 END

PROCEDURE inc (IN x INTEGER)

 BEGIN

 SET x = 5; -- Error

 END

PIPE Modifier

A modifier named PIPE is used in SQL Script for streaming a cursor. It can be used only in
procedure parameter declarations, and its purpose is to pipeline the output.

Syntax

IN <parameterName> PIPE <cursorDataType>

TIBCO® Data Virtualization Reference Guide

635 | TDV SQL Script

OUT <parameterName> PIPE <cursorDataType>

Remarks
• The PIPE modifier can be applied to any IN or OUT cursor data type.

• The PIPE modifier cannot be used on INOUT parameters or on any noncursor data
type.

• An IN parameter with the PIPE modifier can be passed any PIPE variable that comes
from an IN or OUT parameter of the current procedure.

• An OUT parameter with the PIPE modifier must be passed a cursor variable with the
same schema as the PIPE.

• Within a PROCEDURE, a PIPE variable (either IN or OUT) can be used in INSERT
statements. For details, see INSERT.

• Procedures with a PIPE modifier on an IN parameter do not run in a separate thread.

• Any procedure with the PIPE modifier on an OUT parameter runs in a separate
thread. The calling procedure continues execution as soon as the pipelined
procedure begins execution. The calling procedure finds the OUT cursor already
initialized, and opens the cursor and can fetch from it. (For details, see FETCH.) If the
calling procedure accesses any non-PIPE OUT parameter, however, the calling
procedure blocks until the pipelined procedure ends execution. This is because the
final values of non-PIPE outputs are not known until the procedure completes.

• A PIPE modifier can be in an INSERT statement within an EXECUTE IMMEDIATE
statement.

Example

The following procedure returns a cursor with all of the names reversed.

PROCEDURE reverse_all (OUT result PIPE (rev_name VARCHAR))

BEGIN

DECLARE c CURSOR FOR SELECT name FROM /shared/T;

TIBCO® Data Virtualization Reference Guide

636 | TDV SQL Script

DECLARE name VARCHAR;

OPEN c;

REPEAT

FETCH c INTO name;

CALL /shared/reverse(name, name);

INSERT INTO result (rev_name) VALUES (name);

UNTIL NOT c.FOUND

END REPEAT;

END

Compound Statements
A compound statement in SQL Script has multiple statements within a BEGIN-END pair. A
compound statement must end with a semicolon if it is not the root statement.

Syntax

[<label>:]

BEGIN

 [<transactionSpecification>]

TIBCO® Data Virtualization Reference Guide

637 | TDV SQL Script

 [<declaration>; …]

 [<statement>; …]

 [<exceptionBlock>]

END [<label>]

Remarks
• The label is for use with the LEAVE statement defined in LEAVE.

• The label is an optional identifier used to name the block. The root BEGIN statement
(the one directly following the PROCEDURE declaration) can have (be preceded by) a
label.

• When BEGIN is present, END is optional. If BEGIN is not present, it is illegal to have an END
label. If both BEGIN and END are present, both must have the same identifier.

• A compound statement can be empty.

Example

PROCEDURE init_table()

BEGIN

 DELETE FROM T;

 INSERT INTO T DEFAULT VALUEs;

END

TIBCO® Data Virtualization Reference Guide

638 | TDV SQL Script

Independent Transactions
An independent transaction in SQL Script is a set of work that can be rolled back or
committed on its own, regardless of what happens to the main transaction.

Syntax

INDEPENDENT [<option> …] TRANSACTION

Remarks
• Options (<option> ...) are not case-sensitive.

• The following table describes the option flags for an independent transaction.

Option Flag Significance

ROLLBACK_ON_
FAILURE |
BEST_EFFORT

This pair of flags indicates whether the transaction should be rolled
back if a failure occurs during COMMIT (ROLLBACK_ON_FAILURE, the
default) or not (BEST_EFFORT). You cannot set both of these flags at
the same time.

With ROLLBACK_ON_FAILURE, failure to commit any part of the
transaction causes uncommitted parts to be discarded, and causes
already committed parts to be compensated (according to the
COMPENSATE/NOCOMPENSATE option).

With BEST_EFFORT, even if one part of the transaction cannot be
committed, as many other parts as possible are still committed. The
failed parts are logged.

COMPENSATE |
NOCOMPENSATE

This pair of flags indicates whether the compensation blocks should
be run if the transaction rolls back (COMPENSATE, the default) or
not (NOCOMPENSATE). You cannot set both of these flags at the
same time.

NOCOMPENSATE improves performance at the risk of compensation.
However, setting this to COMPENSATE has no performance cost
unless you define a compensation block.

TIBCO® Data Virtualization Reference Guide

639 | TDV SQL Script

Option Flag Significance

IGNORE_
INTERRUPT |

LOG_INTERRUPT |

FAIL_INTERRUPT

This group of flags indicates what the system should do if the server
goes down or is interrupted when the transaction commit is
partially complete. You cannot set more than one of these flags at a
time.

• IGNORE_INTERRUPT (the default) causes the server to take
no special action on restart.

• LOG_INTERRUPT causes the server to store basic transaction
information before beginning to commit so that on restart it
can detect any transactions in progress and log their failure.
This option requires two meta-commits per transaction (start
and stop).

• FAIL_INTERRUPT causes the server to store enough
information to perform the requested failure model upon
server startup for any in-progress transactions. This option is
expensive, because it requests meta-commits for start of
transaction, for end of transaction, and between each pair of
sources it commits to.

• The BEGIN statement can be followed by a transaction specifier. (See Compound
Statements for information on using BEGIN in a compound statement.) If there is no
specifier, the block runs within its parent’s transaction, and any work it performs is
part of the parent transaction.

• When a compound statement is declared as having an independent transaction, all
actions in that scope are part of the transaction. See Compound Statements for
information on declaring a compound statement.

• Calling COMMIT is recommended but not required. See COMMIT.

• A normal exit from the scope commits the transaction.

• Exiting the scope through an unhandled exception causes a transaction rollback.

• Exiting through any handled exception does not implicitly roll back the transaction.
You must explicitly roll back the transaction if that is what you want. See ROLLBACK.

Example

You can use the BEST_EFFORT and NOCOMPENSATE options as follows in SQL Script:

TIBCO® Data Virtualization Reference Guide

640 | TDV SQL Script

PROCEDURE myProcedure ()

BEGIN INDEPENDENT BEST_EFFORT NOCOMPENSATE TRANSACTION

 -- Add your code here

END

Error

The following table describes the error that can occur while resolving a transaction.

Error Message Cause

Conflicting options Two mutually exclusive options have been declared.

Compensating Transactions
A compensating transaction in SQL Script is a special handler that a COMPENSATE
exception invokes to restore transactional integrity after a compound statement ends.

Remarks
• The presence of a handler for the COMPENSATE exception causes special behavior at

run time. Unlike other exceptions, this exception cannot be handled by an ELSE
clause; it can only be handled explicitly.

• The COMPENSATE exception is special because it is the only exception that can be
raised after the compound statement ends. It can be called a long time after the
statement ends. This exception is raised if the transaction is rolled back either
explicitly by the transaction’s controller or by the system, if a failure occurs during
commit.

• The COMPENSATE handler has access to all the variables that the block can see, like
other exception handlers. This is a copy of those variables at the time the block
exited.

TIBCO® Data Virtualization Reference Guide

641 | TDV SQL Script

• Compensation can be expensive because this additional storage of variable state has
to be kept for every execution of the block. For example, if the block occurs in a
loop that ran 1,000 times, 1,000 separate compensation states need to run. For this
reason, monitor the COMPENSATE handler carefully.

• Only the current local data state is preserved for the handler. The global system
state is not preserved. That is, if you call another procedure, it cannot be in the
same state as it was the first time this block was run. For this reason, any required
state should be captured during the normal run into variables so they can be used
during the COMPENSATE handler.

Examples

PROCEDURE p ()

BEGIN INDEPENDENT TRANSACTION

 <statement>

END

The insert is automatically committed in the example below.

PROCEDURE p ()

BEGIN INDEPENDENT TRANSACTION

 INSERT INTO /shared/T (name, score) VALUES ('Joe”, 123);

END

The insert is automatically rolled back in the example below.

PROCEDURE p ()

TIBCO® Data Virtualization Reference Guide

642 | TDV SQL Script

BEGIN INDEPENDENT TRANSACTION

 DECLARE my_exc EXCEPTION;

 INSERT INTO /shared/T (name, score) VALUES ('Joe”, 123);

 RAISE my_exec;

END

The insert is automatically committed in the example below.

PROCEDURE p ()

BEGIN INDEPENDENT TRANSACTION

 DECLARE my_exc EXCEPTION;

 INSERT INTO /shared/T (name, score) VALUES ('Joe”, 123);

 RAISE my_exec;

 EXCEPTION

 ELSE

END

TIBCO® Data Virtualization Reference Guide

643 | TDV SQL Script

Exceptions
You can define exceptions in SQL Script by providing a unique name for the exception and
defining a procedure of that name to handle the exception condition.

• Attributes of CURRENT_EXCEPTION

• Raising and Handling Exceptions

• External Exceptions

Syntax

DECLARE [PUBLIC] <exceptionName> EXCEPTION

You can declare an exception in a child scope that has the same name as the one declared
in the parent scope. If you do that, the one in the parent scope is not visible within the
child scope.

Raising and Handling Exceptions

A BEGIN/END block in SQL Script can have an optional exception section.

Syntax

BEGIN

...

 EXCEPTION

 [WHEN <exceptionName>

 [OR <exceptionName> …]

 THEN <statements> …]

TIBCO® Data Virtualization Reference Guide

644 | TDV SQL Script

 [ELSE <statements>]

END

Remarks
• If the EXCEPTION block is declared, it must contain at least one WHEN or one ELSE

clause. An EXCEPTION block can contain any number of WHEN clauses, but only one
ELSE clause.

• When an exception is raised in a BEGIN/END block, the first exception-handler WHEN
clause that matches the exception is executed.

• All variables from the scope are available within the exception handler. This
technique is different from Java, for example. In Java, nothing from the TRY block is
available in the CATCH block. In SQL Script, all variables available within the BEGIN
area are available within the EXCEPTION area. They do not go out of scope until END
is reached.

• If an exception is not handled within a block, that block leaves scope as with a
LEAVE statement and the same exception is raised in the parent scope, where it can
be handled. If there are no further scopes, the exception is thrown out of the
procedure to the caller. If the caller is SQL Script, SQL Script receives this error. If
the caller is JDBC or a Java Procedure, a Java exception is received.

If the caller is in a SQL FROM clause, the statements ends with a runtime exception.

• Any exception raised while in an exception handler, immediately leaves the current
scope as if it were an unhandled exception in this scope.

• Use the RAISE statement to raise an exception again.

Example

PROCEDURE p (IN x INTEGER, OUT result BIT)

BEGIN

 DECLARE illegal_arg_ex EXCEPTION;

TIBCO® Data Virtualization Reference Guide

645 | TDV SQL Script

...

 IF x < 0 THEN

 RAISE illegal_arg_ex;

 END

 SET result = 1; --success

EXCEPTION

 WHEN illegal_arg_ex THEN

 SET result = 0; --failure

END

External Exceptions

System exceptions in SQL Script are considered to be globally reserved names, but they
can be referenced by SQL Script procedures. If a user-defined exception is made public, it
can be used by other procedures.

Syntax

<compNamespacePath>.<exceptionName>

Remarks
• You can invoke a system exception or other public exceptions from a SQL Script

procedure by including a TDV namespace path (<compNamespacePath>) followed by
a dot and the exception name (<exceptionName>) in the script.

TIBCO® Data Virtualization Reference Guide

646 | TDV SQL Script

• You can view the system exceptions available to SQL Script procedures on the
Exceptions tab of /lib/util/System in Studio.

Example

/lib/util/System.NotFoundException

SQL Script Statement Reference
The following table lists all the SQL Script statements discussed in detail.

Statement Statement

BEGIN...END FETCH

CALL FOR

CASE IF

CLOSE INSERT

COMMIT ITERATE

CREATE TABLE LEAVE

CREATE TABLE AS SELECT LOOP

CREATE INDEX OPEN

DECLARE Constants PATH

DECLARE CURSOR of Type Variable RAISE

DECLARE EXCEPTION REPEAT

DECLARE TYPE ROLLBACK

TIBCO® Data Virtualization Reference Guide

647 | TDV SQL Script

Statement Statement

DECLARE Variable SELECT INTO

DECLARE VECTOR SET

DELETE TOP

DROP TABLE UPDATE

EXECUTE IMMEDIATE WHILE

FIND_INDEX

BEGIN...END
BEGIN and END enclose a SQL Script procedure, which can include one statement or
multiple statements (that is, a compound statement).

Syntax

[<label>:]

BEGIN

 [<transactionSpecification>]

 [<declaration>; …]

 [<statement>; …]

 [<exceptionBlock>]

END [<label>]

TIBCO® Data Virtualization Reference Guide

648 | TDV SQL Script

Remarks
• The order of the parameters in the procedure’s declaration is important. While it is

conventional to list IN, then INOUT, then OUT parameters in that order, they can be
intermixed.

• IN parameters are unchangeable in the procedure (like a const parameter).

• OUT parameters are initialized to NULL within the procedure. Setting a value into an
OUT parameter assigns the value to the variable in the caller.

• INOUT parameters are like OUT parameters that are pre-initialized by the caller. Any
calling environment that does not have variables should treat these parameters as if
they were a pair of IN and OUT parameters.

CALL
The CALL statement is used to call a procedure in SQL Script.

Syntax

CALL <procedureName> ([<valueExpression>[,…]])]

The <procedureName> refers to the name of a procedure declared using the syntax for a
procedure declaration. See SQL Script Procedure Header for procedure declaration.

Parentheses in the CALL syntax are not required if there are no parameters.

Remarks
• IN parameters can be passed any value expression. For details, see Value

Expressions. The expression is implicitly cast, if required, to match the type of the IN
parameter. IN parameters can be literals, expressions, or variables. If an IN
parameter is a variable, the value is not altered. IN parameters with the PIPE
modifier (PIPE Modifier) can only pass in variables that are also PIPE variables. This
means only IN or OUT parameters of the current procedure that have the PIPE
modifier can be passed in.

• The expressions being passed to IN parameters are evaluated from left to right.

TIBCO® Data Virtualization Reference Guide

649 | TDV SQL Script

• INOUT and OUT parameters must be passed a variable of the appropriate type. No
implicit type conversion is supported. For INOUT parameters, the value is not altered
if it is not changed in the procedure. For OUT parameters, the value is set to NULL if
not altered in the procedure. OUT parameters with the PIPE modifier can only be
passed a cursor variable with the same cursor type as the PIPE.

Examples

PROCEDURE square (IN x INTEGER, OUT result INTEGER)

BEGIN

 SET result = x * x;

END

PROCEDURE p()

BEGIN

 DECLARE y INTEGER;

 CALL square(2, y);

 -- y is 4

 CALL sqaure(y, y);

 -- y is 16

END

TIBCO® Data Virtualization Reference Guide

650 | TDV SQL Script

PROCEDURE factorial (IN x INTEGER, OUT result INTEGER)

BEGIN

 IF x = 1 THEN

 SET result = 1;

 ELSE

 CALL /shared/factorial(x-1; result);

 SET result = x * result;

END

CASE
A CASE statement in SQL Script evaluates a list of conditions and returns one of multiple
possible result expressions. The CASE statement has two valid formats.

Syntax 1

Use the <valueExpression> syntax to evaluate an expression once and then find a matching
value. The WHEN clauses are evaluated in order and the first match is used.

CASE <valueExpression>

 WHEN <valueExpression> THEN <statements>

 […]

TIBCO® Data Virtualization Reference Guide

651 | TDV SQL Script

 [ELSE <statements>]

END AS <new_column_name>

Syntax 2

Use the <conditionalExpression> syntax to evaluate a series of tests like an
IF/THEN/ELSEIF/ELSE. The WHEN clauses are evaluated in order and the first match is used.

CASE

 WHEN <conditionalExpression> THEN <statements>

 […]

 [ELSE <statements>]

END AS <new_column_name>

Remark

There can be zero or more statements in the area indicated by <statements>.

Examples

PROCEDURE get_month_name(OUT month_name VARCHAR)

BEGIN

 CASE MONTH(CURRENT_DATE())

 WHEN 1 THEN

TIBCO® Data Virtualization Reference Guide

652 | TDV SQL Script

 SET month_name = 'JAN';

 WHEN 2 THEN

 SET month_name = 'FEB';

 WHEN 3 THEN

 SET month_name = 'MAR';

...

 WHEN 11 THEN

 SET month_name = 'NOV';

 WHEN 12 THEN

 SET month_name = 'DEC';

 END CASE;

END

PROCEDURE get_duration(IN seconds INTEGER, OUT result VARCHAR)

BEGIN

 CASE

TIBCO® Data Virtualization Reference Guide

653 | TDV SQL Script

 WHEN seconds < 60 THEN

 SET result = CAST (

 CONCAT(seconds, ' seconds') AS VARCHAR);

 WHEN seconds < 60*60 THEN

 SET result = CAST (

 CONCAT(seconds/60, ' minutes') AS VARCHAR);

 ELSE

 SET result = CAST (

 CONCAT(seconds/3600, ' hours') AS VARCHAR);

 END CASE;

END

CLOSE
The CLOSE statement in SQL Script is used to close a cursor. See DECLARE CURSOR of Type
Variable for details on declaring cursors.

Syntax

CLOSE <cursor>

TIBCO® Data Virtualization Reference Guide

654 | TDV SQL Script

Errors

The following table describes the errors that can occur while executing a CLOSE statement.

Error Message Cause

Uninitiallized cursor A cursor variable is used and is not initialized at the time it is
opened.

Cursor is not open CLOSE was invoked when the cursor was not open.

COMMIT
The COMMIT statement in SQL Script is used to commit an independent transaction inside
a compound statement.

Syntax

COMMIT

Remark
• It is illegal to call COMMIT in a compound statement that is not declared

INDEPENDENT.

• For details, see Independent Transactions, Compensating Transactions, and
Compound Statements.

Example

PROCEDURE p ()

BEGIN INDEPENDENT TRANSACTION

 DECLARE my_exec EXCEPTION;

TIBCO® Data Virtualization Reference Guide

655 | TDV SQL Script

 INSERT INTO /shared/T (name, score) VALUES ('Joe', 123);

 COMMIT;

 RAISE my_exec;

END

CREATE TABLE
Creates a new table in the database.

Syntax

CREATE TABLE table_name (

 column1 datatype,

 column2 datatype,

 column3 datatype,...

);

CREATE TABLE AS SELECT
Create a table from an existing table by copying the existing table's columns. The new
table is populated with the records from the existing table.

Creates a TEMPORARY table as a copy of an existing table.

TIBCO® Data Virtualization Reference Guide

656 | TDV SQL Script

Syntax

CREATE TABLE table-name AS QUERY_EXPRESSION

CREATE TABLE new_table

 AS (SELECT * FROM old_table);

Remarks
• The QUERY_EXPRESSION can be any select query without an ORDER BY or LIMIT

clause.

• The temporary table will be empty on first access, can optionally be returned to
empty state at every COMMIT by using the ON COMMIT clause. The temporary tables
are automatically cleaned up by the server at the end of the user session. You can
also explicitly drop them if needed in between the session.

• If most of the queries are going against a particular database, the performance of
the joins on temporary table with the persisted table might be better with a specific
temporary table storage location. The privileges associated with the Temporary
Table Container affect the user who can create and use temporary tables if the DDL
Container is set. The temporary table storage location can be changed by editing the
Temporary Table Container configuration parameter through Studio.

• CREATE TEMPORARY TABLE statements are not supported in TDV Studio. They are
only meant to be used by TDV JDBC/ODBC/ADO.NET clients connecting to a
published data service that has been configured with DDL mappings.

Examples

CREATE TABLE queenbee

 AS (SELECT * FROM babybee);

TIBCO® Data Virtualization Reference Guide

657 | TDV SQL Script

CREATE INDEX
Creates indexes in the table.

Syntax

CREATE INDEX index_name

ON table_name (column1, column2, ...);

Example

CREATE INDEX index_1

ON queenbee (column_bee1)

DECLARE Constants
You can define constants in SQL Script by declaring them with unique names.

Syntax

DECLARE [PUBLIC] <variableName>[,…] <type> DEFAULT <valueExpression>]

Remarks
• You must declare a CONSTANT before using it.

• DEFAULT initializes the variable.

• If you declare multiple variables (for example, ROW (a INT, b CHAR)), enclose a
comma-separated list of default values in parentheses in the same order (for
example, DEFAULT (1, 'abc')).

• A PUBLIC constant should be declared at a global level.

• You can use a constant wherever you can use a literal.

TIBCO® Data Virtualization Reference Guide

658 | TDV SQL Script

• Constants are not modifiable.

• Variable declaration rules apply to constants. (See DECLARE Variable.)

Example

PROCEDURE constants ()

 BEGIN

 DECLARE PUBLIC x CONSTANT INT DEFAULT 1234;

 DECLARE PUBLIC y CONSTANT ROW (a INT, b CHAR) DEFAULT (1, 'abc');

 END

DECLARE CURSOR of Type Variable
You can define a new cursor variable in SQL Script by providing a unique name and
optionally specifying its data type.

For details, see Attributes of Cursors, OPEN, FETCH, and CLOSE.

Syntax

DECLARE <variableName> CURSOR [<dataType>]

Remarks
• The <dataType> is optional and can be a named ROW data type or the syntax for a

ROW data type.

• When declared, the cursor variable is initialized to NULL. It cannot be initialized to
any other value at declaration.

TIBCO® Data Virtualization Reference Guide

659 | TDV SQL Script

• You can use the SCROLL keyword in an OPEN statement to open a cursor after a row
has been fetched from a cursor, as follows:

DECLARE i INT;

DECLARE x CURSOR (a int) FOR SELECT COUNT(*) FROM
/services/databases/system/ALL_USERS;

OPEN x SCROLL;

Examples

The following example returns the first name.

PROCEDURE p (OUT p_name VARCHAR)

BEGIN

 DECLARE c CURSOR (name VARCHAR);

 OPEN c FOR SELECT name FROM /shared/T;

 FETCH c INTO p_name;

 CLOSE c;

END

The following example closes and then reopens c with the same query, and later closes it
and reopens it with a new query.

PROCEDURE p (OUT p_name VARCHAR)

BEGIN

TIBCO® Data Virtualization Reference Guide

660 | TDV SQL Script

 DECLARE c CURSOR (name VARCHAR);

 OPEN c FOR SELECT name FROM /shared/T;

 CLOSE c;

 OPEN c;

 CLOSE c;

 OPEN c FOR SELECT name FROM /share/U WHERE birthdate > '2000-01-01';

 CLOSE c;

END

DECLARE <cursorName> CURSOR FOR
You can define a static cursor in SQL Script by providing a unique name for it and
specifying the query expression associated with the cursor.

Syntax

DECLARE <cursorName> CURSOR FOR <queryExpression>

Remarks
• The name resolution works like a standalone SELECT statement.

• Variables cannot be used in the query expression.

• Bind variables (such as '?') cannot be used.

• Declaring a static cursor is logically equivalent to preparing a statement in JDBC.

TIBCO® Data Virtualization Reference Guide

661 | TDV SQL Script

• A cursor declared in this way is like a constant: its value cannot be changed.

Examples

PROCEDURE p (OUT p_name VARCHAR)

BEGIN

 DECLARE c CURSOR FOR SELECT name FROM /shared/T;

 OPEN c;

 FETCH c INTO p_name;

 CLOSE c;

END

The procedure below returns the first name.

PROCEDURE p (OUT p_name VARCHAR)

BEGIN

 DECLARE c CURSOR FOR SELECT name FROM /shared/T;

 OPEN c;

 FETCH c INTO p_name;

 CLOSE c;

TIBCO® Data Virtualization Reference Guide

662 | TDV SQL Script

...

 --Reopen cursor

 OPEN c;

 FETCH c INTO p_name;

 CLOSE c;

END

The procedure below manipulates two cursors, c and d.

PROCEDURE p

BEGIN

 DECLARE c CURSOR (name VARCHAR);

 DECLARE d CURSOR FOR SELECT name FROM /shared/T;

 --Open a new cursor in cursor variable c

 OPEN c FOR SELECT name FROM /shared/T;

 Assign the cursor referred to by d to c

 The original cursor referred to by c is no longer accessible

 SET c = d;

TIBCO® Data Virtualization Reference Guide

663 | TDV SQL Script

 --c and d cursor variables now refer to the same cursor

 --Use either one to open the cursor

 OPEN d; -- or OPEN c

 --c.ISOPEN is true

The procedure below returns an opened static cursor.

PROCEDURE p (OUT p_cursor CURSOR (name VARCHAR))

BEGIN

 DECLARE c CURSOR FOR SELECT name FROM /shared/T;

 SET p_cursor = c;

 OPEN p_cursor;

END

--Returns an opened static cursor

PROCEDURE p (OUT p_cursor CURSOR (name VARCHAR))

BEGIN

 OPEN p_cursor FOR SELECT name FROM /shared/T;

END

TIBCO® Data Virtualization Reference Guide

664 | TDV SQL Script

PROCEDURE p (OUT p_id INTEGER, OUT p_name VARCHAR)

BEGIN

 DECLARE c CURSOR FOR SELECT id, name FROM /shared/T;

 DECLARE r ROW (id INTEGER, name VARCHAR);

 OPEN c;

 FETCH INTO c;

 CLOSE c;

 SET p_id = r.id;

 SET p_name = r.name;

END

PROCEDURE p ()

BEGIN

 DECLARE TYPE r_type ROW (id INTEGER, name VARCHAR);

 DECLARE c CURSOR r_type;

 DECLARE r r_type;

TIBCO® Data Virtualization Reference Guide

665 | TDV SQL Script

 OPEN c FOR SELECT id, name FROM /shared/T;

 FETCH INTO c;

 CLOSE c;

END

DECLARE EXCEPTION
The DECLARE EXCEPTION statement in SQL Script declares an exception.

Syntax

DECLARE [PUBLIC] <exceptName>

EXCEPTION

Remarks
• An exception can be declared in a child scope that has the same name as the one

declared in the parent scope. In that case, the one in the parent scope is not visible
within the child scope.

• You can define exceptions by providing a unique name to each exception. See also
External Exceptions, Attributes of CURRENT_EXCEPTION, and Raising and Handling
Exceptions.

• The PUBLIC keyword can only be used in the root compound statement of a
PROCEDURE. It makes the exception visible outside the procedure as described in
the section External Exceptions. See Compound Statements for information on
compound statements.

TIBCO® Data Virtualization Reference Guide

666 | TDV SQL Script

Examples

PROCEDURE f(IN x INTEGER)

BEGIN

 DECLARE PUBLIC illegal_arg_ex EXCEPTION;

 IF x IS NULL THEN

 RAISE illegal_arg_ex;

 END IF;

...

END

PROCEDURE p(IN x INTEGER, IN result BIT)

BEGIN

 CALL /shared/f(x);

 SET result = 1; -- success

EXCEPTION

 WHEN /shared/f.illegal_arg_ex THEN

 SET result = 0; --failure

TIBCO® Data Virtualization Reference Guide

667 | TDV SQL Script

END

DECLARE TYPE
Defining a new data type in SQL Script is effectively a way to create an alias for a data
type. The declaration can be used to make a custom string, such as aliasing FirstName to
VARCHAR(24), or (more likely) for making an alias for a column set, such as aliasing
ResponseCursorType to ROW(col1 VARCHAR(40), col2 INTEGER).

The data types supported in SQL Script are listed in the section Data Types.

You can also declare a new data type.

Syntax

DECLARE [PUBLIC] TYPE <typeName> <dataType>

The <dataType> can be a ROW type or regular data type.

Remarks
• You can use DECLARE TYPE on CURSOR types, as in

DECLARE PUBLIC TYPE cursor_datatype_exampleA
 CURSOR (fieldA INTEGER, fieldB VARCHAR(255), fieldC DATE)

• If you alias ID to be of type INTEGER, it is a distinct type and is no longer a plain
integer.

• To make the data types visible outside of a procedure, the PUBLIC keyword can only
be used in the root compound statement of a procedure.

Examples

PROCEDURE p ()

BEGIN

TIBCO® Data Virtualization Reference Guide

668 | TDV SQL Script

 DECLARE TYPE name_type VARCHAR(50);

 DECLARE TYPE money_type DECIMAL(18, 2);

 DECLARE TYPE id_type BIGINT;

 DECLARE a name_type DEFAULT 'Joe';

 DECLARE b money_type DEFAULT 12.34;

 DECLARE c id_type DEFAULT 1234567890;

...

END

PROCEDURE p ()

BEGIN

 DECLARE TYPE r_type ROW (i INTEGER, name VARCHAR, birthdate DATE);

 DECLARE r r_type;

 DECLARE s r_type;

 SET r.id = 123;

 SET r.name = '5';

TIBCO® Data Virtualization Reference Guide

669 | TDV SQL Script

 SET r.birthdate = '1990-10-31';

...

END

DECLARE Variable
You can define a noncursor variable in SQL Script by specifying its name and data type,
and initializing it with a default value. See DECLARE CURSOR of Type Variable for defining
cursor variables.

Syntax

DECLARE <variableName>[,…] <dataType> DEFAULT <valueExpression>]

Remarks
• DEFAULT initializes the variable.

• You can declare more than one variable at a time, provided all the variables are of
the same data type but each has a unique name.

• The <valueExpression> can use IN parameters, variables declared previously in this
block, and any variables in parent blocks. In the current block, the value expression
cannot use variables that are defined later. If the value expression’s type does not
match the variable’s type, an implicit cast is performed (if possible). See SQL Script
Procedure Header for information on IN parameters.

• Any variable that is not initialized with a DEFAULT clause has the value NULL.

• If the evaluation of the value expression causes an exception, declared variables that
have not yet been initialized are set to NULL before entering the exception handler.

TIBCO® Data Virtualization Reference Guide

670 | TDV SQL Script

DECLARE VECTOR
DECLARE VECTOR in SQL Script declares a collection data type that is expandable, ordered,
and typed. A vector requires a data type at initialization.

This section provides the general syntax for declaring a VECTOR, and describes the
functionality of vectors in SQL Script. Examples are given at the end of the section.

Syntax

DECLARE <identifier> VECTOR (<data type>) [DEFAULT VECTOR [<value>,
<value>]]

Base Data Types
• The DEFAULT clause is optional and can be used to initialize VECTOR values.

• A vector cannot be the base data type of another vector, so you cannot use the
following declaration:

DECLARE vectorX VECTOR (VECTOR (CHAR)));

• ROW is an acceptable base data type of a vector, and is necessary for any
implementation of collections, as in the following example:

DECLARE vectorX VECTOR(ROW (a INTEGER,

b INTEGER, c CHAR, d CHAR));

• ROWs can also contain vectors, and a field in the ROW can be accessed through the
dot notation as follows:

DECLARE myRow ROW(a INTEGER, v VECTOR(INTEGER));

SET myRow = ROW(1, VECTOR[9,10,11]);

SET myRow.v[2] = 9;

TIBCO® Data Virtualization Reference Guide

671 | TDV SQL Script

DECLARE vecRow VECTOR(ROW (a INTEGER, b CHAR));

SET vecRow = VECTOR[(22, 'text')];

SET vecRow[1].a = vecRow[1].a + 15;

Declaration
• You cannot declare a vector as a field in a CURSOR or a PIPE, so the following

declaration would not be permitted:

DECLARE myCursor CURSOR (a VECTOR(CHAR));

• Vectors can be declared as PUBLIC constants or nonpublic constants. The contents
of such vectors should not be modified.

• The initial contents of a CONSTANT VECTOR must be defined in a DEFAULT clause
and must be literals or references to other similar type of vectors.

Assigning Values to VECTOR Elements
• An empty vector with no base type can be created by the expression

VECTOR[]

• Elements in a vector can be assigned a value of NULL.

SET vectorX[1] = NULL;

• The vector is set to NULL at declaration and must be initialized before it can be
used, as in the following example. Any reference to an uninitialized vector results in
an error.

VECTOR['my text', 'your text']

This expression can be assigned to a compatible vector with the SET statement, as
follows:

TIBCO® Data Virtualization Reference Guide

672 | TDV SQL Script

SET my_vector = VECTOR['my text', 'your text'];

SET your_vector = VECTOR[ROW(2,3), ROW(4,5)];

SET your_vector = my_vector;

In the above declaration, the contents of the source vector your_vector is copied to
the target vector my_vector, and the target vector is initialized.

• Vectors can be used as parameters in procedures, and the procedures with OUT or
INOUT parameters can alter the vector in the same manner as the SET statement.

CALL myProcedure(vectorX);

• After spaces are allocated in a vector by initializing the vector, elements in the
vector can be accessed through square brackets, as in arrays in other programming
languages. Vector indexes start at 1 and increment by 1.

SET vectorX[20] = 'my text';

SET yourvector[2 + index] = vectorX[20];

A vector index must evaluate to a numeric value. Otherwise, an error
results, as in the following example:

SET yourvector[1 || 'text'] = ‘text’;

• If a vector index evaluates to NULL, the element reference results in NULL.

• If the target reference index is NULL, an error results, as in the following example:

SET vectorX[NULL] = 'text';

• Vectors are bound by the current allocation, but can be resized through
reassignment or through system procedures.

• Vectors can be assigned to other vectors that have implicitly assignable data types.
In the case where the data type is not the same, a vector is created, and all

TIBCO® Data Virtualization Reference Guide

673 | TDV SQL Script

elements automatically have the CAST function run to convert the value to the
target type.

Comparing Vectors

Vectors can be compared to one another if their base types are comparable. Only
comparison operators such as = (equal to) and != (not equal) are supported.

Vectors are equal if they have the same number of values, and corresponding elements are
equal. If either vector is NULL, the result of the comparison is unknown. If any of the
elements is NULL, the result of the comparison is unknown.

Vectors and Functions

Several functions are available to modify the contents of a vector. The following functions
are supported: CARDINALITY, CAST, CONCAT, EXTEND, and TRUNCATE. All vectors,
regardless of their base data type, are accepted as arguments for these functions:

CARDINALITY

This function returns the number of elements allocated in the vector.

CAST

This function converts all the elements in a vector to the desired target data type.
The result vector is of the same size as that of the source vector. If the vector has a
NULL element, the result vector contains NULL. The source vector’s data type and
the target vector’s data type must be compatible. For details, see the section CAST.

CONCAT

This function adds two vectors that have the same data type together. If either of
the vectors is NULL, an error occurs indicating that the resultant vector is NULL.
Concatenating nonNULL vectors result in a new vector containing the elements from
the concatenated vectors. The elements of the input vectors are added successively;
that is, the elements of the first vector populates the result vector first, then the
elements of the second vector populates the result vector, and so on.

Note: The || operator does the same thing as the CONCAT function.

EXTEND

This function appends the specified number of elements to a vector. The appended
number of elements are assigned a NULL value, and the syntax is as follows:

SET vectorX = EXTEND (vectorX, 2);

TIBCO® Data Virtualization Reference Guide

674 | TDV SQL Script

— If the number of elements specified to be appended evaluates to NULL, this
function returns NULL.

— If the vector is NULL, an error occurs, indicating that the vector is NULL.

— If the specified number is a negative number, an error occurs.

FIND_INDEX

The function searches a vector for the first occurrence of a specified value. It accepts
two arguments. The first argument is any scalar value. The second argument is the
vector that is searched. The index starts at 1.

— The base type of the vector and the supplied argument’s data type must be
comparable or implicitly castable.

— If the searched value is not found in the vector, the result is zero.

— If either the vector or the supplied argument is NULL, the result of the function is
NULL.

The following example returns a value of 3:

DECLARE v VECTOR(INT) DEFAULT VECTOR [5, 10, 50, 100];

SET i = FIND_INDEX(50, v);

TRUNCATE

This function removes a specified number of elements (the “chop count”) from the
end of a vector. The syntax is as follows:

SET vector1 = TRUNCATE (vector1, chop_count)

— If the chop count evaluates to NULL, this function returns NULL.

— If the chop count is negative, or exceeds the initial size of the vector, an error
occurs.

— If the vector is NULL, an error occurs.

— TRUNCATE is also a TDV-supported SQL function. Refer to TRUNCATE, for a
description.

TIBCO® Data Virtualization Reference Guide

675 | TDV SQL Script

Examples

This section contains several examples to illustrate the functionality of vectors in SQL
Script.

PROCEDURE vectorExampleA()

BEGIN

 DECLARE vectorX VECTOR(ROW(a int, b char));

 DECLARE vectorY VECTOR(ROW(x int, y char));

 SET vectorX = VECTOR[(11, 'one in vectorX'), (12, 'two in vectorX')];

 SET vectorY = VECTOR[(21, 'one in vectorY'), (22, 'two in vectorY')];

 CALL print(vectorX[1].b);

 CALL print(vectorX[2].b);

 IF vectorX != vectorY THEN

 CALL print(vectorY[1].y);

 END IF;

END

PROCEDURE vectorExampleB()

BEGIN

TIBCO® Data Virtualization Reference Guide

676 | TDV SQL Script

 DECLARE vectorX VECTOR(ROW(a int, b char));

 DECLARE vectorY VECTOR(ROW(x int, y char));

 SET vectorX = VECTOR[(11, 'one in vectorX'), (12, 'two in vectorX')];

 SET vectorX[1].a = vectorX[1].a + 11;

 SET vectorY = VECTOR[(5, 'one in vectorY'), (10, 'two in vectorY')];

 SET vectorX = vectorY;

 CALL PRINT(TO_CHAR(vectorX[2].a));

END

PROCEDURE vectorExampleC(OUT x VECTOR(INTEGER))

BEGIN

 DECLARE vectorX VECTOR(INTEGER);

 SET x = VECTOR[5, 55, 60];

 SET vectorX = x;

 CALL PRINT(TO_CHAR(x[1]));

END

TIBCO® Data Virtualization Reference Guide

677 | TDV SQL Script

PROCEDURE vectorExampleD()

BEGIN

 DECLARE vConstM CONSTANT VECTOR(INTEGER)

 DEFAULT VECTOR[1, 2];

 DECLARE vConstN CONSTANT VECTOR(INTEGER)

 DEFAULT VECTOR[99, vConstM[2]]

 DECLARE x INTEGER;

 DECLARE y INTEGER;

 SET x = vConstM[1];

 SET y = vConstN[1];

 CALL PRINT(TO_CHAR(x));

 CALL PRINT(TO_CHAR(y));

END

PROCEDURE vectorExampleE()

BEGIN

TIBCO® Data Virtualization Reference Guide

678 | TDV SQL Script

 DECLARE PUBLIC vConstM CONSTANT VECTOR(INTEGER)

 DEFAULT VECTOR[1, 2];

 DECLARE PUBLIC vConstN CONSTANT VECTOR(INTEGER)

 DEFAULT VECTOR[99, vConstM[2]];

 DECLARE x INTEGER;

 SET x = vConstN[2];

 CALL PRINT(TO_CHAR(x));

END

PROCEDURE vectorExampleF(OUT Name VECTOR(CHAR(255)))

BEGIN

 DECLARE firstName VECTOR(CHAR);

 DECLARE lastName VECTOR(CHAR);

 SET firstName = VECTOR['john'];

 SET lastName = VECTOR['doe'];

 SET Name = CONCAT(firstName, lastName);

TIBCO® Data Virtualization Reference Guide

679 | TDV SQL Script

END

PROCEDURE vectorExampleG(OUT card INTEGER)

BEGIN

 DECLARE vectorX VECTOR(INTEGER);

 SET vectorX = VECTOR[5, 55, 19, 15, 23];

 SET card = CARDINALITY (vectorX);

END

PROCEDURE vectorExampleH(OUT ext VECTOR(INTEGER))

BEGIN

 DECLARE vectorX VECTOR(INTEGER);

 DECLARE NEWVECTOR VECTOR(INTEGER);

 SET vectorX = VECTOR[5, 55, 19, 15, 23];

 SET vectorX = EXTEND(vectorX, 2);

 SET ext = vectorX;

END

TIBCO® Data Virtualization Reference Guide

680 | TDV SQL Script

PROCEDURE vectorExampleJ(OUT ext VECTOR(INTEGER))

BEGIN

 DECLARE vectorX VECTOR(INTEGER);

 SET vectorX = VECTOR[5, 55, 19, 15, 23];

 SET vectorX = VECTOR[NULL];

 SET vectorX = EXTEND(vectorX, 2);

 SET ext = vectorX;

END

PROCEDURE vectorExampleK(OUT trunc VECTOR(INTEGER))

BEGIN

 DECLARE vectorX VECTOR(INTEGER);

 DECLARE newvector VECTOR(INTEGER);

 SET vectorX = VECTOR[5, 55, 19, 15, 23];

 SET newvector = TRUNCATE(vectorX, 2);

 SET trunc = newvector;

TIBCO® Data Virtualization Reference Guide

681 | TDV SQL Script

END

PROCEDURE vectorExampleM(OUT trunc VECTOR(INTEGER))

BEGIN

 DECLARE vectorX VECTOR(INTEGER);

 DECLARE newvector VECTOR(INTEGER);

 SET vectorX = VECTOR[5, 25, 30];

 SET newvector = TRUNCATE(vectorX, NULL);

 SET trunc = newvector;

END

DELETE
DELETE in SQL Script removes records from a table.

Syntax

DELETE FROM <table> [WHERE <conditionalExpression>]

Remarks
• Any legal DELETE statement that the system accepts can be used as a standalone

SQL Script statement.

• Variables are allowed in a SQL statement anywhere literals are allowed.

TIBCO® Data Virtualization Reference Guide

682 | TDV SQL Script

Examples

PROCEDURE p ()

BEGIN

 DELETE FROM /shared/scores;

 INSERT INTO /shared/scores VALUES ('Joe', 1001);

 UPDATE /shared/.scores SET score=1239 WHERE name='Sue';

END

PROCEDURE p (IN p_name VARCHAR, IN new_score)

BEGIN

 DELETE FROM /shared/scores WHERE name=p_name;

 INSERT INTO /shared/scores VALUES (p_name, new_score);

 UPDATE /shared/.scores SET score=new_score WHERE name=p_name;

END

PROCEDURE p (IN y VARCHAR)

BEGIN

 --T has columns x and y

TIBCO® Data Virtualization Reference Guide

683 | TDV SQL Script

 --The following y refers to the column, not the parameter

 DELETE FROM /shared/T WHERE x = y;

END

DROP TABLE
Removes a table definition and all the data, indexes, triggers, constraints and permission
specifications for that table.

Syntax

DROP TABLE [IF EXISTS] table_name;

Remarks
• DROP TABLE throws an error if the table does not exist, or if other database objects

depend on it.

• DROP TABLE IF EXISTS does not throw an error if the table does not exist. It throws
an error if other database objects depend on the table.

DROP INDEX
Deletes the index in a table.

Syntax

DROP INDEX index_name ON table_name;

TIBCO® Data Virtualization Reference Guide

684 | TDV SQL Script

EXECUTE IMMEDIATE
The EXECUTE IMMEDIATE statement in SQL Script dynamically executes certain SQL
statements.

Syntax

EXECUTE IMMEDIATE <valueExpr>

Remarks
• The <valueExpr> must evaluate to a string type (CHAR or VARCHAR). The text in this

string is executed as SQL.

• This form of dynamic SQL is useful mainly for INSERT, UPDATE, and DELETE
statements. It has no value to SELECT, because the selections cannot be assigned to
anything. See the OPEN FOR statement used in OPEN for information about how to
perform a dynamic SELECT.

Example

PROCEDURE drop (IN table_name VARCHAR)

BEGIN

 DECLARE sql_stmt VARCHAR;

 SET sql_stmt

 = CAST(CONCAT(‘DELETE FROM ‘, table_name) AS VARCHAR);

 EXECUTE IMMEDIATE sql_stmt;

END

TIBCO® Data Virtualization Reference Guide

685 | TDV SQL Script

FIND_INDEX
Returns the index of the first object in an array. Return zero if nothing is found. If the first
item in the array matches the first argument, then 1 is returned.

Syntax

<array>.find_index{<varList>}

Example

PROCEDURE ss1(out i int)

BEGIN

declare v vector(int) default vector [1,2,3,4];

set i = find_index(-5, v);

END

FETCH
The FETCH statement is used in SQL Script to read one row from an open cursor.

Syntax

FETCH <cursor> INTO <varList>

The variable list can be a list of variables (same number as the number of projections) or a
ROW variable with the right schema. For information on ROW, see DECLARE CURSOR of
Type Variable.

TIBCO® Data Virtualization Reference Guide

686 | TDV SQL Script

Remarks
• The <varList> works like the SELECT INTO clause. (See SELECT INTO.)

• It is illegal to fetch from a cursor that is not open.

• Fetching past the last row does not cause an error. The variables are not altered and
the FOUND attribute is set to FALSE. See Attributes of Cursors for details.

• You can specify the direction of the fetch to be NEXT or FIRST. These words must be
used along with the keyword FROM, as follows:

FETCH NEXT FROM x INTO i;

FETCH FIRST FROM x INTO i;

If no fetch orientation is specified, NEXT is the default.

If the orientation is NEXT, the fetch behaves as it always has: it fetches the current
row’s data into the target variables.

If FIRST is specified as the orientation, the cursor must be a SCROLL cursor,
otherwise an error results. See DECLARE CURSOR of Type Variable.

If the orientation specified is FIRST, the cursor is repositioned to the first row, and
the first row’s data is placed in the target variables.

Errors

The following table describes the errors that can occur while executing a FETCH statement.

Error Message Cause

Uninitiallized cursor The cursor variable is used, but is not initialized at the time it is
fetched.

Cursor is not open Cursor was closed when the fetch was attempted.

TIBCO® Data Virtualization Reference Guide

687 | TDV SQL Script

FOR
FOR statements are used in SQL Script to loop through a query or cursor. FOR statements
have two formats.

Syntax1

Used to loop across a query expression.

[<label>:]

FOR <loopVariable> AS [<cursorName> CURSOR FOR]

<queryExpression> DO

<statements>

END FOR [<label>]

Syntax2

Used to loop across a cursor. For details, see DECLARE CURSOR of Type Variable.

[<label>:]

FOR <loopVariable> AS <cursorVariable> DO

<statements>

END FOR [<label>]

TIBCO® Data Virtualization Reference Guide

688 | TDV SQL Script

Remarks
• The <label> is an optional identifier to name the block. This is for use with the LEAVE

and ITERATE statements. See LEAVE and ITERATE.

• If a beginning label is present, the end label is not required. If no beginning label is
present, it is illegal to have an end label. If both the beginning and end labels are
present, both must have the same identifier.

• There can be zero or more statements in the <statements> area.

• The FOR statement declares the loop variable to be of the proper type to match the
query expression (a ROW). You do not have to declare that variable elsewhere. The
variable is only legal within the loop block. This variable can have the same name as
another variable in the current scope (or a parent scope), but it cannot have the
same name as a parameter to the procedure. If it does have the same name, the
same rules apply as for declaring variables in a compound statement. See
Compound Statements for details.

• If a cursor variable is provided in the first format (Syntax 1), it is also declared at this
point. You do not declare it separately. This variable is set to be a cursor for the
provided query expression.

• The cursor is opened when it starts. You do not have to open the cursor. It then
fetches rows (use FETCH) one at a time and assigns the row into the loop variable.
This makes it possible to operate on each row one at a time. The cursor is closed
automatically when the loop ends. See FETCH.

If you open the cursor (and even fetch a few rows), the FOR loop picks up where the
cursor is. If you do not open the cursor, the FOR statement opens it for you.

The FOR loop closes the cursor no matter how the loop exits (even with a LEAVE
statement).

• When a FOR loop is passed a cursor, it opens the cursor if it is not already open.

• After the FOR loop, the cursor is closed. Even if you try to LEAVE the FOR loop, the
cursor is closed. If you try to close a cursor that was used by a FOR loop, an error
occurs.

Example

--Returns the average of all scores

TIBCO® Data Virtualization Reference Guide

689 | TDV SQL Script

PROCEDURE avr_score(OUT result INTEGER)

BEGIN

 DECLARE crs CURSOR FOR

 SELECT name, score FROM /shared/U ORDER BY score DESC;

 DECLARE total INTEGER DEFAULT 0;

 DECLARE cnt INTEGER DEFAULT 0;

 OPEN crs;

 FOR r AS crs DO

 SET total = total + r.score;

 SET cnt = cnt + 1;

 END FOR;

 SET result = total/cnt;

END

IF
The IF statement is used in SQL Script to evaluate a condition.

TIBCO® Data Virtualization Reference Guide

690 | TDV SQL Script

Syntax

IF <conditionalExpression> THEN

<statements>

[ELSEIF

<statements> …]

[ELSE <statements>]

END IF

The <statements> area contains a sequence of zero or more statements. Each statement is
followed by a semicolon.

Example

PROCEDURE "max" (IN a INTEGER, IN b INTEGER, OUT "max" INTEGER)

BEGIN

 IF a IS NULL OR b IS NULL THEN

 SET "max" = NULL;

 ELSEIF a > b THEN

 SET "max" = b;

 ELSEIF b > a THEN

TIBCO® Data Virtualization Reference Guide

691 | TDV SQL Script

 SET "max" = b;

 ELSE

 SET "max" = a;

 END IF;

END

INSERT
The INSERT INTO statement is used in SQL Script to insert values into the columns of a
table. Almost any INSERT statement can be used as a standalone SQL Script statement.

Variables are allowed in a SQL statement anywhere literals are allowed.

Syntax

INSERT INTO table_name[(column_A,column_X,...)]
 VALUES ('value1','value X',...);

Remarks
• Specification of the column names is optional. The VALUES list contains comma-

separated values for insertion into the specified columns.

• The INSERT INTO statement can also be used to insert a complete row of values
without specifying the column names. Values must be specified for every column in
the table in the order specified by the DDL. If the number of values is not the same
as the number of columns in the table, or if a value is not allowed for a particular
data type, an exception is thrown.

• The syntax of INSERT is extended to allow PIPE variables to be used where a table
name is normally used. This is how rows are inserted into a PIPE. See PIPE Modifier.

TIBCO® Data Virtualization Reference Guide

692 | TDV SQL Script

Examples

PROCEDURE p1 (OUT result PIPE(C1 VARCHAR(256)))

BEGIN

INSERT INTO result(C1) VALUES(some_variable);

END

PROCEDURE p2 ()

BEGIN

INSERT INTO birthdays(person_name,"birth date",'annotation') VALUES
('Chris Smith','2006-12-20','Last years gift:Watch');

END

ITERATE
The ITERATE statement is used in SQL Script to continue the execution of the specified
label.

Syntax

ITERATE <label>

Remark

The ITERATE statement is equivalent to continue in Java. It jumps to the end of the loop
block and causes the loop to evaluate its condition (if available) and loop back to the top.

TIBCO® Data Virtualization Reference Guide

693 | TDV SQL Script

Example

PROCEDURE

BEGIN

 DECLARE c CHAR(1);

 DECLARE ix INTEGER DEFAULT 1;

 SET result = ' ';

 label a:

 WHILE ix <= LENGTH(s) DO

 SET c = CAST(SUBSTRING(s, ix, 1) AS CHAR(1));

 SET ix = ix + 1;

 IF c = ' ' THEN

 ITERATE label_a;

 END IF;

 SET result = CAST(CONCAT(result, c) AS VARCHAR);

 END WHILE;

END

TIBCO® Data Virtualization Reference Guide

694 | TDV SQL Script

LEAVE
The LEAVE statement is used in SQL Script to abort execution of the current block.

Syntax

LEAVE <label>

Remark

The LEAVE statement is equivalent to using break in Java. It aborts the current loop or
compound statement block, without throwing an error.

Example

--Pads s with padChar so that s has at least width length.

PROCEDURE padr (IN s VARCHAR, IN width INTEGER, IN padChar VARCHAR, OUT
result VARCHAR)

L-padr:

BEGIN

 --Returns null if any parameter is null

 IF s IS NULL OR width IS NULL OR padChar IS NULL THEN

 LEAVE L-padr;

 END IF;

...

TIBCO® Data Virtualization Reference Guide

695 | TDV SQL Script

END

LOOP
The LOOP statement is used in SQL Script for looping through the current block.

Syntax

[<label>:] LOOP

<statements>

END LOOP [<label>]

This sample statement loops forever. You need to use a LEAVE statement to exit it.

Remarks
• The label is an optional identifier to name the block. This is for use with the LEAVE

and ITERATE statements. See LEAVE and ITERATE.

• If a beginning label is present, the end label is not required. If no beginning label is
present, then it is illegal to have an end label. If both the beginning and end labels
are present, then both must have the same identifier.

• There can be zero or more statements in the <statements> area.

Example

This example pads s with padChar so that s has at least width length.

PROCEDURE padr(IN a VARCHAR, IN width INTEGER, IN padChar VARCHAR, OUT
result VARCHAR)

--pad result with padChar

TIBCO® Data Virtualization Reference Guide

696 | TDV SQL Script

 SET result = s;

 L-loop:

 LOOP

 IF LENGTH(result) >= width THEN

 LEAVE L_loop;

 END IF;

 SET result = CAST(CONCAT(result, padChar) AS VARCHAR);

 END LOOP;

END

OPEN
The OPEN statement is used in SQL Script to open a cursor. Two types of OPEN statements
are available, one to open a static cursor and another to open a variable cursor. The OPEN
statement for a variable cursor can specify whether it is for a query expression or a value
expression. See Value Expressions.

Syntax (Open Static Cursor)

OPEN <cursor>

TIBCO® Data Virtualization Reference Guide

697 | TDV SQL Script

Syntax (Open Variable Cursor)

OPEN <cursorVariableName> FOR <queryExpression>

Remarks
• A cursor variable can be opened and initialized using a dynamic SQL statement as

follows:

OPEN <cursorVariableName> FOR <valueExpression>

• OPEN is similar to preparing a statement for execution.

• Run-time errors, such as insufficient privileges, are not caught until a statement is
executed.

• The syntax for the open static cursor statement works on both static and variable
cursors, although you get an error if you open an uninitialized cursor variable.

• It is illegal to open a cursor that is already open.

Errors

Standard parser and resolver errors can result from the SELECT statement in the FOR
clause. The following table describes the errors that can occur when executing an OPEN
statement.

Error Message Cause

Cannot open a PIPE An attempt is made to open a PIPE variable.

Uninitiallized cursor A cursor variable is used and is not initialized at the time it is
opened.

Cursor already open OPEN was invoked when the cursor was already open.

TIBCO® Data Virtualization Reference Guide

698 | TDV SQL Script

PATH
You can define paths to resources in SQL Script by providing a unique names to each path.
PATH is similar to IMPORT in Java.

Remarks
• PATH should be specified in the first BEGIN/END as the first statement after BEGIN.

• Wherever you can use a variable, you can use PATH.

• PATH can be used to fully qualify unqualified tables or procedures used in the FROM
clause, and CALL and INSERT/DELETE/UPDATE statements.

Syntax

PATH <full path>

Example

PROCEDURE p_path1(out outgoing int)

 BEGIN

PATH /users/composite/test/views;

 DECLARE public x constant int default 0;

 DECLARE public y constant int default 5;

 DECLARE public z constant int default 0;

 DECLARE public e1 exception;

TIBCO® Data Virtualization Reference Guide

699 | TDV SQL Script

 SET outgoing = y;

 EXCEPTION

 WHEN /users/composite/test/views/p_path1.e1 THEN

 END

RAISE
The RAISE statement is used in SQL Script to raise an exception.

Syntax

RAISE [<exceptionName>] [VALUE [<valueExpression>]]

Remarks
• The value expression must resolve to a string. (See Value Expressions.)

• The <exceptionName> can be any exception that is defined in the current scope, a
parent scope, or that has a qualified name (such as a system exception).

• A name is required if this statement is outside of an exception handler. When inside
an exception handler and when no name is used, the current exception is re-raised.

• The <valueExpression> can optionally be set on an exception. If not present, the
value defaults to NULL. The value be implicitly cast (if necessary) to be assigned into
the exception.

You can change the value of an exception when re-raising it by including the VALUE
clause but no exception name.

Examples

PROCEDURE square (IN x INTEGER)

TIBCO® Data Virtualization Reference Guide

700 | TDV SQL Script

BEGIN

 DECLARE illegal_parameter_ex EXCEPTION;

 IF x IS NULL THEN

 RAISE illegal_parameter_ex;

 END IF;

...

END

PROCEDURE p (IN x INTEGER)

BEGIN

 DECLARE illegal_parameter_ex EXCEPTION;

 IF x < 0 THEN

 RAISE illegal_parameter_ex VALUE 'x must be > 0. x='||x;

 END IF;

...

END

TIBCO® Data Virtualization Reference Guide

701 | TDV SQL Script

REPEAT
The REPEAT statement is used in SQL Script to repeat specific statements under specific
conditions.

Syntax

[<label>:] REPEAT

<statements>

UNTIL <conditionalExpression>

END REPEAT [<label>]

Remarks
• The label is an optional identifier to name the block. The REPEAT statement is for

use with the LEAVE and ITERATE statements. See LEAVE and ITERATE.

• If a beginning label is present, the end label is not required. If no beginning label is
present, it is illegal to have an end label. If both the beginning and end labels are
present, both must have the same identifier.

• The <statements> area can have zero or more statements.

Example

--Returns the root of ID

PROCEDURE

BEGIN

 DECLARE parent_ID INTEGER DEFAULT ID;

TIBCO® Data Virtualization Reference Guide

702 | TDV SQL Script

 REPEAT

 SET result = parent_ID;

 CALL /shared/parent_of (result, parent_ID);

 UNTIL parent_ID IS NULL

 END REPEAT;

END

ROLLBACK
If you are inside a compound statement with an independent transaction, you can invoke
ROLLBACK in SQL Script to roll back the transaction. See Compound Statements.

Syntax

ROLLBACK

Remark

It is illegal to call ROLLBACK in a compound statement that is not declared INDEPENDENT.

Example

PROCEDURE p ()

BEGIN INDEPENDET TRANSACTION

TIBCO® Data Virtualization Reference Guide

703 | TDV SQL Script

 INSERT INTO /shared/T (name, score) VALUES ('Joe', 123);

 ROLLBACK;

END

SELECT INTO
Any SELECT statement that the system accepts can be used in SQL Script as a standalone
SQL Script statement, as long as it uses the SELECT INTO format.

Syntax

SELECT <projections> INTO <varListOrRowVariable>

FROM . . .

Remarks
• A standalone SELECT statement without the INTO clause is disallowed and discarded

by the optimizer because it would do nothing to the program state.

• Variables are allowed in a SQL statement anywhere a literal of the same type is
allowed.

• The BOOLEAN and ROW types are not supported in SQL.

• There is no special syntax for noting that something is a variable instead of a
column in SQL statements, so be cautious when declaring a variable’s name. If there
is a conflict, the name is interpreted as a column name and not a variable name.

• When using SELECT INTO, the cursor must return a single row. If it returns no rows
or multiple rows, an exception is raised.

• Use of SELECT INTO is sometimes called an “implicit cursor” because it is opened,
fetches one row, and is closed in one statement.

TIBCO® Data Virtualization Reference Guide

704 | TDV SQL Script

Example

PROCEDURE selinto_ex ()

BEGIN

 DECLARE a INTEGER;

 DECLARE b DATE;

 SELECT col1, col2 INTO a, b FROM T WHERE x = 1;

END

SET
The SET statement in SQL Script is an assignment statement that assigns a value to a
variable.

Syntax

SET <varName> = <value>

Remarks
• Values are coerced (implicitly cast) if that is possible.

• ROW values can be assigned to ROW variables only if each of the fields in the ROW
variable could be assigned independently. Fields are coerced (implicitly cast) as
required.

• A cursor variable with a type can be assigned from any cursor with the same ROW
type, or to any cursor variable with exactly the same ROW type.

TIBCO® Data Virtualization Reference Guide

705 | TDV SQL Script

• A cursor variable without a type can be assigned from any cursor, or to any cursor.
Assigning to a typed cursor forces a runtime schema match comparison and raises
an exception on a mismatch.

• Assigning a cursor creates a reference to the original cursor’s state. This means that
opening, closing, or fetching from the original cursor or the variable has the same
effect and alters what the other would see. See OPEN, CLOSE, and FETCH for details
on opening, closing, and fetching actions on cursors.

Errors

The following table describes the errors that can occur when executing a SET statement.

Error Message Cause

Cannot alter the value of an IN
parameter

The specified variable is an IN parameter.

TOP
A TOP clause in a SELECT statement specifies the number of records to return, starting
with the first record in the table.

Syntax

SELECT TOP <number> <column_name>

FROM <table>

Remarks
• TOP can improve performance by limiting the number of records returned, especially

when very large tables are involved.

• The number argument is an integer representing how many rows to return.

TIBCO® Data Virtualization Reference Guide

706 | TDV SQL Script

• Use TOP with the ORDER BY clause to make sure your specified number of rows is in
a defined order.

Example

PROCEDURE LookupProduct(OUT result CURSOR(ProductDescription VARCHAR
(255)))

 BEGIN

 OPEN result FOR SELECT

 TOP 5 products.ProductDescription

 FROM /shared/examples/ds_inventory/tutorial/products
products;

 END

UPDATE
An UPDATE statement in SQL Script updates records in a table.

Syntax

UPDATE <table>

 SET <column> = <valueExpression> [, <column> = <valueExpression>]*

 [WHERE <conditionalExpression>]

TIBCO® Data Virtualization Reference Guide

707 | TDV SQL Script

Remarks
• Any UPDATE statement that the system accepts can be used as a standalone SQL

Script statement.

• Variables are allowed in a SQL statement anywhere a literal is allowed.

• The WHERE clause is optional. The rules for the WHERE clause of an UPDATE
statement is the same as the rules for WHERE clause of a SELECT statement.

• The following subqueries in the SET clause are not allowed:

UPDATE <table1> SET x = (SELECT y FROM <table2>)

Examples

PROCEDURE p ()

BEGIN

 DELETE FROM /shared/scores;

 INSERT INTO /shared/scores VALUES ('Joe', 1001);

 UPDATE /shared/.scores SET score=1239 WHERE name='Sue';

END

PROCEDURE p (IN p_name VARCHAR, IN new_score)

BEGIN

 DELETE FROM /shared/scores WHERE name=p_name;

 INSERT INTO /shared/scores VALUES (p_name, new_score);

TIBCO® Data Virtualization Reference Guide

708 | TDV SQL Script

 UPDATE /shared/.scores SET score=new_score WHERE name=p_name;

END

WHILE
The WHILE statement is used in SQL Script to execute certain statements as long as
specific conditions are met.

Syntax

[<label>:] WHILE <conditionalExpression> DO

<statements>

END WHILE [<label>

Remarks
• The <label> is an optional identifier to name the block.

• The WHILE statement is for use with the LEAVE and ITERATE statements. See LEAVE
and ITERATE.

• If a beginning label is present, the end label is not required. If no beginning label is
present, it is illegal to have an end label. If both the beginning and end labels are
present, both must have the same identifier.

• The <statements> area can have zero or more statements.

SQL Script Examples
This section contains several examples illustrating the use of the SQL Script language. All
the examples assume a user named test in the domain composite.

TIBCO® Data Virtualization Reference Guide

709 | TDV SQL Script

• Example 1 (Fetch All Rows)

• Example 2 (Fetch All Categories)

• Example 3 (User-Defined Type)

• Example 4 (User-Defined Type)

• Example 5 (Pipe Variable)

• Example 6 (Dynamic SQL Extract with Individual Inserts)

• Example 7 (Dynamic SQL Inserts by Variable Name)

• Example 8 (Prepackaged Query)

• Example 9 (Exception Handling)

• Example 10 (Row Declaration)

• Example 11 (Avoiding Division-by-Zero Errors)

Example 1 (Fetch All Rows)
This script iterates through a table and fetches all the rows. It assumes a Northwind access
database named access and gathers all the categories in the table Categories.

PROCEDURE fetchExample1 (OUT category CHAR)

BEGIN

 DECLARE temp CHAR;

 DECLARE f CURSOR FOR SELECT Categories.CategoryName

 FROM /shared/access/Categories Categories;

 SET category = '';

 OPEN f;

TIBCO® Data Virtualization Reference Guide

710 | TDV SQL Script

 FETCH f INTO temp;

 -- Must call FETCH first, otherwise FOUND is false.

 WHILELOOP:

 WHILE f.FOUND

 DO

 BEGIN

 SET category = CAST(CONCAT(CONCAT(category, ' '), temp)AS CHAR
(255));

 FETCH f INTO temp;

 END;

 END WHILE;

 CLOSE f;

END

Example 2 (Fetch All Categories)
This example is similar to Example 1 (Fetch All Rows), but it fetches all the categories.

PROCEDURE fetchExample2 (OUT category CHAR)

TIBCO® Data Virtualization Reference Guide

711 | TDV SQL Script

BEGIN

 DECLARE temp CHAR DEFAULT '';

 SET category = '';

 FOR x AS SELECT Categories.CategoryName

 FROM /shared/access/Categories Categories

 DO

 SET temp = x.categoryName;

 SET category = CAST(CONCAT(CONCAT(category, ' '), temp) AS CHAR);

 END FOR;

END

Example 3 (User-Defined Type)
This example declares a user-defined type named udt, and uses it in another user-defined
type b.

PROCEDURE type_example1 ()

BEGIN

 DECLARE PUBLIC TYPE udt INTEGER;

TIBCO® Data Virtualization Reference Guide

712 | TDV SQL Script

 DECLARE TYPE b ROW (a INTEGER, b udt, c VARCHAR(255));

END

Example 4 (User-Defined Type)
PROCEDURE type_example2 ()

BEGIN

 -- b is defined in Example 3 (User-Defined Type)

 DECLARE test /shared/type_example1.b;

 SET test.a = 123;

 SET test.b = 345;

 SET test.c = 'hello';

END

Example 5 (Pipe Variable)
This example inserts the categories from the Northwind database into a PIPE variable.

PROCEDURE pipe_example2 (OUT param1 PIPE (col1 CHAR), IN param2 INT)

BEGIN

TIBCO® Data Virtualization Reference Guide

713 | TDV SQL Script

 FOR x AS SELECT Categories.CategoryName, Categories.CategoryId

 FROM /shared/access/Categories Categories

 DO

 IF x.CategoryId = param2 THEN

 INSERT INTO param1 (col1) VALUES (x.categoryName);

 END IF;

 END FOR;

 CLOSE param1;

END

Example 6 (Dynamic SQL Extract with Individual
Inserts)
This example extracts data from a SELECT statement and uses an INSERT statement with
the data. It extract the values and insert the values one by one.

PROCEDURE dynamic_sql_example ()

BEGIN

 DECLARE sqltext VARCHAR DEFAULT

TIBCO® Data Virtualization Reference Guide

714 | TDV SQL Script

 'INSERT INTO /shared/updates(c_varchar) VALUES(''';

 DECLARE temp VARCHAR;

 FOR x AS SELECT Categories.CategoryName

 FROM /shared/access/Categories Categories

 DO

 SET temp = CAST(sqltext || x.categoryName ||''')' AS VARCHAR);

 EXECUTE IMMEDIATE temp;

 END FOR;

END

Example 7 (Dynamic SQL Inserts by Variable Name)
This example creates a dynamic SQL string to insert data from a variable. Instead of
extracting the values, it calls the value by variable name.

PROCEDURE dynamic_sql_example2 ()

BEGIN

 DECLARE sql2 VARCHAR DEFAULT

 'INSERT INTO /shared/updates(c_varchar) VALUES(';

TIBCO® Data Virtualization Reference Guide

715 | TDV SQL Script

 DECLARE temp CHAR;

 FORLOOP:

 FOR x AS SELECT Categories.CategoryName

 FROM /shared/access/Categories Categories

 DO

 SET temp = CAST(sql2 || 'x.categoryName)' AS CHAR);

 EXECUTE IMMEDIATE temp;

 END FOR;

END

Example 8 (Prepackaged Query)
This example calls a prepackaged query, and returns the first row of data. It assumes that
the user has a prepackaged query named, pqAccess, under the shared folder.

PROCEDURE prepackaged_query_example ()

BEGIN

 -- Declare a cursor to retrieve from the prepackaged query

 DECLARE myRow ROW(a1 INT, a2 VARCHAR, a3 VARCHAR, a4 DECIMAL, a5 INT,
 a6 DECIMAL, a7 VARCHAR, a8 VARCHAR);

TIBCO® Data Virtualization Reference Guide

716 | TDV SQL Script

 DECLARE crs cursor(a1 int, a2 VARCHAR, a3 VARCHAR, a4 DECIMAL, a5 INT,
 a6 DECIMAL, a7 VARCHAR, a8 VARCHAR);

 CALL /shared/pqAccess(crs);

 -- Fetch the first row

 FETCH crs INTO myRow;

END

Example 9 (Exception Handling)
This example shows how to raise EXCEPTION.

PROCEDURE exception_example (OUT has_error INT)

BEGIN

 DECLARE too_many_categories EXCEPTION;

 DECLARE no_categories EXCEPTION;

 DECLARE category_count INT DEFAULT 0;

 SELECT COUNT(Categories.CategoryName) INTO category_count

 FROM /shared/access/Categories Categories;

 IF category_count > 5 THEN

TIBCO® Data Virtualization Reference Guide

717 | TDV SQL Script

 RAISE too_many_categories;

 ELSEIF category_count = 0 THEN

 RAISE no_categories;

 END IF;

 SET has_error = 0;

EXCEPTION

 WHEN too_many_categories OR no_categories THEN

 SET has_error = 1;

END

Example 10 (Row Declaration)
This example shows how to declare ROW.

PROCEDURE row_example()

BEGIN

 DECLARE category_row ROW (categoryid INT, category CHAR);

 DECLARE f CURSOR FOR SELECT Categories.CategoryId,
Categories.CategoryName

TIBCO® Data Virtualization Reference Guide

718 | TDV SQL Script

 FROM /shared/access/Categories Categories;

 OPEN f;

 FETCH f INTO category_row;

 CLOSE f;

END

Example 11 (Avoiding Division-by-Zero Errors)
This example prevents “divide by zero” errors.

PROCEDURE divide

(IN dividend INT, IN divisor INT, OUT result INT, OUT message CHAR)

BEGIN

 DECLARE divide_by_zero EXCEPTION;

 IF divisor = 0 THEN

 RAISE divide_by_zero value 'Divided by zero error';

 END IF;

 SET result = dividend/divisor;

TIBCO® Data Virtualization Reference Guide

719 | TDV SQL Script

EXCEPTION

 WHEN divide_by_zero THEN

 SET message = CURRENT_EXCEPTION.MESSAGE;

END

TIBCO® Data Virtualization Reference Guide

720 | TDV Built-in Functions for XQuery

TDV Built-in Functions for XQuery
TDV offers built-in XQuery extension functions that users can add within the text of XQuery
procedures. They are meant to assist in writing and executing SQL statements from within
XQuery.

This topic describes these XQuery extension functions:

• executeStatement

• formatBooleanSequence

• formatDateSequence

• formatDecimalSequenceC

• formatDoubleSequence

• formatFloatSequence

• formatIntegerSequence

• formatStringSequence

• formatTimeSequence

• formatTimestampSequence

executeStatement
This function executes the given SQL statement.

Syntax

composite:executeStatement ($statement as item(), $arguments as node()*)

TIBCO® Data Virtualization Reference Guide

721 | TDV Built-in Functions for XQuery

Example

declare variable $values := <a>13;

composite:executeStatement ('SELECT * FROM /shared/examples/ds_
inventory/products WHERE ProductID > {0} AND ProductID < {1}',
$values//b)

Result

The output is of the form document():

<results>

 <result>

 <ProductID>2</ProductID>

 <ProductName>Mega Zip 750MB USB 2.0</ProductName>

 <ProductDescription>Mega Zip 750 MB</ProductDescription>

 <CategoryID>1</CategoryID>

 <SerialNumber>5-76-9876</SerialNumber>

 <UnitPrice>187.67</UnitPrice>

 <ReorderLevel>5</ReorderLevel>

 <LeadTime>7 Days</LeadTime>

 </result>

TIBCO® Data Virtualization Reference Guide

722 | TDV Built-in Functions for XQuery

</results>

formatBooleanSequence
This function formats a sequence of booleans as a comma-separated list of SQL literals.

Syntax

composite:formatBooleanSequence ($values as node()*)

Example

declare variable $values := <a>01;

<result>{composite:formatBooleanSequence ($values//b)}</result>

Result

The output is of the form xs:string:

<result>false,true</result>

formatDateSequence
This function formats a sequence of dates as a comma-separated list of SQL literals.

Syntax

composite:formatDateSequence ($values as node()*)

TIBCO® Data Virtualization Reference Guide

723 | TDV Built-in Functions for XQuery

Example

declare variable $values := <a>2012-06-012012-07-01;

<result>{composite:formatDateSequence ($values//b)}</result>

Result

The output is of the form xs:string:

<result>'2012-06-01','2012-07-01'</result>

formatDecimalSequence
This function formats a sequence of decimals as a comma-separated list of SQL literals.

Syntax

composite:formatDecimalSequence ($values as node()*)

Example

declare variable $values := <a>1.02.0;

<result>{composite:formatDecimalSequence ($values//b)}</result>

Result

The output is of the form xs:string:

<result>1.00,2.00</result>

TIBCO® Data Virtualization Reference Guide

724 | TDV Built-in Functions for XQuery

formatDoubleSequence
This function formats a sequence of doubles as a comma-separated list of SQL literals.

Syntax

composite:formatDoubleSequence ($values as node()*)

Example

declare variable $values := <a>1.02.0;

<result>{composite:formatDoubleSequence ($values//b)}</result>

Result

The output is of the form xs:string:

<result>1.0,2.0</result>

formatFloatSequence
This function formats a sequence of floats as a comma-separated list of SQL literals.

Syntax

composite:formatFloatSequence ($values as node()*)

Example

declare variable $values := <a>12;

TIBCO® Data Virtualization Reference Guide

725 | TDV Built-in Functions for XQuery

<result>{composite:formatFloatSequence ($values//b)}</result>

Result

The output is of the form xs:string:

<result>1.0,2.0</result>

formatIntegerSequence
This function formats a sequence of integers as a comma-separated list of SQL literals.

Syntax

composite:formatIntegerSequence ($values as node()*)

Example

declare variable $values := <a>12;

<result>{composite:formatIntegerSequence ($values//b)}</result>

Result

The output is of the form xs:string:

<result>1,2</result>

formatStringSequence
This function formats a sequence of strings as a comma-separated list of SQL literals.

TIBCO® Data Virtualization Reference Guide

726 | TDV Built-in Functions for XQuery

Syntax

composite:formatStringSequence ($values as node()*)

Example

declare variable $values := <a>12;

<result>{composite:formatStringSequence ($values//b)}</result>

Result

The output is of the form xs:string:

<result>'1','2'</result>

formatTimeSequence
This function formats a sequence of times as a comma-separated list of SQL literals.

Syntax

composite:formatTimeSequence ($values as node()*)

Example

declare variable $values := <a>00:00:0023:59:59;

<result>{composite:formatTimeSequence ($values//b)}</result>

TIBCO® Data Virtualization Reference Guide

727 | TDV Built-in Functions for XQuery

Result

The output is of the form xs:string:

<result>'00:00:00','23:59:59'</result>

formatTimestampSequence
This function formats a sequence of timestamps as a comma-separated list of SQL literals.

Syntax

composite:formatTimestampSequence ($values as node()*)

Example

declare variable $values := <a>2012-01-01 00:00:002012-12-31
23:59:59;

<result>{composite:formatTimestampSequence ($values//b)}</result>

Result

The output is of the form xs:string:

<result>'2012-01-01 00:00:00','2012-12-31 23:59:59'</result>

TIBCO® Data Virtualization Reference Guide

728 | Java APIs for Custom Procedures

Java APIs for Custom Procedures
Procedures are used to generate or act on data, much like a SELECT or an UPDATE
statement. The custom Java APIs are provided with the build at this location:

<TDV_install_dir>\apps\extension\docs\com\compositesw\extension

This topic describes TDV’s extended Java APIs that support custom procedures in the
system.

• com.compositesw.extension

• CustomCursor

• CustomProcedure

• CustomProcedureException

• ExecutionEnvironment

• ParameterInfo

• ProcedureConstants

• ProcedureReference

com.compositesw.extension
The extension package provides a mechanism for you to write custom procedures. All
interfaces for custom Java procedures are available in this package.

com.compositesw.extension

Interface Summary

CustomCursor Defines a cursor type.

CustomProcedure Defines a custom procedure.

TIBCO® Data Virtualization Reference Guide

729 | Java APIs for Custom Procedures

Interface Summary

ExecutionEnvironment Used by a procedure to interact with the TDV Server.

ProcedureConstants Contains constants used in the interfaces of the
com.compositesw.extension package.

ProcedureReference Provides a way to invoke a procedure and fetch its output
values.

Class Summary

ParameterInfo Contains information about a custom procedure’s input or output
parameter.

Exception Summary

CustomProcedureException Exception thrown by the methods of the extension APIs in
the package com.compositesw.extension.

CustomCursor
The CustomCursor interface returns a cursor type. All custom cursors must implement this
interface.

public interface CustomCursor

A custom procedure with just one output cursor can implement both the CustomProcedure
and the CustomCursor interfaces to avoid needing another class. A custom procedure with
more than one output cursor should use inner classes or separate classes.

Class Summary

ExecutionEnvironment Lets a procedure interact with the TDV
Server.

TIBCO® Data Virtualization Reference Guide

730 | Java APIs for Custom Procedures

Method Summary

void close
Frees the resources.

ParameterInfo[] getColumnInfo
Returns the metadata for the cursor.

Object[] next
Returns the next row, or NULL when done.

Method Detail

close

public void close()

This method is called to free resources. Calling this method multiple times has no effect,
and no exception is thrown.

Throws

This method throws CustomProcedureException.

getColumnInfo

public ParameterInfo[] getColumnInfo()

This method is called to get the metadata for the custom cursor.

Returns

This method returns the metadata for the cursor. A NULL value might be returned to
indicate that the caller should retrieve the metadata information by calling

TIBCO® Data Virtualization Reference Guide

731 | Java APIs for Custom Procedures

ProcedureReference.getParameterInfo.

Throws

This method throws CustomProcedureException if the cursor has been closed. This method
throws CustomProcedureException or SQLException if an error occurs while fetching the
metadata.

next

public Object[] next()

This method is called when more metadata is needed.

Returns

This method returns the next row, or NULL when done.

Throws

This method throws CustomProcedureException if the cursor has been closed. This method
throws CustomProcedureException or SQLException if an error occurs while fetching the
metadata.

CustomProcedure
The CustomProcedure interface defines a custom procedure. Any class implementing this
interface should define an empty constructor so that the custom procedure can be
properly instantiated.

public interface CustomProcedure

This interface extends ProcedureReference.

All methods in the CustomProcedure except for the constructor can throw a
CustomProcedureException if they encounter an error condition. Any exception thrown

TIBCO® Data Virtualization Reference Guide

732 | Java APIs for Custom Procedures

from these methods (including runtime exceptions) causes an error on the current action
to be passed up as a system error.

Method Summary

void commit

String getDescription

String getName

void initialize

void rollback

Serialization

The custom procedure class can implement the java.lang.Serializable interface to carry the
compensation state across a server restart. Variables that do not need to be restored after
a restart should be marked as transient.

Life Cycle

The life cycle of a custom procedure object is defined as follows:

• Introspection time—A constructor is used to make an object, introspection methods
are used to read method signatures, and then the object is discarded.

• Runtime setup—A constructor is used to make a new object and initialize is called.

• Runtime execution—Call invoke first, then retrieve and read from output parameter
values, and then retrieve output values. You can do setup and then not invoke at all.

• Runtime closing—If the object was invoked, call the close method when the invoke is
complete. Always call close before rollback or commit. Connections or resources
that are open or in use, and are not needed for commit or rollback, should be
cleaned up at this point. For example, if a query was performed on a connection but
no updates were performed, close the query now.

• Runtime commit or rollback—If the object was invoked, call close first, and later call
either commit or rollback. Call commit to commit on any connections where

TIBCO® Data Virtualization Reference Guide

733 | Java APIs for Custom Procedures

updates occurred, or call rollback to roll back all changes; after that, close or clean
up all remaining connections and resources.

Threading

The close method can be called concurrently with any other call such as invoke or
getOutputValues. In such cases, any pending methods should immediately throw a
CustomProcedureException.

Method Detail

commit

public void commit()

This method commits an open transaction.

Throws

This method throws a CustomProcedureException if invoked for the parent transaction. It
throws a SQLException if an error occurs.

getDescription

public String getDescription()

This method is called during data source introspection, and gets the description of the
procedure. This method should not return NULL.

Returns

This method returns a description of the procedure.

TIBCO® Data Virtualization Reference Guide

734 | Java APIs for Custom Procedures

getName

public String getName()

This method gets the short name of the procedure. This method is called during data
source introspection. The short name can be overridden during data source configuration.

This method should not return NULL.

Returns

This method returns the short name of the procedure.

initialize

public void initialize(ExecutionEnvironment qenv)

This method is called once immediately after constructing the class, and initializes the
query execution environment (ExecutionEnvironment). The execution environment contains
methods that are executed to interact with the server.

Parameter

qenv—Query execution environment.

rollback

public void rollback()

This method rolls back an open transaction.

Throws

This method throws CustomProcedureException, if invoked for the parent transaction. It
throws SQLException if an error occurs.

TIBCO® Data Virtualization Reference Guide

735 | Java APIs for Custom Procedures

CustomProcedureException
This exception is thrown by the methods of the extended APIs in the package
com.compositesw.extension. For a summary of the extended APIs, see Interface Summary.

public class CustomProcedureException

This exception extends Exception.

Constructor Summary

CustomProcedureException

CustomProcedureException

CustomProcedureException

CustomProcedureException

Constructor Detail

CustomProcedureException

public CustomProcedureException()

This is an empty constructor.

CustomProcedureException

public CustomProcedureException(String message)

This exception is thrown with a description of the error.

TIBCO® Data Virtualization Reference Guide

736 | Java APIs for Custom Procedures

Parameter

message—Description of the error.

CustomProcedureException

CustomProcedureException(String message, Throwable cause)

This exception is thrown with descriptions of the error and the error’s cause.

Parameters

message—Description of the error.

cause—Explanation of what caused the error.

CustomProcedureException

CustomProcedureException(Throwable cause)

This exception is thrown with a description of the error’s cause.

Parameter

cause—Explanation of what caused the error.

ExecutionEnvironment
ExecutionEnvironment provides an interface between a custom procedure and the TDV
Server.

public interface ExecutionEnvironment

TIBCO® Data Virtualization Reference Guide

737 | Java APIs for Custom Procedures

Method Summary

void commit

ExecutionEnvironement createTransaction

java.sql.ResultSet executeQuery

int executeUpdate

String getProperty

void log

ProcedureReference lookupNextHook

ProcedureReference lookupProcedure

void rollback

Method Detail

commit

public void commit()

This method commits an open transaction.

Throws

This method throws CustomProcedureException if invoked for the parent transaction; it
throws SQLException if an error occurs during the commit.

createTransaction

public ExecutionEnvironment createTransaction(int flags)

TIBCO® Data Virtualization Reference Guide

738 | Java APIs for Custom Procedures

This method starts an independent transaction, letting custom procedures have multiple
independent transactions open at the same time.

Parameter

flags—Used to pass in transaction options for compensate mode, recovery mode, and
recovery level.

Legal flag values are:

COMPENSATE* | NO_COMPENSATE

ROLLBACK* | BEST_EFFORT

IGNORE_INTERRUPT* | LOG_INTERRUPT | FAIL_INTERRUPT

Asterisks indicate the default values used if no flags are specified.

executeQuery

public java.sql.ResultSet executeQuery (String sql, Object[] args)

This method is used to execute a SELECT statement from inside the stored procedure. It
should not return NULL.

Parameters

sql—SQL statement.

args—Arguments for the query. Can be NULL if there are no arguments.

The args objects should comply with the Java to SQL typing conventions listed in Types.
Input cursors are accepted as CustomCursor and java.sql.ResultSet.

Throws

This method throws CustomProcedureException or SQLException.

TIBCO® Data Virtualization Reference Guide

739 | Java APIs for Custom Procedures

executeUpdate

public int executeUpdate (String sql)

This method executes an INSERT, UPDATE, or DELETE statement from inside the stored
procedure call.

Parameter

sql—SQL statement to execute.

Returns

Number of rows affected; -1 if number of rows affected is unknown.

Throws

This method throws CustomProcedureException if there is a problem executing the SQL.

getProperty

public String getProperty(String name)

This method gets environmental properties.

Parameter

name—Property to get.

Four property options are available: userName, userDomain, caseSensitive and
ignoreTrailingSpaces. Property names are not case-sensitive.

Returns

This method returns NULL if the property is not defined.

TIBCO® Data Virtualization Reference Guide

740 | Java APIs for Custom Procedures

log

public void log(int level, String log_message)

This method sends an entry to the system log.

Parameters

level—ERROR, INFO, or DEBUG

log_message—Log entry.

lookupNextHook

public ProcedureReference lookupNextHook()

This method is used by hook procedures to invoke the next hook in the list. It should not
return NULL.

Throws

This method throws CustomProcedureException.

lookupProcedure

public lookupProcedure (String procedureName)

This method looks up a procedure reference from the query.

Call the close method on the returned procedure when it is no longer needed. This method
does not return NULL.

Parameter

procedureName—Name of the procedure to look up.

TIBCO® Data Virtualization Reference Guide

741 | Java APIs for Custom Procedures

Throws

This method throws CustomProcedureException if the procedure is not found.

rollback

public void rollback()

This method rolls back an open transaction.

Throws

This method throws CustomProcedureException if invoked for the parent transaction, or
SQLException if an error occurs.

ParameterInfo
This class retrieves the description of procedures’ input and output parameters.

public class ParameterInfo

Constructor Summary

ParameterInfo (String name, int type)

Creates a new ParameterInfo with the specified parameter values.

ParameterInfo (String name, int type, int direction)

ParameterInfo (String name, int type, int direction, ParameterInfo[] columns)

ParameterInfo (String name, int type, int direction, String xmlSchema, String localName,
String namespaceURI)

TIBCO® Data Virtualization Reference Guide

742 | Java APIs for Custom Procedures

Method Summary

ParameterInfo[] getColumns

int getDirection

String getName

int getType

String getXmlSchema

Constructor Detail

ParameterInfo

public ParameterInfo (String name, int type)

Creates a new ParameterInfo with the specified parameter values.

Parameters

name—Name of the column or parameter.

type—One of the java.sql.Types: XML_STRING, TYPED_CURSOR, and GENERIC_CURSOR.

ParameterInfo

public ParameterInfo (String name, int type, int direction)

Creates a new ParameterInfo with the specified parameter values.

Parameters

name—Name of the column or parameter.

TIBCO® Data Virtualization Reference Guide

743 | Java APIs for Custom Procedures

type—Types are from java.sql.Types, plus XML_STRING, TYPED_CURSOR, and GENERIC_
CURSOR.

direction—The direction can be DIRECTION_IN, DIRECTION_INOUT, or DIRECTION_OUT.
This value is passed as zero for column definitions.

ParameterInfo

public ParameterInfo (String name, int type, int direction,

 ParameterInfo[] columns)

Creates a new ParameterInfo with the specified parameter values.

Parameters

name—Name of the column or parameter.

type—Types are from java.sql.Types, plus XML_STRING, TYPED_CURSOR, and GENERIC_
CURSOR.

direction—The direction can be DIRECTION_IN, DIRECTION_INOUT, or DIRECTION_OUT.
This value is passed as zero for a column definition.

columns—Non-null if the type is TYPED_CURSOR.

ParameterInfo

public ParameterInfo (String name, int type, int direction,

 String xmlSchema, String localName,

 String namespaceURI)

Creates a new ParameterInfo with the specified parameter values.

TIBCO® Data Virtualization Reference Guide

744 | Java APIs for Custom Procedures

Parameters

name—Name of the column or parameter.

type—Types are from java.sql.Types, plus XML_STRING, TYPED_CURSOR, and GENERIC_
CURSOR.

direction—The direction can be DIRECTION_IN, DIRECTION_INOUT, or DIRECTION_OUT.
This value is passed as zero for column definitions.

xmlSchema—Non-null if the type is XML_STRING.

localName—Local name (element name) of the selected element.

namespaceURI—URI of the namespace for the selected element.

Method Detail

getColumns

public ParameterInfo[] getColumns()

This method retrieves columns.

Returns

This method returns columns if the column data type is TYPED_CURSOR.

getDirection

public int getDirection()

This method gets the direction of the parameter.

TIBCO® Data Virtualization Reference Guide

745 | Java APIs for Custom Procedures

Returns

This method returns the direction of the parameter, which can be DIRECTION_IN,
DIRECTION_INOUT, or DIRECTION_OUT.

getName

public String getName()

This method gets the name of the column or parameter.

Returns

This method returns the name of the column or parameter.

getType

public int getType()

This method gets the type of the column or parameter.

Returns

This method returns the type of the column or parameter. The types are from
java.sql.Types, plus XML_STRING, TYPED_CURSOR, and GENERIC_CURSOR.

getXmlSchema

public String getXmlSchema()

This method gets a schema.

TIBCO® Data Virtualization Reference Guide

746 | Java APIs for Custom Procedures

Returns

This method returns the schema if the type is XML_STRING.

ProcedureConstants
This interface implements the constants that are used in the interfaces of the
com.compositesw.extension package.

public interface ProcedureConstants

For a summary of the extended APIs, see Interface Summary.

Field Summary

int DIRECTION_IN

int DIRECTION_INOUT

int DIRECTION_NONE

int DIRECTION_OUT

int GENERIC_CURSOR

int HOOK_TYPE_SQL

int HOOK_TYPE_PROCEDURE

int LOG_ERROR

int LOG_INFO

int TXN_BEST_EFFORT

int TXN_COMPENSATE

TIBCO® Data Virtualization Reference Guide

747 | Java APIs for Custom Procedures

Field Summary

int TXN_NO_COMPENSATE

int TXN_ROLLBACK

int TXN_IGNORE_INTERRUPT

int TXN_LOG_INTERRUPT

int TXN_NO_COMPENSATE

int TYPED_CURSOR

int XML_STRING

Field Detail

DIRECTION_IN

public static final int DIRECTION_IN

IN parameter direction constant.

DIRECTION_INOUT

public static final int DIRECTION_INOUT

INOUT parameter direction constant.

DIRECTION_NONE

public static final int DIRECTION_NONE = 0

NONE parameter direction constant.

TIBCO® Data Virtualization Reference Guide

748 | Java APIs for Custom Procedures

This constant is used for ParameterInfo objects that represent columns in a cursor. See
ProcedureReference.getParameterInfo.

DIRECTION_OUT

public static final int DIRECTION_OUT

OUT parameter direction constant.

GENERIC_CURSOR

public static final int GENERIC_CURSOR = 5520;

Type constant for a cursor whose schema is resolved at runtime.

HOOK_TYPE_SQL

public static final int HOOK_TYPE_SQL = HOOK_TYPE_SQL

Indicates that a hook is being executed for a query or update.

HOOK_TYPE_PROCEDURE

public static final int HOOK_TYPE_PROCEDURE = HOOK_TYPE_PROCEDURE

Indicates that a hook is being executed for a stored procedure.

LOG_DEBUG

public static final int LOG_DEBUG

Debug logging level (3).

TIBCO® Data Virtualization Reference Guide

749 | Java APIs for Custom Procedures

LOG_ERROR

public static final int LOG_ERROR

Error logging level (1).

LOG_INFO

public static final int LOG_INFO

Info logging level (2).

TXN_BEST_EFFORT

public static final int TXN_BEST_EFFORT

Best-effort transaction flag.

TXN_COMPENSATE

public static final int TXN_COMPENSATE = TXN_COMPENSATE

Compensate transaction flag.

TXN_FAIL_INTERRUPT

public static final int TXN_FAIL_INTERRUPT

Fail-interrupt transaction flag.

TXN_IGNORE_INTERRUPT

public static final int TXN_IGNORE_INTERRUPT

Ignore-interrupt transaction flag.

TIBCO® Data Virtualization Reference Guide

750 | Java APIs for Custom Procedures

TXN_LOG_INTERRUPT

public static final int TXN_LOG_INTERRUPT

Log-interrupt transaction flag.

TXN_NO_COMPENSATE

public static final int TXN_NO_COMPENSATE

No-compensation transaction flag.

TXN_ROLLBACK

public static final int TXN_ROLLBACK

Rollback transaction flag.

TYPED_CURSOR

public static final int TYPED_CURSOR = 5521;

Type constant for a cursor with accompanying metadata.

XML_STRING

public static final int XML_STRING = 5500;

Type constant for hierarchical XML data.

ProcedureReference
The ProcedureReference interface provides a way to invoke a procedure and fetch its
output values. It also provides metadata information for the procedure parameters.

TIBCO® Data Virtualization Reference Guide

751 | Java APIs for Custom Procedures

public interface ProcedureReference

ProcedureReference is a parent interface for the CustomProcedure interface. It is also used
as the return type when looking up a procedure from the query engine.

The type of each Java object must be the default Java object type corresponding to the
input or output parameter’s SQL type, following the mapping for built-in types specified in
the JDBC specification (per the getObject method on java.sql.ResultSet).

Method Summary

void cancel

void close

int getNumAffectedRows

Object getOutputValue

Object[] getOutputValues

ParameterInfo[] getParameterInfo

void invoke

Method Detail

cancel

void cancel()

This method cancels the procedure reference and any underlying cursors and statements.

close

public void close()

TIBCO® Data Virtualization Reference Guide

752 | Java APIs for Custom Procedures

The implementation of this method should close all open cursors and all independent
transactions that this method has created.

This method is called when a procedure reference is no longer needed. It is possible to call
this method concurrently with any other call such as invoke or getOutputValues, but when
called concurrently with another call, this method should cause a
CustomProcedureException.

getNumAffectedRows

public int getNumAffectedRows()

This method retrieves the number of rows that were inserted, updated, or deleted during
the execution of a procedure.

Returns

A return value of -1 indicates that the number of affected rows is unknown.

Throws

This method throws CustomProcedureException, or SQLException if an error occurs when
getting the number of affected rows.

getOutputValue

public Object[] getOutputValue (int index)

This method retrieves the output value at the given index.

Returns

This method returns a procedure’s output value at a given index. An output cursor can be
returned as either CustomCursor, or java.sql.ResultSet. The returned objects should comply
with the Java-to-SQL typing conventions listed in Types.

TIBCO® Data Virtualization Reference Guide

753 | Java APIs for Custom Procedures

This method should not return NULL.

Throws

This method throws CustomProcedureException, or SQLException if an error occurs when
getting the output value. This method throws ArrayIndexOutOfBoundsException if the index
value is out of bounds.

getOutputValues

public Object[] getOutputValues()

This method retrieves output values.

Returns

This method returns a procedure’s output values as either CustomCursor or
java.sql.ResultSet. The returned objects should comply with the Java-to-SQL typing
conventions listed in Types.

This method should not return NULL.

Throws

This method throws CustomProcedureException, or SQLException if an error occurs when
getting the output values.

Types

The getOutputValues, method of the ProcedureReference, interface retrieves the output
values in a procedure. The returned objects should comply with the Java-to-SQL typing
conventions as defined in this section.

The type of each Java object must be the default Java object type corresponding to the
input or output parameter’s TDV JDBC data type, following the mapping for built-in types
specified in the JDBC specification (per the getObject method on java.sql.ResultSet).

TIBCO® Data Virtualization Reference Guide

754 | Java APIs for Custom Procedures

The following table maps the Java object types to TDV JDBC data types.

Java Object Type TDV JDBC Data Type

byte[] BINARY, VARBINARY, or LONGVARBINARY

java.lang.Boolean BIT or BOOLEAN

java.lang.Double DOUBLE

java.lang.Float REAL or FLOAT

java.lang.Integer INTEGER, SMALLINT, or TINYINT

java.lang.Long BIGINT

java.lang.String CHAR, VARCHAR, or LONGVARCHAR

java.math.BigDecimal NUMERIC or DECIMAL

java.sql.Blob BLOB

java.sql.Clob CLOB

java.sql.Date DATE

java.sql.Time TIME

java.sql.TimeStamp TIMESTAMP

Special Types and Value

If the input or output parameter type is XML_STRING, the Java object type should be
java.lang.String.

If the parameter type is TYPED_CURSOR or GENERIC_CURSOR, the Java object type is
always java.sql.ResultSet for input parameters, and can be either CustomCursor, or
java.sql.ResultSet for output parameters.

If the value is a SQL NULL, the procedure returns a Java NULL.

TIBCO® Data Virtualization Reference Guide

755 | Java APIs for Custom Procedures

Hierarchical Data

This interface is primarily designed around tabular data. A stored procedure that has
hierarchical input or output should accept or return one or more scalar parameters that
contain XML string data. For methods that use java.sql.Types, the constant XML_STRING,
should be used for hierarchical XML data.

Cursors

The types TYPED_CURSOR, and GENERIC_CURSOR, are used to pass in and out cursor
values. A typed cursor has a schema. A generic cursor’s schema is resolved at run time.
Procedures with generic cursor outputs cannot be used in SQL.

getParameterInfo

public ParameterInfo[] getParameterInfo()

This method is called during introspection to get the description of the procedure’s input
and output parameters. This method should not return NULL.

Returns

This method returns the description of the procedure’s input and output parameters.

invoke

public void invoke(Object[] inputValues)

This method is called to invoke a procedure. It is called only once per procedure instance.

Parameter

inputValues—Values for the input parameters. Must not be NULL.

TIBCO® Data Virtualization Reference Guide

756 | Java APIs for Custom Procedures

Throws

This method throws CustomProcedureException, or SQLException if an error occurs during
invocation.

TIBCO® Data Virtualization Reference Guide

757 | Function Support for Data Sources

Function Support for Data Sources
This topic lists all functions that can be pushed to each data source, by vendor. The first
sections of this topic apply to every type of data source.

• Pushing or Not Pushing Functions

• Function Support Issues when Combining Data Sources

• TDV Native Function Support

Pushing or Not Pushing Functions
A large number of SQL functions can be either executed within the TDV Server or pushed
down to data sources for execution.

In general it is preferable to push function execution to the data source, for faster
execution and reduced data transfer. However, for various reasons, such as query
federation, it may be preferable not to push function execution to the data source. Query
engine execution plans, or explicit SQL query options (described in TDV Query Engine
Options), might force execution in the TDV Server rather than in the data source.

Refer to TDV Support for SQL Functions, to see which functions can be executed in the TDV
Server (that is, not pushed). TDV supports a wide variety of functions, although not every
function available in every data source.

A few functions, such as DENSE_RANK and FIRST_VALUE, can be executed only in the data
source. These are called “push-only” functions. Function Support Summary, page 749, has
a column that indicates which functions are push-only.

Because data sources implement many functions differently from each other and from TDV,
results of execution might not be the same. The section Function Support Issues when
Combining Data Sources, discusses many of these differences.

import-link:appendix_b_functions-by-data-source_3835180021_92087

TIBCO® Data Virtualization Reference Guide

758 | Function Support for Data Sources

Function Support Issues when Combining Data
Sources
Data virtualization typically involves many data sources, each with its own collection of
data types and functions and its own way of handling them. Besides this, queries and
functions can be executed natively in the TDV Server. The number of combinations,
therefore, is very large.

Several issues that might result from combining data sources are covered:

• ASCII Function with Empty String Argument

• Case Sensitivity and Trailing Spaces

• Collating Sequence

• Data Precision

• Decimal Digit Limitation on Functions

• INSTR Function

• Interval Calculations

• Mapping of Native to TDV Data Types Across TDV Versions

• MERGE

• ORDER BY Clause

• SPACE Function

• SQL Server Sorting Order

• Time Functions

• Truncation vs. Rounding

ASCII Function with Empty String Argument
When the ASCII function is applied to an empty string argument, what it returns varies for
different data sources. For example, ASCII(‘’) returns zero as implemented in PostgreSQL,
Sybase and MySQL. It returns NULL as implemented in TDV, SQL Server, Oracle, and
Informix.

TIBCO® Data Virtualization Reference Guide

759 | Function Support for Data Sources

Case Sensitivity and Trailing Spaces
Case sensitivity and treatment of trailing spaces can be controlled at the server, session,
request, and query level, and might be the same or different for TDV and the data sources
involved. For a detailed discussion of these settings, see the “TDV Configuration Options”
topic of the TDV Administration Guide.

Collating Sequence
TDV uses binary collation and does not support changing the collation setting. So when the
underlying data source’s collation setting is different, push and no-push query results
might vary for queries that depend on collation—for example, a query that sorts on a
column containing CHAR or VARCHAR data.

Data sources support different collating schemes (some support multiple collating
schemes), and their defaults are not always the same as TDV. Furthermore, TDV cannot
change data source collating schemes connection by connection or query by query,
because most data sources do not allow that.

This difference in collation can cause unpredictable or incorrect results when columns
contain special characters (%, -, and so on). Users should looks for the following SQL
constructs to make sure that their results are not affected by this difference:

• During JOINs, TDV picks SORT MERGE as the default join algorithm. When executing
the SORT MERGE, TDV injects an ORDER BY clause on both sides. If one side of the
join contains data source data, the sorting order might be different from what TDV
expects, and so the MERGE process may produce incorrect results.

An option is to use {OPTION HASH} in SORT MERGE queries, forcing TDV to use a
HASH algorithm instead of the SORT MERGE algorithm. Be aware, though, that the
HASH algorithm uses more memory because the query engine needs to hash the
smaller side and then stream the bigger side over it.

• In general, data sources may have different result when ORDER BY is pushed vs.
executed within TDV.

• If a WHERE clause contains a predicate with special characters, results might differ
between push and no-push.

A check box near the bottom of the Advanced tab for data sources lets you mark the data
sources as Collation Sensitive. TDV does not use the SORT MERGE join algorithm if one of
the data sources involved in the join is marked as collation sensitive.

TIBCO® Data Virtualization Reference Guide

760 | Function Support for Data Sources

In many situations you can specify a different collating scheme in the SQL (for example,
using “COLLATE Latin1_General_BIN”), but this can interfere with indexing and thus affect
performance.

Data Precision

FLOAT and REAL Precision

Many data sources treat FLOAT and REAL as single-precision, but TDV treats these data
types as DOUBLE. Queries can therefore return different results (more or fewer significant
digits) depending on whether they are pushed or not pushed.

INTEGER Precision

When an value of INTEGER type is divided by another value of INTEGER type, the result
might be INTEGER or it might be some other SQL Standard exact numeric type with
implementation-defined precision and scale. So, for example, dividing 10 by 3 might
produce exactly 3, or it might produce 3.3333.

Decimal Digit Limitation on Functions
In TDV version 7.0.2 or later, add, subtract, multiply, divide, and modulo operators in
functions follow SQL Server's behavior, which prevents precision/scale from exceeding 38
digits. But customers might need to wrap CASTs around columns in cached tables whose
data types no longer match in such situations, so a configuration parameter has been
made available to restore pre-7.0.2 behavior.

The name of the boolean configuration parameter is Decimal digit limitation in functions:

• When set to True (the default), add, subtract, multiply, divide, and modulo operators
in functions prevent precision/scale from exceeding 38 digits.

• When set to False, add, subtract, multiply, divide, and modulo operators in functions
allow precision/scale to exceeding 38 digits.

TIBCO® Data Virtualization Reference Guide

761 | Function Support for Data Sources

INSTR Function
If INSTR is executed in TDV, it returns NULL for INSTR('','C') and 0 for INSTR(' ','C').

Note: The difference is a space character. The C character is just an example.

When pushed to some databases, INSTR('','C') might return 0 instead of NULL.

Interval Calculations
The JDBC drivers of most data sources do not support mapping INTERVAL data types in the
data source to INTERVAL data types in TDV. Instead, they are mapped to VARCHAR(13) in
TDV. Because of this mapping, functions that involve comparison of numeric values (such
as AVG, MAX, and MIN) can return incorrect results.

For example, ‘-99’ is evaluated as greater than ‘ 99’ (note the leading space character) for
no-push interval calculations, because string comparisons consider ASCII collating order, in
which space comes before minus-sign.

A workaround is to embed the CAST function. For example, when finding the maximum
value in column c1, which is an interval, use:

MAX(CAST(c1 AS INTERVAL MONTH TO DAY))

Note: A notable exception is the PostgreSQL JDBC driver, which supports mapping
INTERVAL data types to INTERVAL data types.

Mapping of Native to TDV Data Types Across TDV
Versions
As of version 7.0, TDV supports the BOOLEAN data type. One result is that BOOL or
BOOLEAN data types in data sources are now mapped to BOOLEAN in TDV rather than to
CHAR or BIT.

Effects of this change can include:

• Existing caches (target tables) may become incompatible and may have to be re-
created.

• Parts of queries that used to push completely may not push now.

TIBCO® Data Virtualization Reference Guide

762 | Function Support for Data Sources

• Some views and procedures may be impacted if, for example, they apply some
function to the column introspected as a CHAR, and now that it is a BOOLEAN it is
no longer a valid argument for that function (or operator, clause, and so on).

• If a column was used in a JOIN criterion or a WHERE predicate, the column might
now require an explicit CAST to be compared to another value.

Possible remedies include:

• Re-create incompatible caches or target tables created in TDV versions prior to 7.0.

• Remap BOOLEAN back to CHAR or BIT in values.xml and reintrospect the data
source.

MERGE
TDV uses SQL 2003/2008 MERGE syntax. TDV pushes MERGE if the data source supports it.

Federated merge is possible if the target table's database supports positioned updates,
inserts and deletes in its JDBC driver.

MERGE and Data Sources

The following table lists data sources and their treatment when MERGE is involved.

Data Source Comments

DB2 Versions 8 Supports ANSI MERGE 2003/2008. MERGE is pushed whenever
possible. However, in the non-push (federated) case, the driver
does not support some of the features required for full support.

If the MERGE statement contains a WHEN NOT MATCHED THEN
INSERT clause, the MERGE statement may fail. Newer versions of
DB2 do not have this problem.

The workaround is to change the MERGE statement so that it is
completely pushed to DB2.

DB2 Versions 9.5,
10.5, and z/OS

TIBCO® Data Virtualization Reference Guide

763 | Function Support for Data Sources

Data Source Comments

MySQL Does not support MERGE. However, it does have REPLACE INTO
and DUPLICATE KEY.

For a TDV MERGE of MySQL data to succeed, the MySQL target
table must have a primary key, and all columns in the primary key
must be part of the MERGE.

For a MERGE on tables from the same MySQL connection: if one
ResultSet is modified, the driver closes the other ResultSet. The
workaround is to create a copy of the data source so that you are
using two different JDBC connections to the same data source.

Netezza Not possible to do a MERGE, because Netezza does not support
updatable cursors.

Oracle

SQL Server 2008,
2012

Sybase ASE Version 15.7 is the first version of ASE to support MERGE.

Sybase IQ Versions up to and including 16 do NOT support MERGE.

The JTDS driver for Sybase supports scrolling updatable result
sets; the JConnect 7 driver does not.

Teradata Teradata 12 and 13 support SQL 2003 MERGE.

Teradata 14 supports DELETE, but does not support search
conditions in the WHEN clause.

Federated MERGE may be possible under either of the following
conditions:

• The target table contains a column that is the only member
of a unique index.

• A column is a member of one or more unique indexes on
the table, and all the columns of at least one unique index

TIBCO® Data Virtualization Reference Guide

764 | Function Support for Data Sources

Data Source Comments

have been selected in the result set.

 Does not support federated MERGE because its driver does not
support scrollable cursors.

 Supports ANSI SQL 2003 MERGE.

MERGE Examples

This section includes a number of representative MERGE examples.

Example

This example tests the subquery IN clause.

PROC (: !DSMAP)

 PROCEDURE m_mixed(out x CURSOR)

 BEGIN

 DECLARE guid VARCHAR(10) DEFAULT SUBSTRING('${ITEM_GUID}', 1, 10);

 DELETE FROM /users/composite/test/sources/oracle/DEV1/UPDATES ;

 INSERT INTO /users/composite/test/sources/oracle/DEV1/UPDATES (col_
id,col_decimal, col_varchar) VALUES(3,30,guid),(4,40,guid),(5,50,guid),
(6,60,guid),(-1,-10,guid);

 MERGE INTO /users/composite/test/sources/oracle/DEV1/UPDATES

TIBCO® Data Virtualization Reference Guide

765 | Function Support for Data Sources

 USING (SELECT * FROM /shared/examples/ds_
inventory/tutorial/inventorytransactions) inventorytransactions

 ON col_id = unitsreceived

 WHEN MATCHED AND guid = col_varchar and col_decimal IN (SELECT o10_id *
10 FROM /users/composite/test/sources/oracle/DEV1/O10 WHERE o10_id IN
(3,4)) THEN DELETE;

 OPEN x FOR SELECT col_id,col_char,col_tinyint,col_smallint,col_decimal
FROM /users/composite/test/sources/oracle/DEV1/UPDATES WHERE guid = col_
varchar;

 END

Example

This example tests Microsoft SQL Server.

PROC (SERIAL)

 PROCEDURE m_pushed(out x CURSOR)

 BEGIN

 DECLARE guid VARCHAR(10) DEFAULT SUBSTRING('${ITEM_GUID}', 1, 6) ||
'019';

 DELETE FROM /users/composite/test/sources/mssql_
2k8/devstd/devstd/dbo/updates WHERE guid = c_varchar;

 INSERT INTO /users/composite/test/sources/mssql_
2k8/devstd/devstd/dbo/updates (c_id, c_decimal, c_varchar) values(3,
null, guid), (4, 40, guid);

TIBCO® Data Virtualization Reference Guide

766 | Function Support for Data Sources

 MERGE INTO /users/composite/test/sources/mssql_
2k8/devstd/devstd/dbo/updates

 USING /users/composite/test/sources/mssql_2k8/devstd/devstd/dbo/s10

 ON c_id = S_id AND c_varchar = guid

 WHEN MATCHED AND c_decimal + 1 IS NOT NULL THEN UPDATE SET c_id = S_id
+10000 + c_id * 1000, c_char=S_char

 ;

 OPEN x FOR SELECT c_id, c_decimal, c_char FROM
/users/composite/test/sources/mssql_2k8/devstd/devstd/dbo/updates WHERE
c_varchar = guid;

 END

Example

This example tests DB2.

PROC (DISABLED)

 PROCEDURE m_mixed(out x CURSOR)

 BEGIN

 DELETE FROM /users/composite/test/sources/"db2_9.5"/qa1_dev100_
designbyexample/QA1/UPDATES;

TIBCO® Data Virtualization Reference Guide

767 | Function Support for Data Sources

 INSERT INTO /users/composite/test/sources/"db2_9.5"/qa1_dev100_
designbyexample/QA1/UPDATES (c_id, c_decimal, c_varchar) values(3, null,
'${ITEM_GUID}'), (4, 40, '${ITEM_GUID}');

 MERGE INTO /users/composite/test/sources/"db2_9.5"/qa1_dev100_
designbyexample/QA1/UPDATES

 USING /users/composite/test/sources/mssql_2k8/devstd/devstd/dbo/s10

 ON c_id = S_id and c_varchar = '${ITEM_GUID}'

 WHEN NOT MATCHED THEN INSERT (c_id,c_char, c_varchar) VALUES (s_int,
'hey' || S_money, '${ITEM_GUID}');

 OPEN x FOR SELECT c_id, c_char FROM /users/composite/test/sources/"db2_
9.5"/qa1_dev100_designbyexample/QA1/UPDATES WHERE c_varchar = '${ITEM_
GUID}';

 END

Example

In a MERGE statement, the same row of a table cannot be the target for combinations of
UPDATE, DELETE and INSERT operations. This happens when a target row matches more
than one source row. Refine the ON clause to ensure a target row matches at most one
source row, or use the GROUP BY clause to group the source rows.

PROC

 PROCEDURE m_pushed(out x CURSOR)

 BEGIN

TIBCO® Data Virtualization Reference Guide

768 | Function Support for Data Sources

 DECLARE guid VARCHAR(10) DEFAULT SUBSTRING('${ITEM_GUID}', 1, 10);

 DELETE FROM /users/composite/test/sources/oracle/DEV1/UPDATES ;

 INSERT INTO /users/composite/test/sources/oracle/DEV1/UPDATES (col_
id,col_decimal, col_varchar) VALUES(3,30, guid);

 MERGE INTO /users/composite/test/sources/oracle/DEV1/UPDATES

 USING (SELECT * FROM /shared/examples/ds_
inventory/tutorial/inventorytransactions) inventorytransactions

 ON col_id = purchaseorderid

 WHEN MATCHED AND col_varchar = guid THEN UPDATE SET col_
tinyint=productid;

 END

Example

This example tests that DB2 does not allow a row to be deleted twice.

PROC

 PROCEDURE m_error(out x CURSOR)

 BEGIN

 DECLARE guid VARCHAR(10) DEFAULT SUBSTRING('${ITEM_GUID}', 1, 10);

TIBCO® Data Virtualization Reference Guide

769 | Function Support for Data Sources

 DELETE FROM /users/composite/test/sources/"db2_9.5"/qa1_dev100_
designbyexample/QA1/UPDATES;

 INSERT INTO /users/composite/test/sources/"db2_9.5"/qa1_dev100_
designbyexample/QA1/UPDATES (c_id, c_decimal, c_varchar) values(1, null,
guid);

 MERGE INTO /users/composite/test/sources/"db2_9.5"/qa1_dev100_
designbyexample/QA1/UPDATES

 USING (SELECT case WHEN "mixedCaseCol" in (1,2) THEN 1 ELSE
"mixedCaseCol" end "mixedCaseCol"FROM
/users/composite/test/sources/"db2_9.5"/qa1_dev100_
designbyexample/mixedCaseSchema/mixedCaseTable) mixedCaseTable

 ON c_id = mixedCaseCol

 WHEN MATCHED AND c_varchar = guid THEN DELETE

 WHEN NOT MATCHED THEN INSERT (c_id, c_varchar, c_decimal) VALUES (3,
guid, 50);

 OPEN x FOR SELECT c_id, c_decimal FROM
/users/composite/test/sources/"db2_9.5"/qa1_dev100_
designbyexample/QA1/UPDATES WHERE guid = c_varchar;

 END

Example

This test is a NULL scan. Nothing should be executed.

PROC

 PROCEDURE m_nullscan()

TIBCO® Data Virtualization Reference Guide

770 | Function Support for Data Sources

 BEGIN

 MERGE INTO /users/composite/test/sources/oracle/DEV1/UPDATES

 USING /shared/examples/ds_inventory/tutorial/inventorytransactions

 ON 1<>1

 WHEN MATCHED THEN DELETE

 ;

 END

Example

In this test, the left side of the JOIN is a physical selection.

PROC

 PROCEDURE m_mixed_physical_selection()

 BEGIN

 MERGE

 INTO /users/composite/test/sources/oracle/DEV1/UPDATES

 USING /shared/examples/ds_inventory/tutorial/inventorytransactions

 ON col_id = purchaseorderid AND col_char = pri_mp(781598358)

TIBCO® Data Virtualization Reference Guide

771 | Function Support for Data Sources

 WHEN MATCHED THEN UPDATE SET col_tinyint=productid;

 MERGE {option disable_push}

 INTO /users/composite/test/sources/oracle/DEV1/UPDATES

 USING /shared/examples/ds_inventory/tutorial/inventorytransactions

 ON col_id = purchaseorderid AND col_char = pri_mp(781598358)

 WHEN MATCHED THEN UPDATE SET col_tinyint=productid;

 END

Example

This test verifies that MySQL requires the target table to have a unique index for all
columns to be selected in that index.

PROC

 PROCEDURE m_mixed()

 BEGIN

 MERGE INTO /users/composite/test/sources/mysql_v5/inventory/products

 USING /users/composite/test/sources/mysql_
v5/inventory/inventorytransactions

 ON productname = transactiondescription

TIBCO® Data Virtualization Reference Guide

772 | Function Support for Data Sources

 WHEN MATCHED THEN UPDATE SET categoryid = categoryid

 ;

 END

Example

If the following SQL had used a SELECT statement, the logical plan generator would
probably prune the left side. Using a MERGE prevents this from happening.

PROC

 PROCEDURE m_outer_join_pruner()

BEGIN

 MERGE

 /users/composite/test/sources/mysql_v5/covoter/district USING

 /users/composite/test/sources/mysql_v5/mysql/m10

 ON

 m10.m_id = district.oid

 WHEN MATCHED THEN DELETE;

 END

TIBCO® Data Virtualization Reference Guide

773 | Function Support for Data Sources

Example

The following MERGE is actually a no-op scan. No rows are matched, and there is no WHEN
NOT MATCHED clause. The query engine should replace it with a no-op scan operator.

PROC

 PROCEDURE null_scan()

 BEGIN

 MERGE INTO /users/composite/test/sources/oracle/DEV1/UPDATES u

 USING /shared/examples/ds_inventory/tutorial/products p

 ON 1 = 2

 WHEN MATCHED THEN DELETE

 ;

 END

ORDER BY Clause
An ORDER BY clause can return results in a different order when pushed vs. not pushed.
For example, TDV returns NULLs first and considers the unary minus-sign when ordering
floating-point numbers.

SPACE Function
Depending on where it is executed, the SPACE function with negative arguments can return
different results. For example, for SPACE(-1):

TIBCO® Data Virtualization Reference Guide

774 | Function Support for Data Sources

• TDV (function not pushed) returns NULL.

• Microsoft SQL Server returns NULL.

• DB2 throws an exception.

• Greenplum, MySQL, PostgreSQL, and return nothing.

SQL Server Sorting Order
SQL Server supports multiple collating schemes, and its default is not the same as TDV.
Furthermore, TDV cannot change data source collating schemes connection by connection.

The default SQL Server collating behavior results in incorrect results when columns contain
special characters in situations like this:

• SQL Server data is on one side of a SORT MERGE join algorithm. The query engine
inserts an ORDER BY clause on the joining columns, and the orderings differ.

An option is to use {OPTION HASH} in SORT MERGE queries, forcing TDV to use a
HASH algorithm instead of SORT MERGE for joins. Be aware, though, that the HASH
algorithm uses more memory because the query engine needs to hash the smaller
side and then streams the bigger side over it.

• SQL Server data is in a comparison predicate of a WHERE clause.

• SQL Server data is in an ORDER BY clause.

In many situations you can specify a different collating scheme in the SQL (for example,
using “COLLATE Latin1_General_BIN”), but this can interfere with indexing and thus affect
performance.

Time Functions
When TDV deals with data types such as TIME or TIMESTAMP that are combined with
TIMEZONE, TDV applies the TIMEZONE offset to the TIME or TIMESTAMP, but the original
time zone information is then lost as the data is further manipulated.

The fractional-second precision of a returned TIMESTAMP value (milliseconds,
microseconds, and so on) might differ depending on whether a query is pushed or not, or
which data source processes the query.

TIBCO® Data Virtualization Reference Guide

775 | Function Support for Data Sources

Truncation vs. Rounding
TDV truncates values to the right of the decimal point when converting a NUMERIC,
DECIMAL, FLOAT, or DOUBLE to an INTEGER type. Some data sources do rounding; others
match TDV behavior. The SQL standard leaves implementation up to the vendor.

Because of this difference, results can differ when:

• Functions are applied that perform such conversions

• Numeric data is CAST to an INTEGER type

• Type promotion is performed during caching

In most cases, the TDV query engine warns the user when it detects a mismatch of this
kind. However, the query engine cannot detect all such mismatches, and the query engine
cannot normalize data source behavior for federated queries.

TDV Native Function Support
TDV as a data source supports the following types of functions:

• TDV Aggregate Function Support

• TDV Character Function Support

• TDV Conditional Function Support

• TDV Conversion Function Support

• TDV Date Function Support

• TDV Numeric Function Support

TDV Aggregate Function Support
TDV as a data source supports the aggregate functions listed in the table below.

TIBCO® Data Virtualization Reference Guide

776 | Function Support for Data Sources

TDV Aggregate Function Notes

AVG

COUNT

LISTAGG

MAX

MIN

PERCENTILE_CONT

PERCENTILE_DISC

SUM

VARIANCE_POP

VARIANCE_SAMP

TDV Character Function Support
TDV as a data source supports the character functions listed in the table below.

TDV Character Function Notes

CONCAT

LENGTH

LOWER

POSITION

REPLACE

TIBCO® Data Virtualization Reference Guide

777 | Function Support for Data Sources

TDV Character Function Notes

RTRIM

SUBSTRING

TRIM

UPPER

TDV Conditional Function Support
TDV as a data source supports the conditional function listed in the table below.

TDV Conditional Function Notes

NULLIF

TDV Conversion Function Support
TDV as a data source supports the conversion functions listed in the table below.

TDV Conversion Function Notes

CAST

TO_CHAR

TO_NCHAR

TO_DATE

TO_NUMBER

TO_TIMESTAMP

TIBCO® Data Virtualization Reference Guide

778 | Function Support for Data Sources

TDV Date Function Support
TDV as a data source supports the date functions listed in the table below.

TDV Date Function Notes

YEAR

TDV Numeric Function Support
TDV as a data source supports the numeric functions listed in the table below.

TDV Numeric Function Notes

ABS

ACOS

ASIN

ATAN

CEILING

COS

COT

DEGREES

EXP

FLOOR

LOG

TIBCO® Data Virtualization Reference Guide

779 | Function Support for Data Sources

TDV Numeric Function Notes

PI

POWER

RADIANS

ROUND

SIN

SQRT

TAN

File Function Support
TDV supports the following types of functions for file data sources:

• File Aggregate Function Support

• File Character Function Support

• File Conversion Function Support

• File Date Function Support

• File Numeric Function Support

File Aggregate Function Support
TDV supports the aggregate functions listed in the table below for file data sources.

File Aggregate Function Notes

AVG

TIBCO® Data Virtualization Reference Guide

780 | Function Support for Data Sources

File Aggregate Function Notes

COUNT

MAX

MIN

SUM

File Character Function Support
TDV supports the character functions listed in the table below for file data sources.

File Character Function Notes

CONCAT

LENGTH

LOWER

REPLACE

RTRIM

SUBSTRING

TRIM

UPPER

File Conversion Function Support
TDV supports the conversion functions listed in the table below for file data sources.

TIBCO® Data Virtualization Reference Guide

781 | Function Support for Data Sources

File Conversion Function Notes

CAST

TO_CHAR

TO_DATE

TO_NUMBER

TO_TIMESTAMP

File Date Function Support
TDV supports the date functions listed in the table below for file data sources.

File Date Function Notes

CURDAY

CURTIME

CURTIMESTAMP

DAY

MONTH

YEAR

File Numeric Function Support
TDV supports the numeric functions listed in the table below for file data sources.

TIBCO® Data Virtualization Reference Guide

782 | Function Support for Data Sources

File Numeric Function Notes

ABS

ACOS

ASIN

ATAN

CEILING

COS

COT

DEGREES

EXP

FLOOR

LOG

PI

POWER

RADIANS

ROUND

SIN

SQRT

TAN

TIBCO® Data Virtualization Reference Guide

783 | Function Support for Data Sources

XML Function Support
TDV supports the following types of functions for XML data sources:

• XML Aggregate Function Support

• XML Character Function Support

• XML Conversion Function Support

• XML Date Function Support

• XML Numeric Function Support

XML Aggregate Function Support
TDV supports the aggregate functions listed in the table below for XML data sources.

XML Aggregate Function Notes

AVG

COUNT

MAX

MIN

SUM

XML Character Function Support
TDV supports the character functions listed in the table below for XML data sources.

XML Character Function Notes

CONCAT

TIBCO® Data Virtualization Reference Guide

784 | Function Support for Data Sources

XML Character Function Notes

LENGTH

LOWER

REPLACE

RTRIM

SUBSTRING

TRIM

UPPER

XML Conversion Function Support
TDV supports the conversion functions listed in the table below for XML data sources.

XML Conversion Function Notes

CAST

TO_CHAR

TO_DATE

TO_NUMBER

TO_TIMESTAMP

XML Date Function Support
TDV supports the date functions listed in the table below for XML data sources.

TIBCO® Data Virtualization Reference Guide

785 | Function Support for Data Sources

XML Date Function Notes

CURDAY

CURTIME

CURTIMESTAMP

DAY

MONTH

YEAR

XML Numeric Function Support
TDV supports the numeric functions listed in the table below for XML data sources.

XML Numeric Function Notes

ABS

ACOS

ASIN

ATAN

CEILING

COS

COT

DEGREES

EXP

TIBCO® Data Virtualization Reference Guide

786 | Function Support for Data Sources

XML Numeric Function Notes

FLOOR

LOG

PI

POWER

RADIANS

ROUND

SIN

SQRT

TAN

TIBCO® Data Virtualization Reference Guide

787 | Custom Procedure Examples

Custom Procedure Examples
This topic contains several examples to illustrate the behavior of a custom procedure. All
examples are written in Java for execution on a Windows platform.

• About the Custom Procedure Examples Syntax

• Example 1: Simple Query

• Example 2: Simple Update

• Example 3: External Update without Compensation

• Example 4: Nontransactional External Update without Compensation

• Example 5: Expression Evaluator

• Example 6: Output Cursor

• Example 7: Simple Procedure that Invokes Another Procedure

About the Custom Procedure Examples Syntax
Developers creating procedures for execution on a UNIX or Linux operating system need to
use colons (instead of semicolons) as separators. Also when using new line strings, for
Windows it will be “/r/n” compared with Linux “/n”.

Regardless of the operating system, path names must use the forward slash. For example:

// Update in the first data source using a SQL statement

 numRowsUpdated = qenv.executeUpdate(

 "UPDATE /shared/tutorial/sources/ds_orders/customers" +

 " SET ContactFirstName='" + inputValues[1] +

TIBCO® Data Virtualization Reference Guide

788 | Custom Procedure Examples

 "', ContactLastName='" + inputValues[2] +

 "', CompanyName='" + inputValues[3] +

 "', PhoneNumber='" + inputValues[4] +

 "' WHERE CustomerID=" + inputValues[0],

 null);

Example 1: Simple Query
This custom procedure participates in the parent transaction, and invokes a query using
the execution environment.

package proc;

import com.compositesw.extension.*;

import java.sql.*;

public class SimpleQuery

 implements CustomProcedure

{

 private ExecutionEnvironment qenv;

 private ResultSet resultSet;

TIBCO® Data Virtualization Reference Guide

789 | Custom Procedure Examples

 public SimpleQuery() { }

 /**

 * This is called once just after constructing the class. The

 * environment contains methods used to interact with the server.

 */

 public void initialize(ExecutionEnvironment qenv) {

 this.qenv = qenv;

 }

 /**

 * Called during introspection to get the description of the input

 * and output parameters. Should not return null.

 */

 public ParameterInfo[] getParameterInfo() {

 return new ParameterInfo[] {

 new ParameterInfo("id", Types.INTEGER, DIRECTION_IN),

TIBCO® Data Virtualization Reference Guide

790 | Custom Procedure Examples

 new ParameterInfo("result", TYPED_CURSOR, DIRECTION_OUT,

 new ParameterInfo[] {

 new ParameterInfo("Id", Types.INTEGER, DIRECTION_NONE),

 new ParameterInfo("FirstName", Types.VARCHAR, DIRECTION_NONE),

 new ParameterInfo("LastName", Types.VARCHAR, DIRECTION_NONE),

 new ParameterInfo("CompanyName", Types.VARCHAR, DIRECTION_
NONE),

 new ParameterInfo("PhoneNumber", Types.VARCHAR, DIRECTION_
NONE),

 }

)

 };

 }

 /**

 * Called to invoke the stored procedure. Will only be called a

 * single time per instance. Can throw CustomProcedureException or

 * SQLException if there is an error during invoke.

TIBCO® Data Virtualization Reference Guide

791 | Custom Procedure Examples

 */

 public void invoke(Object[] inputValues)

 throws CustomProcedureException, SQLException

 {

 resultSet = qenv.executeQuery(

 "SELECT " +

 "CustomerID AS Id, " +

 "ContactFirstName AS FirstName, " +

 "ContactLastName AS LastName, " +

 "CompanyName AS CompanyName, " +

 "PhoneNumber AS PhoneNumber FROM " +

 "/shared/tutorial/sources/ds_orders/customers WHERE CustomerID=" +

 inputValues[0],

 null);

}

TIBCO® Data Virtualization Reference Guide

792 | Custom Procedure Examples

 /**

 * Called to retrieve the number of rows that were inserted,

 * updated, or deleted during the execution of the procedure. A

 * return value of -1 indicates that the number of affected rows is

 * unknown. Can throw CustomProcedureException or SQLException if

 * there is an error when getting the number of affected rows.

 */

 public int getNumAffectedRows() {

 return 0;

 }

 /**

 * Called to retrieve the output values. The returned objects

 * should obey the Java to SQL typing conventions as defined in the

 * table above. Output cursors can be returned as either

 * CustomCursor or java.sql.ResultSet. Can throw

TIBCO® Data Virtualization Reference Guide

793 | Custom Procedure Examples

 * CustomProcedureException or SQLException if there is an error

 * when getting the output values. Should not return null.

 */

 public Object[] getOutputValues() {

 return new Object[] { resultSet };

 }

 /**

 * Called when the procedure reference is no longer needed. Close

 * can be called without retrieving any of the output values (such

 * as cursors) or even invoking, so this needs to do any remaining

 * cleanup. Close can be called concurrently with any other call

 * such as "invoke" or "getOutputValues". In this case, any pending

 * methods should immediately throw a CustomProcedureException.

 */

 public void close() throws SQLException {

TIBCO® Data Virtualization Reference Guide

794 | Custom Procedure Examples

 if (resultSet != null) {

 resultSet.close();

 }

 }

 //

 // Introspection methods

 //

 /**

 * Called during introspection to get the short name of the stored

 * procedure. This name can be overridden during configuration.

 * Should not return null.

 */

 public String getName() {

 return "SimpleQuery";

 }

TIBCO® Data Virtualization Reference Guide

795 | Custom Procedure Examples

 /**

 * Called during introspection to get the description of the stored

 * procedure. Should not return null.

 */

 public String getDescription() {

 return "This procedure performs a simple query operation";

 }

//

 // Transaction methods

 //

 /**

 * Returns true if the custom procedure uses transactions. If this

 * method returns false then commit and rollback will not be called.

 */

 public boolean canCommit() {

TIBCO® Data Virtualization Reference Guide

796 | Custom Procedure Examples

 return false;

 }

 /**

 * Commit any open transactions.

 */

 public void commit() { }

 /**

 * Rollback any open transactions.

 */

 public void rollback() { }

 /**

 * Returns true if the transaction can be compensated.

 */

 public boolean canCompensate() {

 return false;

TIBCO® Data Virtualization Reference Guide

797 | Custom Procedure Examples

 }

 /**

 * Compensate any committed transactions (if supported).

 */

 public void compensate(ExecutionEnvironment qenv) { }

}

Example 2: Simple Update
This custom procedure participates in the parent transaction, and performs an update
using the execution environment.

package proc;

import com.compositesw.extension.*;

import java.sql.*;

public class SimpleUpdate

implements CustomProcedure

{

 private ExecutionEnvironment qenv;

TIBCO® Data Virtualization Reference Guide

798 | Custom Procedure Examples

 private int numRowsUpdated = -1;

 public SimpleUpdate() { }

 /**

 * This is called once just after constructing the class. The

 * environment contains methods used to interact with the server.

 */

 public void initialize(ExecutionEnvironment qenv) {

 this.qenv = qenv;

 }

 /**

 * Called during introspection to get the description of the input

 * and output parameters. Should not return null.

 */

 public ParameterInfo[] getParameterInfo() {

 return new ParameterInfo[] {

TIBCO® Data Virtualization Reference Guide

799 | Custom Procedure Examples

 new ParameterInfo("Id", Types.INTEGER, DIRECTION_IN),

 new ParameterInfo("FirstName", Types.VARCHAR, DIRECTION_IN),

 new ParameterInfo("LastName", Types.VARCHAR, DIRECTION_IN),

 new ParameterInfo("CompanyName", Types.VARCHAR, DIRECTION_IN),

 new ParameterInfo("PhoneNumber", Types.VARCHAR, DIRECTION_IN),

 };

 }

 /**

 * Called to invoke the stored procedure. Will only be called a

 * single time per instance. Can throw CustomProcedureException or

 * SQLException if there is an error during invoke.

 */

 public void invoke(Object[] inputValues)

 throws CustomProcedureException, SQLException

 {

TIBCO® Data Virtualization Reference Guide

800 | Custom Procedure Examples

 // Update in the first data source using a SQL statement

 numRowsUpdated = qenv.executeUpdate(

 "UPDATE /shared/tutorial/sources/ds_orders/customers" +

 " SET ContactFirstName='" + inputValues[1] +

 "', ContactLastName='" + inputValues[2] +

 "', CompanyName='" + inputValues[3] +

 "', PhoneNumber='" + inputValues[4] +

 "' WHERE CustomerID=" + inputValues[0],

 null);

 }

 /**

 * Called to retrieve the number of rows that were inserted,

 * updated, or deleted during the execution of the procedure. A

 * return value of -1 indicates that the number of affected rows is

 * unknown. Can throw CustomProcedureException or SQLException if

TIBCO® Data Virtualization Reference Guide

801 | Custom Procedure Examples

 * there is an error when getting the number of affected rows.

 */

 public int getNumAffectedRows() {

 return numRowsUpdated;

 }

 /**

 * Called to retrieve the output values. The returned objects

 * should obey the Java to SQL typing conventions as defined in the

 * table above. Output cursors can be returned as either

 * CustomCursor or java.sql.ResultSet. Can throw

 * CustomProcedureException or SQLException if there is an error

 * when getting the output values. Should not return null.

 */

 public Object[] getOutputValues() {

 return new Object[] { };

TIBCO® Data Virtualization Reference Guide

802 | Custom Procedure Examples

 }

 /**

 * Called when the procedure reference is no longer needed. Close

 * can be called without retrieving any of the output values (such

 * as cursors) or even invoking, so this needs to do any remaining

 * cleanup. Close can be called concurrently with any other call

 * such as "invoke" or "getOutputValues". In this case, any pending

 * methods should immediately throw a CustomProcedureException.

 */

 public void close() { }

 //

 // Introspection methods

 //

 /**

 * Called during introspection to get the short name of the stored

TIBCO® Data Virtualization Reference Guide

803 | Custom Procedure Examples

 * procedure. This name can be overridden during configuration.

 * Should not return null.

 */

 public String getName() {

 return "SimpleUpdate";

 }

 /**

 * Called during introspection to get the description of the stored

 * procedure. Should not return null.

 */

 public String getDescription() {

 return "This procedure performs a simple update operation";

 }

 //

 // Transaction methods

TIBCO® Data Virtualization Reference Guide

804 | Custom Procedure Examples

 //

 /**

 * Returns true if the custom procedure uses transactions. If this

 * method returns false then commit and rollback will not be called.

 */

 public boolean canCommit() {

 return false;

 }

 /**

 * Commit any open transactions.

 */

 public void commit() { }

 /**

 * Rollback any open transactions.

 */

TIBCO® Data Virtualization Reference Guide

805 | Custom Procedure Examples

 public void rollback() { }

 /**

 * Returns true if the transaction can be compensated.

 */

 public boolean canCompensate() {

 return false;

 }

 /**

 * Compensate any committed transactions (if supported).

 */

 public void compensate(ExecutionEnvironment qenv) { }

}

Example 3: External Update without
Compensation
This custom procedure uses an independent transaction with a transactional data source in
the server. Compensating logic is defined for the independent transaction.

TIBCO® Data Virtualization Reference Guide

806 | Custom Procedure Examples

package proc;

import com.compositesw.extension.*;

import java.sql.*;

public class ExternalUpdate

 implements CustomProcedure, java.io.Serializable

{

 private static final String ORDERS_URL =

 "jdbc:mysql://localhost:3306/Orders";

 private transient ExecutionEnvironment qenv;

 private transient Connection conn;

 private transient int numRowsUpdated;

 private boolean isUpdate;

 private int id;

 private String firstName;

 private String lastName;

TIBCO® Data Virtualization Reference Guide

807 | Custom Procedure Examples

 private String companyName;

 private String phoneNumber;

 public ExternalUpdate() { }

 /**

 * This is called once just after constructing the class. The

 * environment contains methods used to interact with the server.

 */

 public void initialize(ExecutionEnvironment qenv)

 throws SQLException

 {

 this.qenv = qenv;

 conn = DriverManager.getConnection(ORDERS_URL, "tutorial",
"tutorial");

 conn.setAutoCommit(false);

 }

 /**

TIBCO® Data Virtualization Reference Guide

808 | Custom Procedure Examples

 * Called during introspection to get the description of the input

 * and output parameters. Should not return null.

 */

 public ParameterInfo[] getParameterInfo() {

 return new ParameterInfo[] {

 new ParameterInfo("Id", Types.INTEGER, DIRECTION_IN),

 new ParameterInfo("FirstName", Types.VARCHAR, DIRECTION_IN),

 new ParameterInfo("LastName", Types.VARCHAR, DIRECTION_IN),

 new ParameterInfo("CompanyName", Types.VARCHAR, DIRECTION_IN),

 new ParameterInfo("PhoneNumber", Types.VARCHAR, DIRECTION_IN),

 };

 }

 /**

 * Called to invoke the stored procedure. Will only be called a

 * single time per instance. Can throw CustomProcedureException or

TIBCO® Data Virtualization Reference Guide

809 | Custom Procedure Examples

 * SQLException if there is an error during invoke.

 */

 public void invoke(Object[] inputValues)

 throws CustomProcedureException, SQLException

 {

 Statement stmt = conn.createStatement();

 //

 // Save away the current values to be used for compensation

 //

 ResultSet rs = stmt.executeQuery(

 "SELECT ContactFirstName, ContactLastName, CompanyName,
PhoneNumber " +

 "FROM customers WHERE CustomerID=" + inputValues[0]);

 if (rs.next()) {

 isUpdate = true;

 id = ((Integer)inputValues[0]).intValue();

TIBCO® Data Virtualization Reference Guide

810 | Custom Procedure Examples

 firstName = rs.getString(1);

 lastName = rs.getString(2);

 companyName = rs.getString(3);

 phoneNumber = rs.getString(4);

 }

 rs.close();

 //

 // Perform the insert or update

 //

 if (isUpdate) {

 numRowsUpdated = stmt.executeUpdate(

 "UPDATE customers" +

 " SET ContactFirstName='" + inputValues[1] +

 "', ContactLastName='" + inputValues[2] +

 "', CompanyName='" + inputValues[3] +

TIBCO® Data Virtualization Reference Guide

811 | Custom Procedure Examples

 "', PhoneNumber='" + inputValues[4] +

 "' WHERE CustomerID=" + inputValues[0]);

 }

 else {

 numRowsUpdated = stmt.executeUpdate(

 "INSERT into customers (CustomerID, ContactFirstName, " +

 "ContactLastName, CompanyName, PhoneNumber) VALUES (" +

 inputValues[0] + ", '" + inputValues[1] + "', '" +

 inputValues[2] + "', '" + inputValues[3] + "', '" +

 inputValues[4] + "')");

 }

 stmt.close();

 }

 /**

 * Called to retrieve the number of rows that were inserted,

TIBCO® Data Virtualization Reference Guide

812 | Custom Procedure Examples

 * updated, or deleted during the execution of the procedure. A

 * return value of -1 indicates that the number of affected rows is

 * unknown. Can throw CustomProcedureException or SQLException if

 * there is an error when getting the number of affected rows.

 */

 public int getNumAffectedRows() {

 return numRowsUpdated;

 }

 /**

 * Called to retrieve the output values. The returned objects

 * should obey the Java to SQL typing conventions as defined in the

 * table above. Output cursors can be returned as either

 * CustomCursor or java.sql.ResultSet. Can throw

 * CustomProcedureException or SQLException if there is an error

 * when getting the output values. Should not return null.

TIBCO® Data Virtualization Reference Guide

813 | Custom Procedure Examples

 */

 public Object[] getOutputValues() {

 return new Object[] { };

 }

 /**

 * Called when the procedure reference is no longer needed. Close

 * can be called without retrieving any of the output values (such

 * as cursors) or even invoking, so this needs to do any remaining

 * cleanup. Close can be called concurrently with any other call

 * such as "invoke" or "getOutputValues". In this case, any pending

 * methods should immediately throw a CustomProcedureException.

 */

public void close()

 throws SQLException

 { }

TIBCO® Data Virtualization Reference Guide

814 | Custom Procedure Examples

 //

 // Introspection methods

 //

 /**

 * Called during introspection to get the short name of the stored

 * procedure. This name can be overridden during configuration.

 * Should not return null.

 */

 public String getName() {

 return "ExternalUpdate";

 }

 /**

 * Called during introspection to get the description of the stored

 * procedure. Should not return null.

 */

TIBCO® Data Virtualization Reference Guide

815 | Custom Procedure Examples

 public String getDescription() {

 return "This procedure performs an update to an external
transactional " +

 "data source using JDBC.";

 }

 //

 // Transaction methods

 //

 /**

 * Returns true if the custom procedure uses transactions. If this

 * method returns false then commit and rollback will not be called.

 */

 public boolean canCommit() {

 return true;

 }

 /**

TIBCO® Data Virtualization Reference Guide

816 | Custom Procedure Examples

 * Commit any open transactions

 */

 public void commit()

 throws SQLException

 {

 conn.commit();

 conn.close();

 conn = null;

 }

 /**

 * Rollback any open transactions.

 */

 public void rollback()

 throws SQLException

 {

TIBCO® Data Virtualization Reference Guide

817 | Custom Procedure Examples

 conn.rollback();

 conn.close();

 conn = null;

 }

 /**

 * Returns true if the transaction can be compensated.

 */

 public boolean canCompensate() {

 return true;

 }

 /**

 * Compensate any committed transactions (if supported).

 */

 public void compensate(ExecutionEnvironment qenv)

 throws SQLException

TIBCO® Data Virtualization Reference Guide

818 | Custom Procedure Examples

 {

 conn = DriverManager.getConnection(ORDERS_URL);

 conn.setAutoCommit(false);

 Statement stmt = conn.createStatement();

 if (isUpdate) {

 numRowsUpdated = stmt.executeUpdate(

 "UPDATE customers" +

 " SET ContactFirstName='" + firstName +

 "', ContactLastName='" + lastName +

 "', CompanyName='" + companyName +

 "', PhoneNumber='" + phoneNumber +

 "' WHERE CustomerID=" + id);

 }

 else {

 stmt.executeUpdate("DELETE from customers WHERE CustomerID=" +
id);

TIBCO® Data Virtualization Reference Guide

819 | Custom Procedure Examples

 }

 stmt.close();

 conn.commit();

 conn.close();

 conn = null;

 }

}

Example 4: Nontransactional External Update
without Compensation
This custom procedure updates the contents of a file on disk where the file is
nontransactional. The actual work is deferred until the commit method is called.
Compensating logic is provided.

package proc;

import com.compositesw.extension.*;

import java.sql.*;

import java.io.*;

public class NonTransactional

TIBCO® Data Virtualization Reference Guide

820 | Custom Procedure Examples

 implements CustomProcedure, java.io.Serializable

{

 private transient ExecutionEnvironment qenv;

 private transient File dataFile;

 private transient int numRowsUpdated;

 private transient int newId;

 private transient String newFirstName;

 private transient String newLastName;

 private transient String newCompanyName;

 private transient String newPhoneNumber;

 private int oldId;

 private String oldFirstName;

 private String oldLastName;

 private String oldCompanyName;

 private String oldPhoneNumber;

TIBCO® Data Virtualization Reference Guide

821 | Custom Procedure Examples

 public NonTransactional() { }

 /**

 * This is called once just after constructing the class. The

 * environment contains methods used to interact with the server.

 */

 public void initialize(ExecutionEnvironment qenv)

 throws CustomProcedureException

 {

 this.qenv = qenv;

 dataFile = new File("C:/CustomProcNonTrans.txt");

 try {

 if (!dataFile.canWrite() && !dataFile.createNewFile())

 throw new CustomProcedureException("cannot write file");

 }

 catch (IOException ex) {

TIBCO® Data Virtualization Reference Guide

822 | Custom Procedure Examples

 throw new CustomProcedureException(ex);

 }

 }

 /**

 * Called during introspection to get the description of the input

 * and output parameters. Should not return null.

 */

 public ParameterInfo[] getParameterInfo() {

 return new ParameterInfo[] {

 new ParameterInfo("Id", Types.INTEGER, DIRECTION_IN),

 new ParameterInfo("FirstName", Types.VARCHAR, DIRECTION_IN),

 new ParameterInfo("LastName", Types.VARCHAR, DIRECTION_IN),

 new ParameterInfo("CompanyName", Types.VARCHAR, DIRECTION_IN),

 new ParameterInfo("PhoneNumber", Types.VARCHAR, DIRECTION_IN),

 };

TIBCO® Data Virtualization Reference Guide

823 | Custom Procedure Examples

 }

 /**

 * Called to invoke the stored procedure. Will only be called a

 * single time per instance. Can throw CustomProcedureExecption or

 * SQLException if there is an error during invoke.

 */

 public void invoke(Object[] inputValues)

 throws CustomProcedureException

 {

 //

 // Save new values for later use in 'commit'

 //

 newId = ((Integer)inputValues[0]).intValue();

 newFirstName = (String)inputValues[1];

 newLastName = (String)inputValues[2];

TIBCO® Data Virtualization Reference Guide

824 | Custom Procedure Examples

 newCompanyName = (String)inputValues[2];

 newPhoneNumber = (String)inputValues[3];

 }

 /**

 * Called to retrieve the number of rows that were inserted,

 * updated, or deleted during the execution of the procedure. A

 * return value of -1 indicates that the number of affected rows is

 * unknown. Can throw CustomProcedureExecption or SQLException if

 * there is an error when getting the number of affected rows.

 */

 public int getNumAffectedRows()

 throws CustomProcedureException

 {

 return numRowsUpdated;

 }

TIBCO® Data Virtualization Reference Guide

825 | Custom Procedure Examples

 /**

 * Called to retrieve the output values. The returned objects

 * should obey the Java to SQL typing conventions as defined in the

 * table above. Output cursors can be returned as either

 * CustomCursor or java.sql.ResultSet. Can throw

 * CustomProcedureException or SQLException if there is an error

 * when getting the output values. Should not return null.

 */

 public Object[] getOutputValues()

 throws CustomProcedureException

 {

 return new Object[] { };

 }

 /**

 * Called when the procedure reference is no longer needed. Close

TIBCO® Data Virtualization Reference Guide

826 | Custom Procedure Examples

 * can be called without retrieving any of the output values (such

 * as cursors) or even invoking, so this needs to do any remaining

 * cleanup. Close can be called concurrently with any other call

 * such as "invoke" or "getOutputValues". In this case, any pending

 * methods should immediately throw a CustomProcedureException.

 */

 public void close() { }

 //

 // Introspection methods

 //

 /**

 * Called during introspection to get the short name of the stored

 * procedure. This name can be overridden during configuration.

 * Should not return null.

 */

TIBCO® Data Virtualization Reference Guide

827 | Custom Procedure Examples

public String getName() {

 return "NonTransactional";

 }

 /**

 * Called during introspection to get the description of the stored

 * procedure. Should not return null.

 */

 public String getDescription() {

 return "This procedure performs an update to an external " +

 "nontransactional file data source.";

 }

 //

 // Transaction methods

 //

 /**

TIBCO® Data Virtualization Reference Guide

828 | Custom Procedure Examples

 * Returns true if the custom procedure uses transactions. If this

 * method returns false then commit and rollback will not be called.

 */

 public boolean canCommit() {

 return true;

 }

 /**

 * Commit any open transactions.

 */

 public void commit()

 throws CustomProcedureException

 {

 //

 // Save away the current values to be used for compensation

 //

TIBCO® Data Virtualization Reference Guide

829 | Custom Procedure Examples

 try {

 BufferedReader reader = new BufferedReader(new FileReader
(dataFile));

 String line = reader.readLine();

 oldId = (line == null || line.length() == 0) ? 0 :Integer.parseInt
(line);

 oldFirstName = reader.readLine();

 oldLastName = reader.readLine();

 oldCompanyName = reader.readLine();

 oldPhoneNumber = reader.readLine();

 reader.close();

 }

 catch (IOException ex) {

 throw new CustomProcedureException(ex);

 }

 //

 // Write the new data out to the file

TIBCO® Data Virtualization Reference Guide

830 | Custom Procedure Examples

 //

 try {

 BufferedWriter writer = new BufferedWriter(new FileWriter
(dataFile));

 writer.write(Integer.toString(newId)); writer.newLine();

 writer.write(newFirstName); writer.newLine();

 writer.write(newLastName); writer.newLine();

 writer.write(newCompanyName); writer.newLine();

 writer.write(newPhoneNumber); writer.newLine();

 writer.close();

 }

 catch (IOException ex) {

 throw new CustomProcedureException(ex);

 }

 }

 /**

TIBCO® Data Virtualization Reference Guide

831 | Custom Procedure Examples

 * Rollback any open transactions.

 */

 public void rollback() {

 // do nothing

 }

 /**

 * Returns true if the transaction can be compensated.

 */

 public boolean canCompensate() {

 return true;

 }

 /**

 * Compensate any committed transactions (if supported).

 */

 public void compensate(ExecutionEnvironment qenv)

TIBCO® Data Virtualization Reference Guide

832 | Custom Procedure Examples

 throws CustomProcedureException

 {

 //

 // Restore the old data

 //

 try {

 BufferedWriter writer = new BufferedWriter(new FileWriter
(dataFile));

 writer.write(Integer.toString(oldId)); writer.newLine();

 writer.write(oldFirstName); writer.newLine();

 writer.write(oldLastName); writer.newLine();

 writer.write(oldCompanyName); writer.newLine();

 writer.write(oldPhoneNumber); writer.newLine();

 writer.close();

 }

 catch (IOException ex) {

TIBCO® Data Virtualization Reference Guide

833 | Custom Procedure Examples

 throw new CustomProcedureException(ex);

 }

 }

}

Example 5: Expression Evaluator
This custom procedure evaluates simple expressions.

package proc;

import com.compositesw.extension.*;

import java.sql.SQLException;

import java.sql.Types;

/**

 * Custom procedure to evaluate simple expressions:

 *

 * ARG1 | ARG2

 * ARG1 if it is neither null nor 0, otherwise ARG2

TIBCO® Data Virtualization Reference Guide

834 | Custom Procedure Examples

 *

 * ARG1 & ARG2

 * ARG1 if neither argument is null or 0, otherwise 0

 *

 * ARG1 < ARG2

 * ARG1 is less than ARG2

 *

 * ARG1 <= ARG2

 * ARG1 is less than or equal to ARG2

 *

 * ARG1 = ARG2

 * ARG1 is equal to ARG2

 *

 * ARG1 != ARG2

 * ARG1 is unequal to ARG2

TIBCO® Data Virtualization Reference Guide

835 | Custom Procedure Examples

 *

 * ARG1 >= ARG2

 * ARG1 is greater than or equal to ARG2

 *

 * ARG1 > ARG2

 * ARG1 is greater than ARG2

 *

 * ARG1 + ARG2

 * arithmetic sum of ARG1 and ARG2

 *

 * ARG1 - ARG2

 * arithmetic difference of ARG1 and ARG2

 *

 * ARG1 * ARG2

 * arithmetic product of ARG1 and ARG2

TIBCO® Data Virtualization Reference Guide

836 | Custom Procedure Examples

 *

 * ARG1 / ARG2

 * arithmetic quotient of ARG1 divided by ARG2

 *

 * ARG1 % ARG2

 * arithmetic remainder of ARG1 divided by ARG2

 */

public class ExpressionEvaluator

 implements CustomProcedure

{

 private ExecutionEnvironment qenv;

 private int result;

 public ExpressionEvaluator() { }

 /**

 * This is called once just after constructing the class. The

TIBCO® Data Virtualization Reference Guide

837 | Custom Procedure Examples

 * environment contains methods used to interact with the server.

 */

 public void initialize(ExecutionEnvironment qenv)

 throws SQLException

 {

 this.qenv = qenv;

 }

 /**

 * Called during introspection to get the description of the input

 * and output parameters. Should not return null.

 */

 public ParameterInfo[] getParameterInfo() {

 return new ParameterInfo[] {

 new ParameterInfo("arg1", Types.INTEGER, DIRECTION_IN),

 new ParameterInfo("operator", Types.VARCHAR, DIRECTION_IN),

TIBCO® Data Virtualization Reference Guide

838 | Custom Procedure Examples

 new ParameterInfo("arg2", Types.INTEGER, DIRECTION_IN),

 new ParameterInfo("result", Types.INTEGER, DIRECTION_OUT),

 };

 }

 /**

 * Called to invoke the stored procedure. Will only be called a

 * single time per instance. Can throw CustomProcedureException or

 * SQLException if there is an error during invoke.

 */

 public void invoke(Object[] inputValues)

 throws CustomProcedureException, SQLException

 {

 int arg1 =

 (inputValues[0] != null ? ((Integer)inputValues[0]).intValue() :
0);

 String op = (String)inputValues[1];

TIBCO® Data Virtualization Reference Guide

839 | Custom Procedure Examples

 int arg2 =

 (inputValues[2] != null ? ((Integer)inputValues[2]).intValue() :
0);

 if (op.equals("|"))

 result = (arg1 != 0) ? arg1 : arg2;

 else if (op.equals("&"))

 result = (arg1 != 0 && arg2 != 0) ? arg1 : 0;

 else if (op.equals("<"))

 result = (arg1 < arg2) ? 1 : 0;

 else if (op.equals("<="))

 result = (arg1 <= arg2) ? 1 : 0;

 else if (op.equals("="))

 result = (arg1 == arg2) ? 1 : 0;

 else if (op.equals("!="))

 result = (arg1 != arg2) ? 1 : 0;

 else if (op.equals(">="))

TIBCO® Data Virtualization Reference Guide

840 | Custom Procedure Examples

 result = (arg1 >= arg2) ? 1 : 0;

 else if (op.equals(">"))

 result = (arg1 > arg2) ? 1 : 0;

 else if (op.equals("+"))

 result = arg1 + arg2;

 else if (op.equals("-"))

 result = arg1 - arg2;

 else if (op.equals("*"))

 result = arg1 * arg2;

 else if (op.equals("/"))

 result = arg1 / arg2;

 else if (op.equals("%"))

 result = arg1 % arg2;

 else

 throw new CustomProcedureException("Unknown operator: " + op);

TIBCO® Data Virtualization Reference Guide

841 | Custom Procedure Examples

 }

 /**

 * Called to retrieve the number of rows that were inserted,

 * updated, or deleted during the execution of the procedure. A

 * return value of -1 indicates that the number of affected rows is

 * unknown. Can throw CustomProcedureException or SQLException if

 * there is an error when getting the number of affected rows.

 */

 public int getNumAffectedRows() {

 return 0;

 }

 /**

 * Called to retrieve the output values. The returned objects

 * should obey the Java to SQL typing conventions as defined in the

 * table above. Output cursors can be returned as either

TIBCO® Data Virtualization Reference Guide

842 | Custom Procedure Examples

 * CustomCursor or java.sql.ResultSet. Can throw

 * CustomProcedureException or SQLException if there is an error

 * when getting the output values. Should not return null.

 */

 public Object[] getOutputValues() {

 return new Object[] { new Integer(result) };

 }

 /**

 * Called when the procedure reference is no longer needed. Close

 * can be called without retrieving any of the output values (such

 * as cursors) or even invoking, so this needs to do any remaining

 * cleanup. Close can be called concurrently with any other call

 * such as "invoke" or "getOutputValues". In this case, any pending

 * methods should immediately throw a CustomProcedureException.

 */

TIBCO® Data Virtualization Reference Guide

843 | Custom Procedure Examples

 public void close()

 throws SQLException

 { }

 //

 // Introspection methods

 //

 /**

 * Called during introspection to get the short name of the stored

 * procedure. This name can be overridden during configuration.

 * Should not return null.

 */

 public String getName() {

 return "expr";

 }

 /**

TIBCO® Data Virtualization Reference Guide

844 | Custom Procedure Examples

 * Called during introspection to get the description of the stored

 * procedure. Should not return null.

 */

 public String getDescription() {

 return "Custom procedure to evaluate simple expressions";

 }

 //

 // Transaction methods

 //

 /**

 * Returns true if the custom procedure uses transactions. If this

 * method returns false then commit and rollback will not be called.

 */

 public boolean canCommit() {

 return false;

TIBCO® Data Virtualization Reference Guide

845 | Custom Procedure Examples

 }

/**

 * Commit any open transactions.

 */

 public void commit()

 throws SQLException

 { }

 /**

 * Rollback any open transactions.

 */

 public void rollback()

 throws SQLException

 { }

 /**

 * Returns true if the transaction can be compensated.

TIBCO® Data Virtualization Reference Guide

846 | Custom Procedure Examples

 */

 public boolean canCompensate() {

 return false;

 }

 /**

 * Compensate any committed transactions (if supported).

 */

 public void compensate(ExecutionEnvironment qenv)

 throws SQLException

 { }

}

Example 6: Output Cursor
This custom procedure invokes another procedure, and retrieves output values.

package proc;

import com.compositesw.extension.*;

TIBCO® Data Virtualization Reference Guide

847 | Custom Procedure Examples

import java.sql.SQLException;

import java.sql.Timestamp;

import java.sql.Types;

public class OutputCursor

 implements CustomProcedure, java.io.Serializable

{

 private transient ExecutionEnvironment qenv;

 private transient CustomCursor outputCursor;

 private boolean invoked;

 public OutputCursor() { }

 /**

 * This is called once just after constructing the class. The

 * environment contains methods used to interact with the server.

 */

 public void initialize(ExecutionEnvironment qenv)

TIBCO® Data Virtualization Reference Guide

848 | Custom Procedure Examples

 throws SQLException

 {

 this.qenv = qenv;

 }

 /**

 * Called during introspection to get the description of the input

 * and output parameters. Should not return null.

 */

 public ParameterInfo[] getParameterInfo() {

 return new ParameterInfo[] {

 new ParameterInfo("result", TYPED_CURSOR, DIRECTION_OUT,

 new ParameterInfo[] {

 new ParameterInfo("IntColumn", Types.INTEGER, DIRECTION_NONE),

 new ParameterInfo("StringColumn", Types.VARCHAR, DIRECTION_
NONE),

 new ParameterInfo("TimestampColumn", Types.TIMESTAMP,
DIRECTION_NONE),

TIBCO® Data Virtualization Reference Guide

849 | Custom Procedure Examples

 })

 };

 }

 /**

 * Called to invoke the stored procedure. Will only be called a

 * single time per instance. Can throw CustomProcedureException or

 * SQLException if there is an error during invoke.

 */

 public void invoke(Object[] inputValues)

 throws CustomProcedureException, SQLException

 {

 invoked = true;

 }

 /**

 * Called to retrieve the number of rows that were inserted,

TIBCO® Data Virtualization Reference Guide

850 | Custom Procedure Examples

 * updated, or deleted during the execution of the procedure. A

 * return value of -1 indicates that the number of affected rows is

 * unknown. Can throw CustomProcedureException or SQLException if

 * there is an error when getting the number of affected rows.

 */

 public int getNumAffectedRows() {

 return 0;

 }

 /**

 * Called to retrieve the output values. The returned objects

 * should obey the Java to SQL typing conventions as defined in the

 * table above. Output cursors can be returned as either

 * CustomCursor or java.sql.ResultSet. Can throw

 * CustomProcedureException or SQLException if there is an error

 * when getting the output values. Should not return null.

TIBCO® Data Virtualization Reference Guide

851 | Custom Procedure Examples

 */

 public Object[] getOutputValues() {

 outputCursor = createCustomCursor();

 return new Object[] { outputCursor };

 }

 /**

 * Create a custom cursor output.

 */

 private static CustomCursor createCustomCursor() {

 return new CustomCursor() {

 private int counter;

 public ParameterInfo[] getColumnInfo() {

 return null;

 }

 public Object[] next()

TIBCO® Data Virtualization Reference Guide

852 | Custom Procedure Examples

 throws CustomProcedureException, SQLException

 {

 if (counter++ >= 10) {

 return null;

 }

 else {

 return new Object[] {

 new Integer(counter),

 Integer.toString(counter),

 new Timestamp(counter),

 };

 }

 }

 public void close()

 throws CustomProcedureException, SQLException

TIBCO® Data Virtualization Reference Guide

853 | Custom Procedure Examples

 {

 // do nothing

 }

 };

 }

 /**

 * Called when the procedure reference is no longer needed. Close

 * can be called without retrieving any of the output values (such

 * as cursors) or even invoking, so this needs to do any remaining

 * cleanup. Close can be called concurrently with any other call

 * such as "invoke" or "getOutputValues". In this case, any pending

 * methods should immediately throw a CustomProcedureException.

 */

public void close()

 throws CustomProcedureException, SQLException

TIBCO® Data Virtualization Reference Guide

854 | Custom Procedure Examples

 {

 if (outputCursor != null)

 outputCursor.close();

 }

 //

 // Introspection methods

 //

 /**

 * Called during introspection to get the short name of the stored

 * procedure. This name can be overridden during configuration.

 * Should not return null.

 */

 public String getName() {

 return "OutputCursor";

 }

TIBCO® Data Virtualization Reference Guide

855 | Custom Procedure Examples

 /**

 * Called during introspection to get the description of the stored

 * procedure. Should not return null.

 */

 public String getDescription() {

 return "Custom procedure that returns cursor data";

 }

 //

 // Transaction methods

 //

 /**

 * Returns true if the custom procedure uses transactions. If this

 * method returns false then commit and rollback will not be called.

 */

 public boolean canCommit() {

TIBCO® Data Virtualization Reference Guide

856 | Custom Procedure Examples

 return true;

 }

 /**

 * Commit any open transactions.

 */

 public void commit()

 throws SQLException

 { }

 /**

 * Rollback any open transactions.

 */

 public void rollback()

 throws SQLException

 { }

 /**

TIBCO® Data Virtualization Reference Guide

857 | Custom Procedure Examples

 * Returns true if the transaction can be compensated.

 */

 public boolean canCompensate() {

 return true;

 }

 /**

 * Compensate any committed transactions (if supported).

 */

 public void compensate(ExecutionEnvironment qenv)

 throws SQLException

 {

 System.out.println("OutputCursor.compensate(): invoked=" + invoked);

 }

}

TIBCO® Data Virtualization Reference Guide

858 | Custom Procedure Examples

Example 7: Simple Procedure that Invokes
Another Procedure
This custom procedure invokes another procedure.

package proc;

import com.compositesw.extension.*;

import java.sql.*;

public class SimpleProcInvoke

 implements CustomProcedure

{

 private ExecutionEnvironment qenv;

 private ProcedureReference proc;

 public SimpleProcInvoke() { }

 /**

 * This is called once just after constructing the class. The

 * environment contains methods used to interact with the server.

 */

TIBCO® Data Virtualization Reference Guide

859 | Custom Procedure Examples

 public void initialize(ExecutionEnvironment qenv) {

 this.qenv = qenv;

 }

 /**

 * Called during introspection to get the description of the input

 * and output parameters. Should not return null.

 */

 public ParameterInfo[] getParameterInfo() {

 return new ParameterInfo[] {

 new ParameterInfo("arg1", Types.INTEGER, DIRECTION_IN),

 new ParameterInfo("operator", Types.VARCHAR, DIRECTION_IN),

 new ParameterInfo("arg2", Types.INTEGER, DIRECTION_IN),

 new ParameterInfo("result", Types.INTEGER, DIRECTION_OUT),

 };

 }

TIBCO® Data Virtualization Reference Guide

860 | Custom Procedure Examples

 /**

 * Called to invoke the stored procedure. Will only be called a

 * single time per instance. Can throw CustomProcedureException or

 * SQLException if there is an error during invoke.

 */

 public void invoke(Object[] inputValues)

 throws CustomProcedureException, SQLException

 {

 proc = qenv.lookupProcedure("/services/databases/tutorial/expr");

 proc.invoke(inputValues);

 }

 /**

 * Called to retrieve the number of rows that were inserted,

 * updated, or deleted during the execution of the procedure. A

 * return value of -1 indicates that the number of affected rows is

TIBCO® Data Virtualization Reference Guide

861 | Custom Procedure Examples

 * unknown. Can throw CustomProcedureException or SQLException if

 * there is an error when getting the number of affected rows.

 */

 public int getNumAffectedRows() {

 return 0;

 }

 /**

 * Called to retrieve the output values. The returned objects

 * should obey the Java to SQL typing conventions as defined in the

 * table above. Output cursors can be returned as either

 * CustomCursor or java.sql.ResultSet. Can throw

 * CustomProcedureException or SQLException if there is an error

 * when getting the output values. Should not return null.

 */

 public Object[] getOutputValues()

TIBCO® Data Virtualization Reference Guide

862 | Custom Procedure Examples

 throws CustomProcedureException, SQLException

 {

 return proc.getOutputValues();

 }

 /**

 * Called when the procedure reference is no longer needed. Close

 * can be called without retrieving any of the output values (such

 * as cursors) or even invoking, so this needs to do any remaining

 * cleanup. Close can be called concurrently with any other call

 * such as "invoke" or "getOutputValues". In this case, any pending

 * methods should immediately throw a CustomProcedureException.

 */

 public void close()

 throws CustomProcedureException, SQLException

 {

TIBCO® Data Virtualization Reference Guide

863 | Custom Procedure Examples

 if (proc != null)

 proc.close();

 }

 //

 // Introspection methods

 //

 /**

 * Called during introspection to get the short name of the stored

 * procedure. This name can be overridden during configuration.

 * Should not return null.

 */

 public String getName() {

 return "SimpleProcInvoke";

 }

 /**

TIBCO® Data Virtualization Reference Guide

864 | Custom Procedure Examples

 * Called during introspection to get the description of the stored

 * procedure. Should not return null.

 */

 public String getDescription() {

 return "This procedure invokes another procedure.";

 }

 //

 // Transaction methods

 //

 /**

 * Returns true if the custom procedure uses transactions. If this

 * method returns false then commit and rollback will not be called.

 */

 public boolean canCommit() {

 return false;

TIBCO® Data Virtualization Reference Guide

865 | Custom Procedure Examples

 }

 /**

 * Commit any open transactions.

 */

 public void commit() { }

 /**

 * Rollback any open transactions.

 */

 public void rollback() { }

 /**

 * Returns true if the transaction can be compensated.

 */

 public boolean canCompensate() {

 return false;

 }

TIBCO® Data Virtualization Reference Guide

866 | Custom Procedure Examples

 /**

 * Compensate any committed transactions (if supported).

 */

 public void compensate(ExecutionEnvironment qenv) { }

}

TIBCO® Data Virtualization Reference Guide

867 | Time Zones

Time Zones
This topic describes the time zone designations that can be used in the TDV
implementation of the TZCONVERTOR function.

• Java has deprecated three-letter acronyms for time zones. Despite this, Java still
supports a few of them, such as UTC, GMT, and EST. If you intend to use any of them
in production environment, thoroughly test them first, because using them can lead
to incompatibilities or errors.

• Time zone information varies by locale, platform, and operating system version.
Therefore the list in the table below is not definitive.

• Be aware that a timestamp in a locale that supports daylight saving time may or
may not convert to a value one hour later (equivalent to an unaltered time zone to
the east of it).

• The TDV implementation of TZCONVERTOR does not support offset notation such as
GMT+5.

Africa/Abidjan Africa/Accra Africa/Addis_Ababa

Africa/Algiers Africa/Asmara Africa/Asmera

Africa/Bamako Africa/Bangui Africa/Banjul

Africa/Bissau Africa/Blantyre Africa/Brazzaville

Africa/Bujumbura Africa/Cairo Africa/Casablanca

Africa/Ceuta Africa/Conakry Africa/Dakar

Africa/Dar_es_Salaam Africa/Djibouti Africa/Douala

Africa/El_Aaiun Africa/Freetown Africa/Gaborone

Africa/Harare Africa/Johannesburg Africa/Juba

TIBCO® Data Virtualization Reference Guide

868 | Time Zones

Africa/Kampala Africa/Khartoum Africa/Kigali

Africa/Kinshasa Africa/Lagos Africa/Libreville

Africa/Lome Africa/Luanda Africa/Lubumbashi

Africa/Lusaka Africa/Malabo Africa/Maputo

Africa/Maseru Africa/Mbabane Africa/Mogadishu

Africa/Monrovia Africa/Nairobi Africa/Ndjamena

Africa/Niamey Africa/Nouakchott Africa/Ouagadougou

Africa/Porto-Novo Africa/Sao_Tome Africa/Timbuktu

Africa/Tripoli Africa/Tunis Africa/Windhoek

America/Adak America/Anchorage America/Anguilla

America/Antigua America/Araguaina America/Argentina/Bueno
s_Aires

America/Argentina/Catam
arca

America/Argentina/ComodRiva
davia

America/Argentina/Cordo
ba

America/Argentina/Jujuy America/Argentina/La_Rioja America/Argentina/Mend
oza

America/Argentina/Rio_
Gallegos

America/Argentina/Salta America/Argentina/San_
Juan

America/Argentina/San_
Luis

America/Argentina/Tucuman America/Argentina/Ushua
ia

America/Aruba America/Asuncion America/Atikokan

America/Atka America/Bahia America/Bahia_Banderas

TIBCO® Data Virtualization Reference Guide

869 | Time Zones

America/Barbados America/Belem America/Belize

America/Blanc-Sablon America/Boa_Vista America/Bogota

America/Boise America/Buenos_Aires America/Cambridge_Bay

America/Campo_Grande America/Cancun America/Caracas

America/Catamarca America/Cayenne America/Cayman

America/Chicago America/Chihuahua America/Coral_Harbour

America/Cordoba America/Costa_Rica America/Creston

America/Cuiaba America/Curacao America/Danmarkshavn

America/Dawson America/Dawson_Creek America/Denver

America/Detroit America/Dominica America/Edmonton

America/Eirunepe America/El_Salvador America/Ensenada

America/Fort_Wayne America/Fortaleza America/Glace_Bay

America/Godthab America/Goose_Bay America/Grand_Turk

America/Grenada America/Guadeloupe America/Guatemala

America/Guayaquil America/Guyana America/Halifax

America/Havana America/Hermosillo America/Indiana/Indiana
polis

America/Indiana/Knox America/Indiana/Marengo America/Indiana/Petersb
urg

America/Indiana/Tell_City America/Indiana/Vevay America/Indiana/Vincenn
es

TIBCO® Data Virtualization Reference Guide

870 | Time Zones

America/Indiana/Winamac America/Indianapolis America/Inuvik

America/Iqaluit America/Jamaica America/Jujuy

America/Juneau America/Kentucky/Louisville America/Kentucky/Montic
ello

America/Knox_IN America/Kralendijk America/La_Paz

America/Lima America/Los_Angeles America/Louisville

America/Lower_Princes America/Maceio America/Managua

America/Manaus America/Marigot America/Martinique

America/Matamoros America/Mazatlan America/Mendoza

America/Menominee America/Merida America/Metlakatla

America/Mexico_City America/Miquelon America/Moncton

America/Monterrey America/Montevideo America/Montreal

America/Montserrat America/Nassau America/New_York

America/Nipigon America/Nome America/Noronha

America/North_
Dakota/Beulah

America/North_Dakota/Center America/North_
Dakota/New_Salem

America/Ojinaga America/Panama America/Pangnirtung

America/Paramaribo America/Phoenix America/Port-au-Prince

America/Port_of_Spain America/Porto_Acre America/Porto_Velho

America/Puerto_Rico America/Rainy_River America/Rankin_Inlet

America/Recife America/Regina America/Resolute

TIBCO® Data Virtualization Reference Guide

871 | Time Zones

America/Rio_Branco America/Rosario America/Santa_Isabel

America/Santarem America/Santiago America/Santo_Domingo

America/Sao_Paulo America/Scoresbysund America/Shiprock

America/Sitka America/St_Barthelemy America/St_Johns

America/St_Kitts America/St_Lucia America/St_Thomas

America/St_Vincent America/Swift_Current America/Tegucigalpa

America/Thule America/Thunder_Bay America/Tijuana

America/Toronto America/Tortola America/Vancouver

America/Virgin America/Whitehorse America/Winnipeg

America/Yakutat America/Yellowknife Antarctica/Casey

Antarctica/Davis Antarctica/DumontDUrville Antarctica/Macquarie

Antarctica/Mawson Antarctica/McMurdo Antarctica/Palmer

Antarctica/Rothera Antarctica/South_Pole Antarctica/Syowa

Antarctica/Vostok Arctic/Longyearbyen Asia/Aden

Asia/Almaty Asia/Amman Asia/Anadyr

Asia/Aqtau Asia/Aqtobe Asia/Ashgabat

Asia/Ashkhabad Asia/Baghdad Asia/Bahrain

Asia/Baku Asia/Bangkok Asia/Beijing

Asia/Beirut Asia/Bishkek Asia/Brunei

Asia/Calcutta Asia/Choibalsan Asia/Chongqing

TIBCO® Data Virtualization Reference Guide

872 | Time Zones

Asia/Chungking Asia/Colombo Asia/Dacca

Asia/Damascus Asia/Dhaka Asia/Dili

Asia/Dubai Asia/Dushanbe Asia/Gaza

Asia/Harbin Asia/Hebron Asia/Ho_Chi_Minh

Asia/Hong_Kong Asia/Hovd Asia/Irkutsk

Asia/Istanbul Asia/Jakarta Asia/Jayapura

Asia/Jerusalem Asia/Kabul Asia/Kamchatka

Asia/Karachi Asia/Kashgar Asia/Kathmandu

Asia/Katmandu Asia/Kolkata Asia/Krasnoyarsk

Asia/Kuala_Lumpur Asia/Kuching Asia/Kuwait

Asia/Macao Asia/Macau Asia/Magadan

Asia/Makassar Asia/Manila Asia/Muscat

Asia/Nicosia Asia/Novokuznetsk Asia/Novosibirsk

Asia/Omsk Asia/Oral Asia/Phnom_Penh

Asia/Pontianak Asia/Pyongyang Asia/Qatar

Asia/Qyzylorda Asia/Rangoon Asia/Riyadh

Asia/Riyadh87 Asia/Riyadh88 Asia/Riyadh89

Asia/Saigon Asia/Sakhalin Asia/Samarkand

Asia/Seoul Asia/Shanghai Asia/Singapore

Asia/Taipei Asia/Tashkent Asia/Tbilisi

TIBCO® Data Virtualization Reference Guide

873 | Time Zones

Asia/Tehran Asia/Tel_Aviv Asia/Thimbu

Asia/Thimphu Asia/Tokyo Asia/Ujung_Pandang

Asia/Ulaanbaatar Asia/Ulan_Bator Asia/Urumqi

Asia/Vientiane Asia/Vladivostok Asia/Yakutsk

Asia/Yekaterinburg Asia/Yerevan Atlantic/Azores

Atlantic/Bermuda Atlantic/Canary Atlantic/Cape_Verde

Atlantic/Faeroe Atlantic/Faroe Atlantic/Jan_Mayen

Atlantic/Madeira Atlantic/Reykjavik Atlantic/South_Georgia

Atlantic/St_Helena Atlantic/Stanley Australia/ACT

Australia/Adelaide Australia/Brisbane Australia/Broken_Hill

Australia/Canberra Australia/Currie Australia/Darwin

Australia/Eucla Australia/Hobart Australia/LHI

Australia/Lindeman Australia/Lord_Howe Australia/Melbourne

Australia/NSW Australia/North Australia/Perth

Australia/Queensland Australia/South Australia/Sydney

Australia/Tasmania Australia/Victoria Australia/West

Australia/Yancowinna Brazil/Acre Brazil/DeNoronha

Brazil/East Brazil/West CET

CST6CDT Canada/Atlantic Canada/Central

Canada/East- Canada/Eastern Canada/Mountain

TIBCO® Data Virtualization Reference Guide

874 | Time Zones

Saskatchewan

Canada/Newfoundland Canada/Pacific Canada/Saskatchewan

Canada/Yukon Chile/Continental Chile/EasterIsland

Cuba EET EST5EDT

Egypt Eire Etc/GMT

Etc/GMT+0 Etc/GMT+1 Etc/GMT+10

Etc/GMT+11 Etc/GMT+12 Etc/GMT+2

Etc/GMT+3 Etc/GMT+4 Etc/GMT+5

Etc/GMT+6 Etc/GMT+7 Etc/GMT+8

Etc/GMT+9 Etc/GMT-0 Etc/GMT-1

Etc/GMT-10 Etc/GMT-11 Etc/GMT-12

Etc/GMT-13 Etc/GMT-14 Etc/GMT-2

Etc/GMT-3 Etc/GMT-4 Etc/GMT-5

Etc/GMT-6 Etc/GMT-7 Etc/GMT-8

Etc/GMT-9 Etc/GMT0 Etc/Greenwich

Etc/UCT Etc/UTC Etc/Universal

Etc/Zulu Europe/Amsterdam Europe/Andorra

Europe/Athens Europe/Belfast Europe/Belgrade

Europe/Berlin Europe/Bratislava Europe/Brussels

Europe/Bucharest Europe/Budapest Europe/Chisinau

TIBCO® Data Virtualization Reference Guide

875 | Time Zones

Europe/Copenhagen Europe/Dublin Europe/Gibraltar

Europe/Guernsey Europe/Helsinki Europe/Isle_of_Man

Europe/Istanbul Europe/Jersey Europe/Kaliningrad

Europe/Kiev Europe/Lisbon Europe/Ljubljana

Europe/London Europe/Luxembourg Europe/Madrid

Europe/Malta Europe/Mariehamn Europe/Minsk

Europe/Monaco Europe/Moscow Europe/Nicosia

Europe/Oslo Europe/Paris Europe/Podgorica

Europe/Prague Europe/Riga Europe/Rome

Europe/Samara Europe/San_Marino Europe/Sarajevo

Europe/Simferopol Europe/Skopje Europe/Sofia

Europe/Stockholm Europe/Tallinn Europe/Tirane

Europe/Tiraspol Europe/Uzhgorod Europe/Vaduz

Europe/Vatican Europe/Vienna Europe/Vilnius

Europe/Volgograd Europe/Warsaw Europe/Zagreb

Europe/Zaporozhye Europe/Zurich Factory

GB GB-Eire GMT

GMT+0 GMT+1 GMT+10

GMT+11 GMT+12 GMT+13

GMT+14 GMT+2 GMT+3

TIBCO® Data Virtualization Reference Guide

876 | Time Zones

GMT+4 GMT+5 GMT+6

GMT+7 GMT+8 GMT+9

GMT-0 GMT-1 GMT-10

GMT-11 GMT-12 GMT-2

GMT-3 GMT-4 GMT-5

GMT-6 GMT-7 GMT-8

GMT-9 GMT0 Greenwich

HST Hongkong Iceland

Indian/Antananarivo Indian/Chagos Indian/Christmas

Indian/Cocos Indian/Comoro Indian/Kerguelen

Indian/Mahe Indian/Maldives Indian/Mauritius

Indian/Mayotte Indian/Reunion Iran

Israel Jamaica Japan

Kwajalein Libya MET

MST MST7MDT Mexico/BajaNorte

Mexico/BajaSur Mexico/General Mideast/Riyadh87

Mideast/Riyadh88 Mideast/Riyadh89 NZ

NZ-CHAT Navajo PRC

PST8PDT Pacific/Apia Pacific/Auckland

Pacific/Chatham Pacific/Chuuk Pacific/Easter

TIBCO® Data Virtualization Reference Guide

877 | Time Zones

Pacific/Efate Pacific/Enderbury Pacific/Fakaofo

Pacific/Fiji Pacific/Funafuti Pacific/Galapagos

Pacific/Gambier Pacific/Guadalcanal Pacific/Guam

Pacific/Honolulu Pacific/Johnston Pacific/Kiritimati

Pacific/Kosrae Pacific/Kwajalein Pacific/Majuro

Pacific/Marquesas Pacific/Midway Pacific/Nauru

Pacific/Niue Pacific/Norfolk Pacific/Noumea

Pacific/Pago_Pago Pacific/Palau Pacific/Pitcairn

Pacific/Pohnpei Pacific/Ponape Pacific/Port_Moresby

Pacific/Rarotonga Pacific/Saipan Pacific/Samoa

Pacific/Tahiti Pacific/Tarawa Pacific/Tongatapu

Pacific/Truk Pacific/Wake Pacific/Wallis

Pacific/Yap Poland Portugal

ROC ROK Singapore

Turkey UCT US/Alaska

US/Aleutian US/Arizona US/Central

US/East-Indiana US/Eastern US/Hawaii

US/Indiana-Starke US/Michigan US/Mountain

US/Pacific US/Pacific-New US/Samoa

UTC Universal W-SU

TIBCO® Data Virtualization Reference Guide

878 | Time Zones

WET Zulu

TIBCO® Data Virtualization Reference Guide

879 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services
For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the Product Documentation website,
mainly in HTML and PDF formats.

The Product Documentation website is updated frequently and is more current than any
other documentation included with the product.

Product-Specific Documentation

The following documentation for this product is available on the TIBCO Data Virtualization
page.

Users

TDV Getting Started Guide

TDV User Guide

TDV Web UI User Guide

TDV Client Interfaces Guide

TDV Tutorial Guide

TDV Northbay Example

Administration

TDV Installation and Upgrade Guide

TDV Administration Guide

TDV Active Cluster Guide

TDV Security Features Guide

Data Sources

TDV Adapter Guides

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-data-virtualization

TIBCO® Data Virtualization Reference Guide

880 | TIBCO Documentation and Support Services

TDV Data Source Toolkit Guide (Formerly Extensibility Guide)

References

TDV Reference Guide

TDV Application Programming Interface Guide

Other

TDV Business Directory Guide

TDV Discovery Guide

TIBCO TDV and Business Directory Release Notes Read the release notes for a list
of new and changed features. This document also contains lists of known issues
and closed issues for this release.

Release Version Support

TDV 8.5 is designated as a Long Term Support (LTS) version. Some release versions of
TIBCO Data Virtualization products are selected to be long-term support (LTS) versions.
Defect corrections will typically be delivered in a new release version and as hotfixes or
service packs to one or more LTS versions. See also Long Term Support.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature
requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

https://docs.tibco.com/pub/tdv/general/LTS/tdv_LTS_releases.htm
https://ideas.tibco.com/
https://community.tibco.com/

TIBCO® Data Virtualization Reference Guide

881 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

TIBCO, TIBCO logo, TIBCO O logo, ActiveSpaces, Enterprise Messaging Service, Spotfire, TERR, S-
PLUS, and S+ are either registered trademarks or trademarks of TIBCO Software Inc. in the United
States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle
and/or its affiliates.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file

https://www.cloud.com/legal
https://scripts.sil.org/OFL

TIBCO® Data Virtualization Reference Guide

882 | Legal and Third-Party Notices

for the availability of a specific version of Cloud SG software on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.tibco.com/patents.

Copyright © 2002-2023. Cloud Software Group, Inc. All Rights Reserved.

https://www.tibco.com/patents

	Contents
	TDV SQL Support
	Data Types
	Summary of Data Types that TDV Supports
	Binary Literals
	BOOLEAN
	INTERVAL DAY
	INTERVAL YEAR
	XML

	Subqueries in TDV
	Scalar Subqueries
	Correlated Subqueries

	Consolidated List of TDV Keywords
	Maximum SQL Length for Data Sources

	TDV SQL Keywords and Syntax
	BETWEEN
	CREATE [OR REPLACE] TABLE
	DDL Clauses

	CREATE [OR REPLACE] TABLE AS SELECT
	CROSS JOIN
	DELETE
	DISTINCT
	DROP
	EXCEPT
	FULL OUTER JOIN
	GROUP BY
	HAVING
	INNER JOIN
	INSERT
	INSERT, UPDATE, and DELETE on Views
	INTERSECT
	LEFT OUTER JOIN
	OFFSET and FETCH
	ORDER BY
	PIVOT
	UNPIVOT
	RIGHT OUTER JOIN
	SELECT
	SELECT (Virtual Columns)
	SELECT (with Derived Column List)
	SEMIJOIN to a Procedure
	UNION
	UNION ALL
	UPDATE
	WHERE
	WITH

	TDV Support for SQL Functions
	About SQL Functions in TDV
	Analytical Functions
	Window Clause
	CONDITIONAL_CHANGE_EVENT
	CONDITIONAL_TRUE_EVENT
	CUME_DIST
	DENSE_RANK
	EXPONENTIAL_MOVING_AVERAGE
	EXP_WEIGHTED_AVG
	FIRST_VALUE
	FIRST_VALUE_IGNORE_NULLS
	LAG
	LAG_IGNORE_NULLS
	LAST_VALUE
	LAST_VALUE_IGNORE_NULLS
	LEAD
	LEAD_IGNORE_NULLS
	NTH_VALUE
	NTH_VALUE_FROM_LAST
	NTH_VALUE_FROM_LAST_IGNORE_NULLS
	NTH_VALUE_IGNORE_NULLS
	NTILE
	PERCENT_RANK
	RANK
	RATIO_TO_REPORT
	ROW_NUMBER
	TIMESERIES

	Aggregate Functions
	ANY_VALUE
	APPROX_COUNT_DISTINCT
	APPROX_QUANTILES
	ARRAY_AGG
	AVG
	BIT_AND
	BIT_OR
	BIT_XOR
	CORR
	CORR_SPEARMAN
	COUNT
	COVAR_POP
	COVAR_SAMP
	DISTINCT in Aggregate Functions
	FIRST
	GROUP_CONCAT
	GROUP_CONCAT_UNQUOTED
	LAST
	JSON_OBJECTAGG
	JSON_ARRAYAGG
	LISTAGG
	MAX
	MEDIAN
	MIN
	NEST
	NTH
	PERCENTILE
	PERCENTILE_APPROX
	PERCENTILE_CONT
	PERCENTILE_DISC
	QUANTILES
	REGR_AVGX
	REGR_AVGY
	REGR_COUNT
	REGR_INTERCEPT
	REGR_R2
	REGR_SLOPE
	REGR_SXX
	REGR_SXY
	REGR_SYY
	STDDEV
	STDDEV_POP
	STDDEV_SAMP
	SUM
	SUM_FLOAT
	VAR_POP
	VAR_SAMP
	VARIANCE
	XMLAGG

	Array SQL Script Functions
	ARRAY_APPEND
	ARRAY_AVG
	ARRAY_CONCAT
	ARRAY_CONTAINS
	ARRAY_COUNT
	ARRAY_DISTINCT
	ARRAY_IFNULL
	ARRAY_LENGTH
	ARRAY_MAX
	ARRAY_MIN
	ARRAY_POSITION
	ARRAY_PREPEND
	ARRAY_PUT
	ARRAY_REMOVE
	ARRAY_REPLACE
	ARRAY_REVERSE
	ARRAY_SORT
	ARRAY_SUM
	CARDINALITY
	EXTEND
	FIND_INDEX
	TOARRAY
	TOATOM
	TOBOOLEAN
	TONUMBERCB
	TOOBJECT
	TOSTRING
	TRUNCATE

	Binary Functions
	AND Functions
	NOT Functions
	OR Functions
	SHL Functions
	SHR Functions
	XOR Functions
	BYTE_SUBSTR

	Character Functions
	ASCII
	BASE64
	BITCOUNT
	BIT_LENGTH
	BITSTRING_TO_BINARY
	BTRIM
	CHAR_LENGTH
	CHARACTER_LENGTH
	CHARINDEX
	CHR
	CONCAT
	CONTAINS
	DLE_DST
	ENDSWITH
	FIND
	FIND_IN_SET
	GET_JSON_OBJECT
	GREATEST
	HEX_TO_BINARY
	INDEXOF
	INET_ATON
	INET_NTOA
	INITCAP
	INSERT
	INSTR
	ISOF
	ISUTF8
	LCASE
	LEAST
	LEFT
	LENGTH
	LE_DST
	LOCATE
	LOWER
	LPAD
	LSHIFT
	LTRIM
	MD5
	OCTET_LENGTH
	OVERLAYB
	PARSE_URL
	PARTIAL_STRING_MASK
	QUOTE_IDENT
	QUOTE_LITERAL
	REGEXP_CONTAINS
	REGEXP_COUNT
	REGEXP_EXTRACT
	REGEXP_INSTR
	REGEXP_REPLACE
	REGEXP_SUBSTR
	REGEXP_LIKE
	REGEXP_POSITION
	REPEAT
	REVERSE
	RIGHT
	REPLACE
	REGEXP
	RLIKE
	RPAD
	RSHIFT
	RTRIM
	SPACE
	SPLIT
	SPLIT_PART
	STARTSWITH
	STATEMENT_TIMESTAMP
	STRPOS
	SUBSTR
	SUBSTRING
	SUBSTRINGOF
	TRANSLATE
	TRIM
	TRIMBOTH
	TRIMLEADING
	TRIMTRAILING
	TYPE
	UCASE
	UNICHR
	UNICODE
	UPPER
	V6_ATON
	V6_NTOA
	V6_SUBNETA
	V6_SUBNETN
	V6_TYPE

	Conditional Functions
	COALESCE
	COMMON
	DECODE
	ES_MATCH
	FILTER
	IFINF
	IFMISSING
	IFMISSINGORNULL
	IFNAN
	IFNANORINF
	IFNULL
	IFNULLCB
	ISARRAY
	ISATOM
	ISBOOLEAN
	ISNUMBER
	ISOBJECT
	ISNULL
	ISNUMERIC
	ISSTRING
	MATCH_PHRASE
	MATCH_PHRASE_PREFIX
	MISSINGIF
	NANIF
	NEGINFIF
	NULLIF
	NVL
	NVL2
	POSINFIF
	TERM
	TEST

	Convert Functions
	CAST
	FORMAT_DATE
	PARSE_DATE
	PARSE_TIME
	PARSE_TIMESTAMP
	TIMESTAMP
	TO_BITSTRING
	TO_CHAR
	TO_NCHAR
	TO_DATE
	TO_HEX
	TO_NUMBER
	TO_TIMESTAMP
	TO_TIMESTAMP_TZ
	TRUNC
	TRUNC (for date/time)
	TRUNC (for numbers)

	Cryptographic Functions
	HASHMD2
	HASHMD4
	HASHMD5
	HASHSHA
	HASHSHA1

	Custom Functions
	GetClaim
	HasClaim

	Date Functions
	ADD_MONTHS
	AGE
	AT TIME ZONE
	CALENDAR_MONTH
	CALENDAR_QUARTER
	CALENDAR_YEAR
	CLOCK_MILLIS
	CLOCK_STR
	CLOCK_TIMESTAMP
	CURRENT_DATE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	DATE
	DATE_ADD
	DATEADD
	DATE_ADD_MILLIS
	DATE_ADD_STR
	DATE_DIFF_MILLIS
	DATE_DIFF_STR
	DATE_PART
	DATENAME
	DATEPART
	DATE_PART_MILLIS
	DATE_PART_STR
	DATE_SUB
	DATE_TRUNC
	DATETRUNC
	DATE_TRUNC_MILLIS
	DATE_TRUNC_STR
	DAY_IN_MONTH
	DAY_IN_WEEK
	DAY_IN_YEAR
	DAYNAME
	DAYOFMONTH
	DAYOFWEEK_ISO
	DAYOFWEEK
	DAYOFYEAR
	DAY_ONLY
	DATEDIFF
	DAY,MONTH,and YEAR
	DAYS
	DAYS_BETWEEN
	DBTIMEZONE
	EXTRACT
	EXTRACTDAY
	EXTRACTDOW
	EXTRACTDOY
	EXTRACTEPOCH
	EXTRACTHOUR
	EXTRACTMICROSECOND
	EXTRACTMILLISECOND
	EXTRACTMINUTE
	EXTRACTMONTH
	EXTRACTQUARTER
	EXTRACTSECOND
	EXTRACTWEEK
	EXTRACTYEAR
	FISCAL_MONTH
	FISCAL_QUARTER
	FISCAL_YEAR
	FRACTIONALSECONDS
	FROM_UNIXTIME
	GETUTCDATE
	HOUR
	HOUR_IN_DAY
	ISFINITE
	ISUTF8
	JULIAN_DAY
	LAST_DAY
	LOCALTIME
	LOCALTIMESTAMP
	MICROSECOND
	MIDNIGHT_SECONDS
	MILLIS
	MILLIS_TO_STR
	MILLIS_TO_UTC
	MAXDATETIME
	MINDATETIME
	MINUTE
	MONTHNAME
	MONTHS_BETWEEN
	NEW_TIME
	NEXT_DAY
	NOW
	NOW_MILLIS
	NOW_STR
	NUMTODSINTERVAL
	NUMTOYMINTERVAL
	QUARTER
	ROUND
	SECOND
	STR_TO_MILLIS
	STR_TO_UTC
	STR_TO_ZONE_NAME
	SYSDATE
	TIME
	TIMESTAMP_ROUND
	TIME_SLICE
	TIMEOFDAY
	TIMESTAMPADD
	TIMESTAMPDIFF
	TIMESTAMP_TRUNC
	TRANSACTION_TIMESTAMP
	TOTALOFFSETMINUTES
	TOTALSECONDS
	TZ_OFFSET
	TZCONVERTOR
	UNIX_TIMESTAMP
	UTC_TO_TIMESTAMP
	WEEK
	WEEK_ISO
	WEEK_IN_MONTH
	WEEK_IN_YEAR
	YEAR_ISO

	JSON Functions
	DECODE_JSON
	ENCODE_JSON
	ENCODED_SIZE
	JSON_TABLE
	JSON_EXTRACT
	JSON_EXTRACT_SCALAR
	JSON_COUNT
	JSON_SUM
	JSON_MIN
	JSON_MAX
	JSON_AVG
	JSONPATH
	JSON_OBJECT
	JSON_ARRAY

	Numeric Functions
	ABS
	ACOS
	ASIN
	ATAN
	ATAN2
	CBRT
	CEILING
	COS
	COSH
	COT
	DECFLOAT
	DEGREES
	E
	EXP
	FLOOR
	GEO.DISTANCE
	GEO.INTERSECTS
	GEO.LENGTH
	LN
	LOG
	LOG10
	MOD
	NEGATIVE
	NORMALIZE_DECFLOAT
	PI
	POW
	POWER
	QUANTIZE
	RADIANS
	RAND
	RANDOM
	ROUND (for date/time)
	ROUND (for numbers)
	ROWNUM
	SIGN
	SIN
	SINH
	SQRT
	TAN
	TANH
	TOTALORDER

	Operator Functions
	Add-Operator
	Concatenate-Operator
	Divide-Operator
	Exponentiate-Operator
	Factorial-Operator
	FACTORIAL
	Module-Operator
	Multiply-Operator
	Negate-Operator
	Subtract-Operator

	Phonetic Functions
	DBL_MP
	NYSIIS
	PRI_MP
	SCORE_MP
	SEC_MP
	SOUNDEX
	DIFFERENCE

	Utility Function
	XML Functions
	Identifier Escaping
	Text Escaping
	XMLATTRIBUTES
	XMLCOMMENT
	XMLCONCAT
	XMLDOCUMENT
	XMLELEMENT
	XML_EXTRACT
	XMLFOREST
	XMLNAMESPACES
	XMLPI
	XMLQUERY
	XMLTEXT
	XPATH
	XSLT

	TDV Support for SQL Operators
	Arithmetic Operators
	Add
	Concatenation
	Divide
	Exponentiate
	Factorial
	Modulo
	Multiply
	Negate
	Subtract

	Comparison Operators
	Quantified Comparisons

	Logical Operators
	AND
	NOT
	OR

	Condition Operators
	CASE
	COALESCE
	DECODE
	EXISTS and NOT EXISTS
	IN and NOT IN
	IS NOT NULL
	IS NULL
	LIKE
	OVERLAPS

	TDV Query Engine Options
	DATA_SHIP_MODE Values
	GROUP BY Options
	INSERT, UPDATE, and DELETE Options
	JOIN Options
	DISABLE_PUSH (JOIN Option)
	DISABLE_THREADS (JOIN Option)
	FORCE_DISK (JOIN Option)
	FORCE_ORDER (JOIN Option)
	HASH (JOIN Option)
	LEFT_CARDINALITY (JOIN Option)
	NESTEDLOOP (JOIN Option)
	PARTITION_SIZE (JOIN Option)
	RIGHT_CARDINALITY (JOIN Option)
	SEMIJOIN (JOIN Option)
	SORTMERGE (JOIN Option)
	SWAP_ORDER (JOIN Option)

	ORDER BY Options
	DISABLE_PUSH (ORDER BY Option)
	DISABLE_THREADS (ORDER BY Option)
	FORCE_DISK (ORDER BY Option)

	SELECT Options
	CASE_SENSITIVE (SELECT Option)
	DISABLE_CBO (SELECT Option)
	DISABLE_DATA_CACHE (SELECT Option)
	DISABLE_DATA_CACHE_IMMEDIATE (SELECT Option)
	DISABLE_JOIN_PRUNER (SELECT Option)
	DISABLE_PLAN_CACHE (SELECT Option)
	DISABLE_PUSH (SELECT Option)
	DISABLE_SELECTION_REWRITER (SELECT Option)
	DISABLE_SORT_REMOVAL (SELECT Option)
	DISABLE_STATISTICS (SELECT Option)
	DISABLE_THREADS (SELECT Option)
	FORCE_DISK (SELECT Option)
	FORCE_ESTIMATION (SELECT Option)
	IGNORE_TRAILING_SPACES (SELECT Option)
	MAX_ROWS_LIMIT (SELECT Option)
	ROWS_OFFSET (SELECT Option)
	STRICT (SELECT Option)
	PUSH_NULL_SELECTS (SELECT OPTION)
	DISABLE_CONSTANT_FUNCTION_INLINING (SELECT OPTION)
	DISABLE_UNION_PREAGGREGATOR (SELECT OPTION)
	USE_COMPARABLE_ESTIMATES (SELECT OPTION)

	UNION, INTERSECT, and EXCEPT Options
	DISABLE_PUSH (UNION, INTERSECT, and EXCEPT Option)
	FORCE_DISK (UNION, INTERSECT, and EXCEPT Option)
	PARALLEL (UNION, INTERSECT, and EXCEPT Option)
	ROUND_ROBIN (UNION, INTERSECT, and EXCEPT Option)
	SORT_MERGE (UNION, INTERSECT, and EXCEPT Option)

	TDV and Business Directory System Tables
	Accessing TDV and Business Directory System Tables
	ALL_BD_RESOURCES
	ALL_CATALOGS
	ALL_CATEGORIES
	ALL_CATEGORY_VALUES
	ALL_CLASSIFICATIONS
	ALL_COLUMNS
	ALL_COMMENTS
	ALL_CUSTOM_PROPERTIES
	ALL_CUSTOM_PROPERTY_CLASSIFICATIONS
	ALL_CUSTOM_PROPERTY_GROUPS
	ALL_CUSTOM_PROPERTY_GROUPS_ASSOCIATIONS
	ALL_DATASOURCES
	ALL_DOMAINS
	ALL_ENDPOINT_MAPPINGS
	ALL_FOREIGN_KEYS
	ALL_GROUPS
	ALL_INDEXES
	ALL_LINEAGE
	ALL_PARAMETERS
	ALL_PRINCIPAL_SET_MAPPINGS
	ALL_PRIVILEGES
	ALL_PROCEDURES
	ALL_PUBLISHED_FOLDERS
	ALL_RELATIONSHIP_COLUMNS
	ALL_RELATIONSHIPS
	ALL_RESOURCES
	ALL_SCHEMAS
	ALL_TABLES
	ALL_USERS
	ALL_USER_PROFILES
	ALL_WATCHES
	ALL_WSDL_OPERATIONS
	DEPLOYMENT_PLAN_DETAIL_LOG
	DEPLOYMENT_PLAN_LOG
	DUAL
	LOG_DISK
	LOG_EVENTS
	LOG_IO
	LOG_MEMORY
	SYS_CACHES
	SYS_CLUSTER
	SYS_DATA_OBJECTS
	SYS_DATASOURCES
	SYS_DEPLOYMENT_PLANS
	SYS_PRINCIPAL_SETS
	SYS_REQUESTS
	SYS_RESOURCE_SETS
	SYS_SESSIONS
	SYS_SITES
	SYS_STATISTICS
	SYS_TASKS
	SYS_TRANSACTIONS
	SYS_TRANSIENT_COLUMNS
	SYS_TRANSIENT_SCHEMAS
	SYS_TRANSIENT_TABLES
	SYS_TRIGGERS
	TEMPTABLE_LOG
	TRANSACTION_LOG
	USER_PROFILE

	TDV SQL Script
	SQL Script Overview
	SQL Language Concepts
	Identifiers
	Data Types
	Value Expressions
	Conditional Expressions
	Literal Values
	Noncursor Variables
	Cursor Variables
	Attributes of Cursors
	Attributes of CURRENT_EXCEPTION
	SQL Script Keywords

	SQL Script Procedures and Structure
	Basic Structure of a SQL Script Procedure
	SQL Script Procedure Header
	Compound Statements
	Independent Transactions
	Compensating Transactions
	Exceptions

	SQL Script Statement Reference
	BEGIN...END
	CALL
	CASE
	CLOSE
	COMMIT
	CREATE TABLE
	CREATE TABLE AS SELECT
	CREATE INDEX
	DECLARE Constants
	DECLARE CURSOR of Type Variable
	DECLARE <cursorName> CURSOR FOR
	DECLARE EXCEPTION
	DECLARE TYPE
	DECLARE Variable
	DECLARE VECTOR
	DELETE
	DROP TABLE
	DROP INDEX
	EXECUTE IMMEDIATE
	FIND_INDEX
	FETCH
	FOR
	IF
	INSERT
	ITERATE
	LEAVE
	LOOP
	OPEN
	PATH
	RAISE
	REPEAT
	ROLLBACK
	SELECT INTO
	SET
	TOP
	UPDATE
	WHILE

	SQL Script Examples
	Example 1 (Fetch All Rows)
	Example 2 (Fetch All Categories)
	Example 3 (User-Defined Type)
	Example 4 (User-Defined Type)
	Example 5 (Pipe Variable)
	Example 6 (Dynamic SQL Extract with Individual Inserts)
	Example 7 (Dynamic SQL Inserts by Variable Name)
	Example 8 (Prepackaged Query)
	Example 9 (Exception Handling)
	Example 10 (Row Declaration)
	Example 11 (Avoiding Division-by-Zero Errors)

	TDV Built-in Functions for XQuery
	executeStatement
	formatBooleanSequence
	formatDateSequence
	formatDecimalSequence
	formatDoubleSequence
	formatFloatSequence
	formatIntegerSequence
	formatStringSequence
	formatTimeSequence
	formatTimestampSequence

	Java APIs for Custom Procedures
	com.compositesw.extension
	CustomCursor
	CustomProcedure
	CustomProcedureException
	ExecutionEnvironment
	ParameterInfo
	ProcedureConstants
	ProcedureReference

	Function Support for Data Sources
	Pushing or Not Pushing Functions
	Function Support Issues when Combining Data Sources
	ASCII Function with Empty String Argument
	Case Sensitivity and Trailing Spaces
	Collating Sequence
	Data Precision
	Decimal Digit Limitation on Functions
	INSTR Function
	Interval Calculations
	Mapping of Native to TDV Data Types Across TDV Versions
	MERGE
	ORDER BY Clause
	SPACE Function
	SQL Server Sorting Order
	Time Functions
	Truncation vs. Rounding

	TDV Native Function Support
	TDV Aggregate Function Support
	TDV Character Function Support
	TDV Conditional Function Support
	TDV Conversion Function Support
	TDV Date Function Support
	TDV Numeric Function Support

	File Function Support
	File Aggregate Function Support
	File Character Function Support
	File Conversion Function Support
	File Date Function Support
	File Numeric Function Support

	XML Function Support
	XML Aggregate Function Support
	XML Character Function Support
	XML Conversion Function Support
	XML Date Function Support
	XML Numeric Function Support

	Custom Procedure Examples
	About the Custom Procedure Examples Syntax
	Example 1: Simple Query
	Example 2: Simple Update
	Example 3: External Update without Compensation
	Example 4: Nontransactional External Update without Compensation
	Example 5: Expression Evaluator
	Example 6: Output Cursor
	Example 7: Simple Procedure that Invokes Another Procedure

	Time Zones
	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

