
Copyright © 2002-2023. Cloud Software Group, Inc. All Rights Reserved.

TIBCO® Data Virtualization
Elasticsearch Adapter Guide
Version 8.8.0 | October 2023

TIBCO® Data Virtualization Elasticsearch Adapter Guide

2 | Contents

Contents
Contents 2

Elasticsearch Adapter 4
Getting Started 4

Basic Tab 5

Logging 8

Using Kerberos 10

Fine-Tuning Data Access 12

Querying Multiple Indices 13

Performance 13

Changelog 14

Searching with SQL 17
Schema Mapping 18

Parent-Child Relationships 19

Raw Data 20

Automatic Schema Discovery 22

Parsing Hierarchical Data 26

JSON Functions 33

Query Mapping 35

Custom Schema Definitions 39

Custom Schema Example 42

Advanced Features 44
User Defined Views 45

SSL Configuration 48

Firewall and Proxy 48

Query Processing 49

Logging 50

SQL Compliance 53

TIBCO® Data Virtualization Elasticsearch Adapter Guide

3 | Contents

SELECT Statements 54

ORDER BY Functions 66

INSERT Statements 67

UPDATE Statements 67

UPSERT Statements 68

DELETE Statements 69

EXECUTE Statements 70

PIVOT and UNPIVOT 71

Data Model 72
Stored Procedures 77

Data Type Mapping 82

Connection String Options 84
Authentication 90

Connection 95

Kerberos 102

SSL 107

Firewall 114

Proxy 117

Logging 124

Schema 125

Miscellaneous 128

TIBCO Documentation and Support Services 141

Legal and Third-Party Notices 144

TIBCO® Data Virtualization Elasticsearch Adapter Guide

4 | Elasticsearch Adapter

Elasticsearch Adapter

Elasticsearch Version Support
 The adapter models Elasticsearch data as a read/write, relational database. The adapter
can connect to Elasticsearch v2.2.0 and above via the REST API.

SQL Compliance
 The SQL Compliance section shows the SQL syntax supported by the adapter and points
out any limitations.

Getting Started

Connecting to Elasticsearch

Basic Tab shows how to authenticate to Elasticsearch and configure any necessary
connection properties. Additional adapter capabilities can be configured using the
available Connection properties on the Advanced tab. The Advanced Settings section
shows how to set up more advanced configurations and troubleshoot connection errors.

Deploying the Elasticsearch Adapter

To deploy the adapter, you can execute the server_util utility via the command line by

 1. Unzip the tdv.elasticsearch.zip file to the location of your choice.

 2. Open a command prompt window.

 3. Navigate to the <TDV_install_dir>/bin

 4. Enter the server_util command with the -deploy option:

server_util -server <hostname> [-port <port>] -user <user> -
password <password> -deploy -package <TDV_install_
dir>/adapters/tdv.elasticsearch/tdv.elasticsearch.jar

TIBCO® Data Virtualization Elasticsearch Adapter Guide

5 | Elasticsearch Adapter

Note: When deploying a build of an existing adapter, you will need to undeploy the existing
adapter using the server_util command with the -undeploy option.

server_util -server <hostname> [-port <port>] -user <user> -password
<password> -undeploy -version 1 -name Elasticsearch

 Basic Tab

Connecting to Elasticsearch Service

Set the following to connect to data:

 l Server should be set to the IP Address or domain of the Elasticsearch instance. The
Server could also be set to a comma-delimited list of node addresses or hostnames
from a single cluster.

Server=https://01.02.03.04
 OR
 Server=https://01.01.01.01:1234,https://02.02.02.02:5678

 l Port should be set to the configured port for the Elasticsearch instance. If you include
 a port in a node specification for the Server property, that included port will take
precedence over the specification for Port for that node only.

The adapter uses X-Pack Security for authentication and TLS/SSL encryption. You can
prefix the server value with "https://" to connect using TLS/SSL.

Connecting to Amazon OpenSearch Service

Set the following to connect to data:

 l Server should be set to the Endpoint URL for the Amazon ES instance.

 l Port should be set to 443.

 l AWSRegion should be set to the Amazon AWS region where the Elasticsearch instance
is being hosted (the adapter will attempt to automatically identify the region based
on the Server value).

The adapter uses X-Pack Security for authentication and TLS/SSL encryption.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

6 | Elasticsearch Adapter

Note: Requests are signed using AWS Signature Version 4.

Authenticating to Elasticsearch
 In addition to standard connection properties, select one of the below authentication
methods to authenticate.

Obtain AWS Keys
To obtain the credentials for an IAM user, follow the steps below:

 1. Sign into the IAM console.

 2. In the navigation pane, select Users.

 3. To create or manage the access keys for a user, select the user and then go to the
Security Credentials tab.

To obtain the credentials for your AWS root account, follow the steps below:

 1. Sign into the AWS Management console with the credentials for your root account.

 2. Select your account name or number and select My Security Credentials in the
menu that is displayed.

 3. Click Continue to Security Credentials and expand the "Access Keys" section to
manage or create root account access keys.

Standard Authentication
Set the AuthScheme to Basic, and set User and Password properties and/or use PKI (public
key infrastructure) to authenticate. Once the adapter is connected, X-Pack performs user
authentication and grants role permissions based on the realms you have configured.

To use PKI, set the SSLClientCert, SSLClientCertType, SSLClientCertSubject, and
SSLClientCertPassword properties.

Note: TLS/SSL and client authentication must be enabled on X-Pack to use PKI.

Securing Elasticsearch Connections
To enable TLS/SSL in the adapter, prefix the Server value with 'https://'.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

7 | Elasticsearch Adapter

Root Credentials
To authenticate using account root credentials, set the following:

 l AuthScheme: Set this to AwsRootKeys.

 l AWSAccessKey: The access key associated with the AWS root account.

 l AWSSecretKey: The secret key associated with the AWS root account.

Note: Use of this authentication scheme is discouraged by Amazon for anything but simple
tests. The account root credentials have the full permissions of the user, making this the
least secure authentication method.

Temporary Credentials
To authenticate using temporary credentials, specify the following:

 l AuthScheme: Set this to TemporaryCredentials.

 l AWSAccessKey: The access key of the IAM user to assume the role for.

 l AWSSecretKey: The secret key of the IAM user to assume the role for.

 l AWSSessionToken: Your AWS session token. This will have been provided alongside
your temporary credentials. See AWS Identity and Access Management User Guide for
more info.

The adapter can now request resources using the same permissions provided by long-term
credentials (such as IAM user credentials) for the lifespan of the temporary credentials.

If you are also using an IAM role to authenticate, you must additionally specify the
following:

 l AWSRoleARN: Specify the Role ARN for the role you'd like to authenticate with. This
will cause the adapter to attempt to retrieve credentials for the specified role.

 l AWSExternalId (optional): Only if required when you assume a role in another
account.

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html

TIBCO® Data Virtualization Elasticsearch Adapter Guide

8 | Elasticsearch Adapter

AWS IAM Roles
In many situations it may be preferable to use an IAM role for authentication instead of the
direct security credentials of an AWS root user.

To authenticate as an AWS role, set the following:

 l AuthScheme: Set this to AwsIAMRoles.

 l AWSAccessKey: The access key of the IAM user to assume the role for.

 l AWSSecretKey: The secret key of the IAM user to assume the role for.

 l AWSRoleARN: Specify the Role ARN for the role you'd like to authenticate with. This
will cause the adapter to attempt to retrieve credentials for the specified role.

 l AWSExternalId (optional): Only if required when you assume a role in another
account.

Note: Roles may not be used when specifying the AWSAccessKey and AWSSecretKey of an
AWS root user.

Kerberos
Please see Using Kerberos for details on how to authenticate with Kerberos.

API Key
To authenticate using APIKey set the following:

 l AuthScheme: Set this to APIKey.

 l APIKey: Set this to APIKey returned from Elasticsearch.

 l APIKeyId: Set this to the Id returned alongside APIKey.

 Logging
The adapter uses TDV Server's logging (log4j) to generate log files. The settings within the
TDV Server's logging (log4j) configuration file are used by the adapter to determine the
type of messages to log. The following categories can be specified:

TIBCO® Data Virtualization Elasticsearch Adapter Guide

9 | Elasticsearch Adapter

 l Error: Only error messages are logged.

 l Info: Both Error and Info messages are logged.

 l Debug: Error, Info, and Debug messages are logged.

The Other property of the adapter can be used to set Verbosity to specify the amount of
detail to be included in the log file, that is:

Verbosity=4;

You can use Verbosity to specify the amount of detail to include in the log within a
category. The following verbosity levels are mapped to the log4j categories:

 l 0 = Error

 l 1-2 = Info

 l 3-5 = Debug

For example, if the log4j category is set to DEBUG, the Verbosity option can be set to 3 for
the minimum amount of debug information or 5 for the maximum amount of debug
information.

Note that the log4j settings override the Verbosity level specified. The adapter never logs at
a Verbosity level greater than what is configured in the log4j properties. In addition, if
Verbosity is set to a level less than the log4j category configured, Verbosity defaults to the
minimum value for that particular category. For example, if Verbosity is set to a value less
than 3 and the Debug category is specified, the Verbosity defaults to 3.

The following list is an explanation of the Verbosity levels and the information that they
log.

 l 1 - Will log the query, the number of rows returned by it, the start of execution and
the time taken, and any errors.

 l 2 - Will log everything included in Verbosity 1 and HTTP headers.

 l 3 - Will additionally log the body of the HTTP requests.

 l 4 - Will additionally log transport-level communication with the data source. This
includes SSL negotiation.

 l 5 - Will additionally log communication with the data source and additional details
that may be helpful in troubleshooting problems. This includes interface commands.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

10 | Elasticsearch Adapter

Configure Logging for the Elasticsearch Adapter
By default, logging is turned on without debugging. If debugging information is desired,
uncomment the following line in the TDV Server's log4j.properties file (default location of
this file is: C:\Program Files\TIBCO\TDV Server <version>\conf\server):

 log4j.logger.com.cdata=DEBUG

The TDV Server must be restarted after changing the log4j.properties file, which can be
accomplished by running the composite.bat script located at: C:\Program Files\TIBCO\TDV
Server <version>\bin. Note that reauthenticating to the TDV Studio is required after
restarting the server.

Here is an example of the calls:

.\composite.bat monitor restart

All logs for the adapter are written to the "cs_server_dsrc.log" file as specified in the log4j
properties.

Note: The "log4j.logger.com.cdata=DEBUG" option is not required if the Debug Output
Enabled option is set to true within the TDV Studio. To set this option, navigate to
Administrator > Configuration. Select Server > Configuration > Debugging and set the
Debug Output Enabled option to True.

 Using Kerberos
This section shows how to use the adapter to authenticate using Kerberos.

Kerberos

To authenticate to Elasticsearch using Kerberos, set the following properties:

 l AuthScheme: Set this to NEGOTIATE.

 l KerberosKDC: Set this to the host name or IP Address of your Kerberos KDC machine.

 l KerberosRealm: Set this to the realm of the Elasticsearch Kerberos principal. This
will be the value after the '@' symbol (for instance, EXAMPLE.COM) of the principal
value (for instance, HTTP/MyHost@EXAMPLE.COM).

 l KerberosSPN: Set this to the service and host of the Elasticsearch Kerberos Principal.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

11 | Elasticsearch Adapter

This is the value prior to the '@' symbol (for instance, HTTP/MyHost) of the principal
value (for instance, HTTP/MyHost@EXAMPLE.COM).

Retrieve the Kerberos Ticket

You can use one of the following options to retrieve the required Kerberos ticket.

MIT Kerberos Credential Cache File
This option enables you to use the MIT Kerberos Ticket Manager or kinit command to get
tickets. Note that you do not need to set the User or Password connection properties with
this option.

 1. Ensure that you have an environment variable created called KRB5CCNAME.

 2. Set the KRB5CCNAME environment variable to a path pointing to your credential
cache file (for instance, C:\krb_cache\krb5cc_0 or /tmp/krb5cc_0). This file is created
when generating your ticket with MIT Kerberos Ticket Manager.

 3. To obtain a ticket, open the MIT Kerberos Ticket Manager application, click Get
Ticket, enter your principal name and password, then click OK. If successful, ticket
information appears in Kerberos Ticket Manager and is stored in the credential cache
file.

 4. Now that you have created the credential cache file, the adapter uses the cache file
to obtain the Kerberos ticket to connect to Elasticsearch.

As an alternative to setting the KRB5CCNAME environment variable, you can directly set
the file path using the KerberosTicketCache property. When set, the adapter uses the
specified cache file to obtain the Kerberos ticket to connect to Elasticsearch.

Keytab File
If the KRB5CCNAME environment variable has not been set, you can retrieve a Kerberos
ticket using a Keytab File. To do so, set the User property to the desired username and set
the KerberosKeytabFile property to a file path pointing to the keytab file associated with
the user.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

12 | Elasticsearch Adapter

User and Password
If both the KRB5CCNAME environment variable and the KerberosKeytabFile property have
not been set, you can retrieve a ticket using a user and password combination. To do this,
set the User and Password properties to the user/password combination that you use to
authenticate with Elasticsearch.

Cross-Realm

More complex Kerberos environments may require cross-realm authentication where
multiple realms and KDC servers are used (e.g., where one realm/KDC is used for user
authentication and another realm/KDC is used for obtaining the service ticket).

In such an environment, set the KerberosRealm and KerberosKDC properties to the values
required for user authentication. Also set the KerberosServiceRealm and
KerberosServiceKDC properties to the values required to obtain the service ticket.

 Fine-Tuning Data Access

Fine Tuning Data Access

You can use the following properties to gain greater control over Elasticsearch API features
and the strategies the adapter uses to surface them:

 l GenerateSchemaFiles: This property enables you to persist table metadata in static
schema files that are easy to customize, to persist your changes to column data
types, for example. You can set this property to "OnStart" to generate schema files
for all tables in your database at connection. The resulting schemas are based on the
connection properties you use to configure Automatic Schema Discovery.
Or, you can set this property to "OnUse" to generate schemas based on a query.
To use the resulting schema files, set the Location property to the folder containing
the schemas.

 l QueryPassthrough: This property enables you to use Elasticsearch's Search DSL
language instead of SQL.

 l RowScanDepth: This property determines the number of rows that will be scanned to
detect column data types when generating table metadata. This property applies if
you are working with the dynamic schemas generated from Automatic Schema
Discovery or if you are using QueryPassthrough.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

13 | Elasticsearch Adapter

Custom URLs

If a custom URL is required, using the form [Server]:[Port]/[URLPathPrefix], the
'URLPathPrefix' value can be specified via the Other property. For example:
URLPathPrefix=myprefix

The adapter will use the specified path prefix to build the URL required for connecting to
the Elasticsearch API endpoints.

 Querying Multiple Indices

Querying Multiple Indices

Multiple indices can be queried by executing a query using one of the following formats:

 l Query all indices via the _all view: SELECT * FROM [_all]

 l Query a list of indices: SELECT * FROM [index1,index2,index3]

 l Query indices matching a wildcard pattern: SELECT * FROM [index*]

Note, index lists can contain wildcards and indices can be excluded by prefixing an index
with '-'. For example: SELECT * FROM [index*,-index3]

 Performance

Fine Tuning Performance

 l PageSize: This property enables you to optimize performance based on your resource
 provisioning.
Paging has an impact on sorting performance in a distributed system, as each shard
must first sort results before submitting them to the coordinating server.
By default, the adapter requests a page size of 10,000. This is the default index.max_
result_window setting in Elasticsearch.

 l MaxResults: This property sets a limit on the results for queries at connection time,
without requiring that you specify a LIMIT clause.
By default, this is the same value as the index.max_result_window setting in

TIBCO® Data Virtualization Elasticsearch Adapter Guide

14 | Elasticsearch Adapter

Elasticsearch.

If you are using the Scroll API, set ScrollDuration instead.

 l ScrollDuration: This property specifies how long the server should keep the search
context alive. Setting this property to a nonzero value and time unit enables the
Scroll API.

 Changelog

General Changes

Date Build
Number

Change
Type

Description

04/25/2023 8515 General Removed

 l Removed support for the SELECT INTO
CSV statement. The core code doesn't
support it anymore.

3/15/2023 8474 Elasticsearch Added

 l Added the CreateIndex stored
procedure. Can be used to create
indices in the target Elasticsearch
cluster.

1/06/2023 8406 Elasticsearch Removed

 l Added the
UseFullyQualifiedNestedTableName
connection property. When using the
Relational mode of the Datamodel
connection property,
UseFullyQualifiedNestedTableName
controls whether or not the relational
tables modeled for nested documents
are named with a full representation of

TIBCO® Data Virtualization Elasticsearch Adapter Guide

15 | Elasticsearch Adapter

Date Build
Number

Change
Type

Description

their path in the parent, indexed
document.

12/14/2022 8383 General Changed

 l Added the Default column to the sys_
procedureparameters table.

12/09/2022 8378 Elasticsearch Removed

 l Removed the FileLocation parameter
from CreateSchema. The Location
property must be used to set the
output directory for created schemas.

09/30/2022 8308 General Changed

 l Added the IsPath column to the sys_
procedureparameters table.

08/17/2022 8264 General Changed

 l We now support handling the keyword
"COLLATE" as standard function name
as well.

06/17/2022 8203 Elasticsearch Added

 l Added support for specification of
multiple nodes from the same cluster
in the Server connection property.
Driver will cycle through these nodes
as the destinations for its requests to
Elasticsearch.

06/02/2022 8188 Elasticsearch Added

 l Added support for the _delete_by_
query API endpoint.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

16 | Elasticsearch Adapter

Date Build
Number

Change
Type

Description

05/06/2022 8161 Elasticsearch Added

 l Added support for Elasticsearch 8.0+.

09/02/2021 7915 General Added

 l Added support for the STRING_SPLIT
table-valued function in the CROSS
APPLY clause.

08/07/2021 7889 General Changed

 l Added the KeySeq column to the sys_
foreignkeys table.

08/06/2021 7888 General Changed

 l Added the new sys_primarykeys
system table.

04/23/2021 7785 General Added

 l Added support for handling client side
formulas during insert / update. For
example: UPDATE Table SET Col1 =
CONCAT(Col1, " - ", Col2) WHERE Col2
LIKE 'A%'

04/23/2021 7783 General Changed

 l Updated how display sizes are
determined for varchar primary key
and foreign key columns so they will
match the reported length of the
column.

04/16/2021 7776 General Added

 l Non-conditional updates between two
columns is now available to all drivers.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

17 | Elasticsearch Adapter

Date Build
Number

Change
Type

Description

For example: UPDATE Table SET
Col1=Col2

Changed

 l Reduced the length to 255 for varchar
primary key and foreign key columns.

Changed

 l Updated implicit and metadata
caching to improve performance and
support for multiple connections. Old
metadata caches are not compatible -
you need to generate new metadata
caches if you are currently using
CacheMetadata.

Changed

 l Updated index naming convention to
avoid duplicates.

04/15/2021 7775 General Changed

 l Kerberos authentication is updated to
use TCP by default, but will fall back to
UDP if a TCP connection cannot be
established.

Searching with SQL
Elasticsearch is a document-oriented database that provides high performance searching,
flexibility, and scalability. These features are not necessarily incompatible with a standards-
compliant query language like SQL-92. In this section we will show various schemes that
the adapter offers to bridge the gap with relational SQL and an Elasticsearch database.

The adapter models Elasticsearch objects into relational tables and translates SQL queries
into Elasticsearch queries to get the requested data. See Schema Mapping for more details

TIBCO® Data Virtualization Elasticsearch Adapter Guide

18 | Elasticsearch Adapter

on how Elasticsearch objects are mapped to tables to generate schemas. See Query
Mapping for more details on how various Elasticsearch operations are represented as SQL.

The Automatic Schema Discovery scheme automatically finds the data types by retrieving
the mapping for the Elasticsearch type. You can use RowScanDepth, FlattenArrays, and
FlattenObjects to control the relational representation of the collections in Elasticsearch.

Optionally, you can use Custom Schema Definitions to project your chosen relational
structure on top of a Elasticsearch object. This allows you choose your own column names,
their data types, and the location of their values in the collection.

When GenerateSchemaFiles is set, you can persist schemas for all collections in the
database or for the results of SELECT queries.

 Schema Mapping
The Elasticsearch Adapter models the Elasticsearch REST APIs as relational tables and
stored procedures that can be accessed with standard SQL. This enables access from
standards-based tools.

The table definitions are dynamically retrieved. When you connect, the adapter connects to
 Elasticsearch and retrieves the schemas, list of tables, and the metadata for the tables by
querying the Elasticsearch REST server. Any changes to the remote data are immediately
reflected in your queries.

The following table maps Elasticsearch concepts to relational ones:

Elasticsearch Versions 6 and Above:

Elasticsearch Concept SQL Concept

Index Table

Alias View

Document Row (each document is a row and the document's JSON structure
is represented as columns)

Field Column

TIBCO® Data Virtualization Elasticsearch Adapter Guide

19 | Elasticsearch Adapter

Note: Starting in Elasticsearch 6, indices are limited to a single type. Therefore the type is
no longer treated as a table, since an index and type have a one-to-one relation. Types are
hidden and used internally where necessary to issue the proper request to Elasticsearch.

Elasticsearch Versions Prior to Version 6:

Elasticsearch Concept SQL Concept

Index Schema

Type Table

Alias View

Document Row (each document is a row and the document's JSON structure
is represented as columns)

Field Column

 Parent-Child Relationships
Elasticsearch contains the ability to establish parent-child relationships. This relationship
maps closely to SQL JOIN functionality. The adapter models these parent-child
relationships in a way to enable the ability to perform JOIN queries.

Elasticsearch Versions 6 and Above:

In version 6 and above of Elasticsearch, relationships are established by using the join
datatype. Included in this functionality is the ability to define multiple children for a single
parent and to create multiple levels of relations.

The adapter supports all of these relationships and will generate a separate table for each
relation in Elasticsearch. The table name will be in the form: [index]_[relation].

All child tables will have an additional column containing the parent table id. The column
name will be in the form: _[parent_table]_id. This column is a foreign key to the _id
column of the parent table and can be used to perform SQL JOIN queries.

When querying these tables individually, filtering logic is pushed to the server to improve
performance by only returning the data relevant to the table selected.

Elasticsearch Versions Prior to Version 6:

TIBCO® Data Virtualization Elasticsearch Adapter Guide

20 | Elasticsearch Adapter

In versions prior to 6, a relationship is established between two types via a _parent field.
This creates a single parent-child relationship.

The tables identified in this parent-child relationship do not change (they are still based on
the Elasticsearch type). However the child table will have an additional column containing
the parent id. The column name will be in the form: _[parent_table]_id. This column is a
foreign key to the _id column of the parent table and can be used to perform SQL JOIN
queries.

 Raw Data
Below is the raw data used throughout this chapter. Following is the mapping for the
"insured" table (index):

{
 "insured": {
 "mappings": {
 "properties": {
 "name": { "type":"string" },
 "address": {
 "street": { "type":"string" },
 "city": { "type":"string" },
 "state": { "type":"string" }
 },
 "insured_ages": { "type": "integer" },
 "vehicles": {
 "type": "nested",
 "properties": {
 "year": { "type":"integer" },
 "make": { "type":"string" },
 "model": { "type":"string" },
 "body_style" { "type": "string" }
 }
 }
 }
 }
 }
 }

The following is the sample data set for the "insured" table (index):

{
 "hits": {
 "total": 2,
 "max_score": 1,

TIBCO® Data Virtualization Elasticsearch Adapter Guide

21 | Elasticsearch Adapter

 "hits": [
 {
 "_index": "insured",
 "_type": "_doc",
 "_id": "1",
 "_score": 1,
 "_source": {
 "name": "John Smith",
 "address": {
 "street": "Main Street",
 "city": "Chapel Hill",
 "state": "NC"
 },
 "insured_ages": [17, 43, 45],
 "vehicles": [
 {
 "year": 2015,
 "make": "Dodge",
 "model": "RAM 1500",
 "body_style": "TK"
 },
 {
 "year": 2015,
 "make": "Suzuki",
 "model": "V-Strom 650 XT",
 "body_style": "MC"
 },
 {
 "year": 1992,
 "make": "Harley Davidson",
 "model": "FXR",
 "body_style": "MC"
 }
]
 }
 },
 {
 "_index": "insured",
 "_type": "_doc",
 "_id": "2",
 "_score": 1,
 "_source": {
 "name": "Joseph Newman",
 "address": {
 "street": "Oak Street",
 "city": "Raleigh",
 "state": "NC"

TIBCO® Data Virtualization Elasticsearch Adapter Guide

22 | Elasticsearch Adapter

 },
 "insured_ages": [23, 25],
 "vehicles": [
 {
 "year": 2010,
 "make": "Honda",
 "model": "Accord",
 "body_style": "SD"
 },
 {
 "year": 2008,
 "make": "Honda",
 "model": "Civic",
 "body_style": "CP"
 }
]
 }
 }
]
 }
 }

 Automatic Schema Discovery
The adapter automatically infers a relational schema by retrieving the mapping of the
Elasticsearch type. The columns and data types are generated from the retrieved mapping.

Detecting Arrays
Any field within Elasticsearch can be an array of values, but this is not explicitly defined
within the mapping. To account for this, the adapter will query the data to detect if any
fields contain arrays. The number of Elasticsearch documents retrieved during this array
scanning is based on the RowScanDepth property.

Elasticsearch nested types are special types that denote an array of objects and thus will
always be treated as such when generating the metadata.

Detecting Columns
The columns identified during the discovery process depend on the FlattenArrays and
FlattenObjects properties.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

23 | Elasticsearch Adapter

Example Data Set
To provide an example of how these options work, consider the following mapping (where
'insured' is the name of the table):

{
 "insured": {
 "properties": {
 "name": { "type":"string" },
 "address": {
 "street": { "type":"string" },
 "city": { "type":"string" },
 "state": { "type":"string" }
 },
 "insured_ages": { "type": "integer" },
 "vehicles": {
 "type": "nested",
 "properties": {
 "year": { "type":"integer" },
 "make": { "type":"string" },
 "model": { "type":"string" },
 "body_style" { "type": "string" }
 }
 }
 }
 }
 }

Also consider the following example data for the above mapping:

{
 "_source": {
 "name": "John Smith",
 "address": {
 "street": "Main Street",
 "city": "Chapel Hill",
 "state": "NC"
 },
 "insured_ages": [17, 43, 45],
 "vehicles": [
 {
 "year": 2015,
 "make": "Dodge",
 "model": "RAM 1500",
 "body_style": "TK"
 },

TIBCO® Data Virtualization Elasticsearch Adapter Guide

24 | Elasticsearch Adapter

 {
 "year": 2015,
 "make": "Suzuki",
 "model": "V-Strom 650 XT",
 "body_style": "MC"
 },
 {
 "year": 2012,
 "make": "Honda",
 "model": "Accord",
 "body_style": "4D"
 }
]
 }
 }

Using FlattenObjects

If FlattenObjects is set, all nested objects will be flattened into a series of columns. The
above example will be represented by the following columns:

Column Name Data
Type

Example Value

name String John Smith

address.street String Main Street

address.city String Chapel Hill

address.state String NC

insured_ages String [17, 43, 45]

vehicles String [{ "year": "2015", "make": "Dodge", ... }, { "year": "2015",
"make": "Suzuki", ... }, { "year": "2012", "make": "Honda", ... }]

If FlattenObjects is not set, then the address.street, address.city, and address.state columns
will not be broken apart. The address column of type string will instead represent the
entire object. Its value would be the following:

TIBCO® Data Virtualization Elasticsearch Adapter Guide

25 | Elasticsearch Adapter

{street: "Main Street", city: "Chapel Hill", state: "NC"}

 See JSON Functions for more details on working with JSON aggregates.

Using FlattenArrays

The FlattenArrays property can be used to flatten array values into columns of their own.
This is only recommended for arrays that are expected to be short. It is best to leave
unbounded arrays as they are and piece out the data for them as needed using JSON
Functions.

Note: Only the top-most array will be flattened. Any subarrays will be represented as the
entire array.

The FlattenArrays property can be set to 3 to represent the arrays in the example above as
follows (this example is with FlattenObjects not set):

Column Name Data
Type

Example Value

insured_ages String [17, 43, 45]

insured_ages.0 Integer 17

insured_ages.1 Integer 43

insured_ages.2 Integer 45

vehicles String [{ "year": "2015", "make": "Dodge", ... }, { "year": "2015",
"make": "Suzuki", ... }, { "year": "2012", "make": "Honda", ...
}]

vehicles.0 String { "year": "2015", "make": "Dodge", "model": "RAM 1500",
"body_style": "TK" }

vehicles.1 String { "year": "2015", "make": "Suzuki", "model": "V-Strom 650
XT", "body_style": "MC" }

vehicles.2 String { "year": "2012", "make": "Honda", "model": "Accord",
"body_style": "4D" }

TIBCO® Data Virtualization Elasticsearch Adapter Guide

26 | Elasticsearch Adapter

Using Both FlattenObjects and FlattenArrays

If FlattenObjects is set along with FlattenArrays (set to 1 for brevity), the vehicles field will
be represented as follows:

Column Name Data
Type

Example Value

vehicles String [{ "year": "2015", "make": "Dodge", ... }, { "year":
"2015", "make": "Suzuki", ... }, { "year": "2012", "make":
"Honda", ... }]

vehicles.0.year String 2015

vehicles.0.make String Dodge

vehicles.0.model String RAM 1500

vehicles.0.body_style String TK

 Parsing Hierarchical Data
The adapter offers three basic configurations to model documents as tables, described in
the following sections. The adapter will parse the Elasticsearch document and identify the
nested documents.

 l Flattened Documents Model: Implicitly join nested documents into a single table.

 l Relational Model: Model nested documents as individual tables containing a primary
key and a foreign key that links to the parent document.

 l Top-Level Document Model: Model a top-level view of an Elasticsearch document.
Nested documents are returned as JSON strings.

 See Searching with SQL to configure column discovery or customize the detected
schemas.

 Flattened Documents Model

TIBCO® Data Virtualization Elasticsearch Adapter Guide

27 | Elasticsearch Adapter

For users who need access to the entirety of their nested Elasticsearch data, flattening the
data into a single table is the best option. The adapter will use streaming and only parses
the Elasticsearch data once per query in this mode.

Joining Object Arrays into a Single Table

With DataModel set to "FlattenedDocuments", nested documents will behave as separate
tables and act in the same manner as a SQL JOIN. Any nested documents, at the same
height (e.g. sibling documents), will be treated as a SQL CROSS JOIN.

Example

Below is a sample query and the results, based on the sample document in Raw Data. This
implicitly JOINs the insured document with the nested vehicles document.

Query
The following query drills into the nested documents in each insured document.

SELECT
 "_id",
 "name",
 "address.street" AS address_street,
 "address.city.first" AS address_city,
 "address.state.last" AS address_state,
 "insured_ages",
 "year",
 "make",
 "model",
 "body_style",
 "_insured_id",
 "_vehicles_c_id"
 FROM
 "insured"

Results

TIBCO® Data Virtualization Elasticsearch Adapter Guide

28 | Elasticsearch Adapter

_
i
d

nam
e

addr
ess_
stree
t

addr
ess_
city

addr
ess_
state

insur
ed_
ages

ye
ar

make mo
del

bod
y_
styl
e

_
insur
ed_id

_
vehic
les_
c_id

1 John
Smit
h

Main
Street

Chap
el Hill

NC [17,
43,
45]

20
15

Dodg
e

RAM
150
0

TK 1 1

1 John
Smit
h

Main
Street

Chap
el Hill

NC [17,
43,
45]

20
15

Suzu
ki

V-
Stro
m
650
XT

MC 1 2

1 John
Smit
h

Main
Street

Chap
el Hill

NC [17,
43,
45]

19
92

Harle
y
David
son

FXR MC 1 3

2 Jose
ph
New
man

Oak
Street

Ralei
gh

NC [23,
25]

20
10

Hond
a

Acc
ord

SD 2 4

2 Jose
ph
New
man

Oak
Street

Ralei
gh

NC [23,
25]

20
08

Hond
a

Civi
c

CP 2 5

See Also

 l Automatic Schema Discovery: Configure the columns reported in the table schemas.

 l FreeForm;: Use dot notation to select nested data.

 l VerticalFlattening;: Access nested object arrays as separate tables.

 l JSON Functions: Manipulate the data returned to perform client-side aggregation and
transformations.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

29 | Elasticsearch Adapter

 Top-Level Document Model
Using a top-level document view of the Elasticsearch data provides ready access to top-
level elements. The adapter returns nested elements in aggregate, as single columns.

One aspect to consider is performance. You forego the time and resources to process and
parse nested elements -- the adapter parses the returned data once, using streaming to
read the JSON data. Another consideration is your need to access any data stored in
nested parent elements, and the ability of your tool or application to process JSON.

Modeling a Top-Level Document View

With DataModel set to "Document" (the default), the adapter scans only the top-level
object by default. The top-level object elements are available as columns due to the
default object flattening. Nested objects are returned as aggregated JSON.

Example

Below is a sample query and the results, based on the sample document in Raw Data. The
query results in a single "insured" table.

Query
The following query pulls the top-level object elements and the vehicles array into the
results.

SELECT
 "_id",
 "name",
 "address.street" AS address_street,
 "address.city" AS address_city,
 "address.state" AS address_state,
 "insured_ages",
 "vehicles"
 FROM
 "insured"

TIBCO® Data Virtualization Elasticsearch Adapter Guide

30 | Elasticsearch Adapter

Results
With a document view of the data, the address object is flattened into 3 columns (when
FlattenObjects set to true) and the _id, name, insured_ages, and vehicles elements are
returned as individual columns, resulting in a table with 7 columns.

_
i
d

name addre
ss_
street

addre
ss_
city

addre
ss_
state

insur
ed_
ages

vehicles

1 John
Smith

Main
Street

Chap
el Hill

NC [17,
43, 45
] [{"year":2015,"make":"Dodge","

model":"RAM 1500","body_
style":"TK"},
{"year":2015,"make":"Suzuki","
model":"V-Strom 650 XT","body_
style":"MC"},
{"year":1992,"make":"Harley
Davidson","model":"FXR","body_
style":"MC"}]

2 Josep
h
New
man

Oak
Street

Raleig
h

NC [23,
25]

[{"year":2010,"make":"Honda","
model":"Accord","body_
style":"SD"},
{"year":2008,"make":"Honda","m
odel":"Civic","body_
style":"CP"}]

See Also

 l Automatic Schema Discovery: Configure column discovery with horizontal flattening.

 l FreeForm;: Use dot notation to select nested data.

 l VerticalFlattening;: Access nested object arrays as separate tables.

 l JSON Functions: Manipulate the data returned to perform client-side aggregation and

TIBCO® Data Virtualization Elasticsearch Adapter Guide

31 | Elasticsearch Adapter

transformations.

 Relational Model
The Elasticsearch Adapter can be configured to create a relational model of the data,
treating nested documents as individual tables containing a primary key and a foreign key
that links to the parent document. This is particularly useful if you need to work with your
Elasticsearch data in existing BI, reporting, and ETL tools that expect a relational data
model.

Joining Nested Arrays as Tables

With DataModel set to "Relational", any JOINs are controlled by the query. Any time you
perform a JOIN query, the Elasticsearch index will be queried once for each table (nested
document) included in the query.

Example

Below is a sample query against the sample document in Raw Data, using a relational
model.

Query
The following query explicitly JOINs the insured and vehiclestables.

SELECT
 "insured"."_id",
 "insured"."name",
 "insured"."address.street" AS address_street,
 "insured"."address.city.first" AS address_city,
 "insured"."address.state.last" AS address_state,
 "insured"."insured_ages",
 "vehicles"."year",
 "vehicles"."make",
 "vehicles"."model",
 "vehicles"."body_style",
 "vehicles"."_insured_id",
 "vehicles"."_c_id"
 FROM
 "insured"
 JOIN

TIBCO® Data Virtualization Elasticsearch Adapter Guide

32 | Elasticsearch Adapter

 "vehicles"
 ON
 "insured"."_id" = "vehicles"."_insured_id"

Results
In the example query, each vehicle document is JOINed to its parent insured object to
produce a table with 5 rows.

_
i
d

nam
e

addr
ess_
stree
t

addr
ess_
city

addr
ess_
state

insur
ed_
ages

ye
ar

make mo
del

bod
y_
styl
e

_
insur
ed_id

_
vehic
les_
c_id

1 John
Smit
h

Main
Street

Chap
el Hill

NC [17,
43,
45]

20
15

Dodg
e

RAM
150
0

TK 1 1

1 John
Smit
h

Main
Street

Chap
el Hill

NC [17,
43,
45]

20
15

Suzu
ki

V-
Stro
m
650
XT

MC 1 2

1 John
Smit
h

Main
Street

Chap
el Hill

NC [17,
43,
45]

19
92

Harle
y
David
son

FXR MC 1 3

2 Jose
ph
New
man

Oak
Street

Ralei
gh

NC [23,
25]

20
10

Hond
a

Acc
ord

SD 2 4

2 Jose
ph
New
man

Oak
Street

Ralei
gh

NC [23,
25]

20
08

Hond
a

Civi
c

CP 2 5

TIBCO® Data Virtualization Elasticsearch Adapter Guide

33 | Elasticsearch Adapter

See Also

 l Automatic Schema Discovery: Configure the columns reported in the table schemas.

 l FreeForm;: Use dot notation to select nested data.

 l VerticalFlattening;: Access nested object arrays as separate tables.

 l JSON Functions: Manipulate the data returned to perform client-side aggregation and
transformations.

 JSON Functions
The adapter can return JSON structures as column values. The adapter enables you to use
standard SQL functions to work with these JSON structures. The examples in this section
use the following array:

[
 { "grade": "A", "score": 2 },
 { "grade": "A", "score": 6 },
 { "grade": "A", "score": 10 },
 { "grade": "A", "score": 9 },
 { "grade": "B", "score": 14 }
]

JSON_EXTRACT
 The JSON_EXTRACT function can extract individual values from a JSON object. The
following query returns the values shown below based on the JSON path passed as the
second argument to the function:

SELECT Name, JSON_EXTRACT(grades,'[0].grade') AS Grade, JSON_EXTRACT
(grades,'[0].score') AS Score FROM Students;

Column Name Example Value

Grade A

Score 2

TIBCO® Data Virtualization Elasticsearch Adapter Guide

34 | Elasticsearch Adapter

JSON_COUNT
 The JSON_COUNT function returns the number of elements in a JSON array within a JSON
object. The following query returns the number of elements specified by the JSON path
passed as the second argument to the function:

SELECT Name, JSON_COUNT(grades,'[x]') AS NumberOfGrades FROM Students;

Column Name Example Value

NumberOfGrades 5

JSON_SUM
 The JSON_SUM function returns the sum of the numeric values of a JSON array within a
JSON object. The following query returns the total of the values specified by the JSON path
passed as the second argument to the function:

SELECT Name, JSON_SUM(score,'[x].score') AS TotalScore FROM Students;

Column Name Example Value

TotalScore 41

JSON_MIN
 The JSON_MIN function returns the lowest numeric value of a JSON array within a JSON
object. The following query returns the minimum value specified by the JSON path passed
as the second argument to the function:

SELECT Name, JSON_MIN(score,'[x].score') AS LowestScore FROM Students;

Column Name Example Value

LowestScore 2

TIBCO® Data Virtualization Elasticsearch Adapter Guide

35 | Elasticsearch Adapter

JSON_MAX
 The JSON_MAX function returns the highest numeric value of a JSON array within a JSON
object. The following query returns the maximum value specified by the JSON path passed
as the second argument to the function:

SELECT Name, JSON_MAX(score,'[x].score') AS HighestScore FROM Students;

Column Name Example Value

HighestScore 14

DOCUMENT

The DOCUMENT function can be used to retrieve the entire document as a JSON string. See
the following query and its result as an example:

SELECT DOCUMENT(*) FROM Employee;

 The query above will return the entire document as shown.

 {
 "_index": "megacorp",
 "_type": "employee",
 "_id": "2",
 "_score": 1,
 "_source": {
 "first_name": "Jane",
 "last_name": "Smith",
 "age": 32,
 "about": "I like to collect rock albums",
 "interests": [
 "music"
]
 }
 }

 Query Mapping

TIBCO® Data Virtualization Elasticsearch Adapter Guide

36 | Elasticsearch Adapter

This section describes how SQL statements are interpreted and translated into
Elasticsearch queries. Examples are also provided to explain the behavior of various
queries.

Query/Filter Context and Scoring
 When the _score column is selected, scoring will be requested by issuing a query context
request, which scores the quality of the search results. By default, results are returned in
descending order based on the calculated _score. An ORDER BY clause can be specified to
change the order of the returned results.

 When the _score column is not selected, a filter context will be sent, in which case
Elasticsearch will not compute scores. The results for these queries will be returned in
arbitrary order unless an ORDER BY clause is explicitly specified.

Text Matching and Search
 Analyzed fields in Elasticsearch are stored in an inverted index after they are run through
an analyzer. Analyzers are customizable and thus can perform a variety of different filters
on the data prior to storing them in the inverted index. For example, the default
Elasticsearch analyzer will lowercase all the terms.

To demonstrate this point, an analyzed field in Elasticsearch was created with a value of
'Bike'. After being analyzed, the value will be stored in the inverted index (using the default
analyzer) as 'bike'. A non-analyzed field, on the other hand, would not analyze the search
value and thus would be stored as 'Bike'.

 When performing searches, some Elasticsearch query types run the search value through
an analyzer (which will make the search case insensitive) and some do not (making the
search case sensitive). Additionally, the default analyzer breaks up fields containing
multiple words into separate terms. When performing searches on these fields,
Elasticsearch may return records that contain the same words but in a different order. For
example, a search is performed using a value of 'blue sky' but a record with 'sky blue' is
returned.

To work around these case-sensitivity and ordering issues, the Elasticsearch Adapter will
identify the column as analyzed or non-analyzed and will issue the appropriate
Elasticsearch query based on the specified operator (such as =) and the search value.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

37 | Elasticsearch Adapter

Equals and Not Equals
 Where clauses that contain an equals (=) or not equals (!= or <>) filter issue different
Elasticsearch queries depending upon the column and data used. Analyzed and non-
analyzed columns behave differently and thus different Elasticsearch queries are generated
to provide the best search functionality. Additionally, string values generate different query
 types depending upon whether they contain empty space or not. Below is an explanation
of the rules and behavior for the varying cases.

Analyzed Columns
 Analyzed columns are stored after being run through an analyzer. As a result of that, the
search values specified will be run through an analyzer on the Elasticsearch server prior to
the search. This makes the searches case-insensitive (provided the analyzer used handles
casing).

WHERE Clause Examples Elasticsearch Query Type

WHERE analyzed_column='value' Query String Query

WHERE analyzed_column='value with spaces' Match Phrase Query

Non-Analyzed Columns
 Non-analyzed columns are stored without being run through an analyzer. Thus, non-
analyzed columns are case sensitive and thus search values specified for these columns are
case sensitive. If the search value is a single word, the adapter will check the filter with the
original casing specified along with three common forms: uppercase, lowercase, and
capitalized. If the search value contains multiple words, the search value will be sent as-is
and thus is case sensitive.

WHERE Clause Examples Elasticsearch Query Type

WHERE nonanalyzed_column='myValue' Query String Query: Four cases are
checked - myValue OR MYVALUE OR
myvalue OR Myvalue

WHERE nonanalyzed_column='value with spaces' Wildcard Query

TIBCO® Data Virtualization Elasticsearch Adapter Guide

38 | Elasticsearch Adapter

IN and NOT IN
 The IN and NOT IN operators function very similarly to the equals and not equals
operators.

WHERE Clause Examples Behavior

WHERE column IN ('value') Treated as: column='value'

WHERE column NOT IN ('value') Treated as: column!='value'

WHERE column IN ('value1', 'value2') Treated as: column='value1' OR
column='value2'

WHERE column NOT IN ('value1', 'value2') Treated as: column!='value1' AND
column!='value2'

LIKE and NOT LIKE
 The LIKE and NOT LIKE operators allow the use of wildcard characters. The percent sign
(%) represents zero, one, or multiple characters. The underscore (_) represents a single
character (in which the character must be present).

WHERE Clause Examples Behavior

WHERE column LIKE 'value' Treated as: column='value'

WHERE column NOT LIKE 'value' Treated as: column!='value'

WHERE analyzed_column LIKE 'v_lu%' Query String Query with wildcards

WHERE nonanalyzed_column LIKE 'v_lu%' Wildcard Query with wildcards

Aggregate Filtering
 Aggregate data may consist of JSON objects or arrays (both primitive and object arrays).

TIBCO® Data Virtualization Elasticsearch Adapter Guide

39 | Elasticsearch Adapter

JSON objects and arrays of objects will be treated as raw strings and all filtering will be
performed by the adapter. Therefore an equals operation must match the entire JSON
aggregate to return a result, unless a CONTAINS or LIKE operation is used.

If JSON objects are flattened into individual columns (via FlattenObjects and FlattenArrays),
the column for the specific JSON field will be treated as individual columns. Thus the data
type will be that as contained in the Elasticsearch mapping and all filters will be pushed to
the server (where applicable).

JSON primitive array aggregates will also be treated as raw strings by default and filters
will be performed by the adapter. To filter data based on whether a primitive array
contains a single value, the INARRAY function can be used (e.g. INARRAY(column) = 'value').
 When performing a search on array fields, Elasticsearch looks at each value individually
within an array. Thus when the INARRAY function is specified in a WHERE clause, the filter
will be pushed to the server which performs a search within an array.

Primitive arrays may consist of different data types, such as strings or ints. Therefore the
INARRAY function supports comparison operators applicable to the data type within the
Elasticsearch mapping for the field. For example, INARRAY(int_array) > 5, will return all
rows of data in which the int_array contains a value greater than 5. Supported comparison
operators include the use of the LIKE operator for string arrays.

 Custom Schema Definitions
View schemas persist the relational structure the adapter infers for Elasticsearch types and
queries. To provide an example of how custom schemas work, we will use the below
mapping (where 'insured' is the name of the table).

{
 "insured": {
 "properties": {
 "name": { "type":"string" },
 "address": {
 "street": { "type":"string" },
 "city": { "type":"string" },
 "state": { "type":"string" }
 },
 "insured_ages": { "type": "integer" },
 "vehicles": {
 "type": "nested",
 "properties": {
 "year": { "type":"integer" },
 "make": { "type":"string" },
 "model": { "type":"string" },

TIBCO® Data Virtualization Elasticsearch Adapter Guide

40 | Elasticsearch Adapter

 "body_style" { "type": "string" }
 }
 }
 }
 }
 }

Also, consider the following example data for the above mapping:

{
 "_source": {
 "name": "John Smith",
 "address": {
 "street": "Main Street",
 "city": "Chapel Hill",
 "state": "NC"
 },
 "insured_ages": [17, 43, 45],
 "vehicles": [
 {
 "year": 2015,
 "make": "Dodge",
 "model": "RAM 1500",
 "body_style": "TK"
 },
 {
 "year": 2015,
 "make": "Suzuki",
 "model": "V-Strom 650 XT",
 "body_style": "MC"
 },
 {
 "year": 2012,
 "make": "Honda",
 "model": "Accord",
 "body_style": "4D"
 }
]
 }
 }

Defining a Custom Schema

Schemas persisted when GenerateSchemaFiles is set are placed into the folder specified by
 the Location property. For example, set GenerateSchemaFiles to "OnUse" and execute a

TIBCO® Data Virtualization Elasticsearch Adapter Guide

41 | Elasticsearch Adapter

SELECT query:

SELECT * FROM insured

You can then change column behavior in the resulting schema. The following schema uses
the other:xPath property to define where the data for a particular column should be
retrieved from. Using this model you can flatten arbitrary levels of hierarchy.

The es_index and es_type attributes specify the Elasticsearch index and type to retrieve.
The es_index and es_type attributes give you the flexibility to use multiple schemas for the
same type. If es_type is not specified, the filename determines the collection that is parsed.

Below is an example is an example of the column behavior markup. You can find a
complete schema in Custom Schema Example.

 <rsb:script xmlns:rsb="http://www.rssbus.com/ns/rsbscript/2">

 <rsb:info title="StaticInsured" description="Custom Schema for the
Elasticsearch insured data set.">
 <!-- Column definitions -->
 <attr name="_id" xs:type="string"
other:xPath="_id"
 other:sourceField="_id" other:analyzed="true" />
 <attr name="_score" xs:type="double"
other:xPath="_score"
 other:sourceField="_score" other:analyzed="true" />
 <attr name="name" xs:type="string"
other:xPath="_source/name"
 other:sourceField="name" other:analyzed="true" />
 <attr name="address.street" xs:type="string"
other:xPath="_source/address/street"
 other:sourceField="address.street" other:analyzed="true" />
 <attr name="address.city" xs:type="string"
other:xPath="_source/address/city"
 other:sourceField="address.city" other:analyzed="true" />
 <attr name="address.state" xs:type="string"
other:xPath="_source/address/state"
 other:sourceField="address.state" other:analyzed="true" />
 <attr name="insured_ages" xs:type="string"
other:xPath="_source/insured_ages"
other:valueFormat="aggregate" other:sourceField="insured_ages"
other:analyzed="false" />
 <attr name="insured_ages.0" xs:type="integer"
other:xPath="_source/insured_ages[0]"
 other:sourceField="insured_ages" other:analyzed="false" />
 <attr name="vehicles" xs:type="string"

TIBCO® Data Virtualization Elasticsearch Adapter Guide

42 | Elasticsearch Adapter

other:xPath="_source/vehicles"
other:valueFormat="aggregate" other:sourceField="vehicles"
other:analyzed="true" />
 <attr name="vehicles.0.year" xs:type="integer"
other:xPath="_source/vehicles[0]/year"
 other:sourceField="vehicles.year" other:analyzed="true" />
 <attr name="vehicles.0.make" xs:type="string"
other:xPath="_source/vehicles[0]/make"
 other:sourceField="vehicles.make" other:analyzed="true" />
 <attr name="vehicles.0.model" xs:type="string"
other:xPath="_source/vehicles[0]/model"
 other:sourceField="vehicles.model" other:analyzed="true" />
 <attr name="vehicles.0.body_style" xs:type="string"
other:xPath="_source/vehicles[0]/body_style"
 other:sourceField="vehicles.body_style" other:analyzed="true" />

 <input name="rows@next" desc="Internal attribute used for paging
through data." />
 </rsb:info>

 <rsb:set attr="es_index" value="auto"/>
 <rsb:set attr="es_type" value="insured"/>

 </rsb:script>

 Custom Schema Example
In this section is a complete schema. The info section enables a relational view of an
Elasticsearch object. For more details, see Custom Schema Definitions. The table below
only supports SELECT commands. INSERT, UPDATE, and DELETE commands are not
currently supported.

Use the es_index and es_type attributes to specify the name of the Elasticsearch type and
index you want to retrieve and parse. You can use the es_index and es_type attributes to
define multiple schemas for the same Elasticsearch type.

If es_type is not specified, the filename determines the Elasticsearch type that is parsed.

Copy the rows@next input as-is into your schema. The operations, such as
elasticsearchadoSelect, are internal implementations and can also be copied as is.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

43 | Elasticsearch Adapter

<rsb:script xmlns:rsb="http://www.rssbus.com/ns/rsbscript/2">
 <rsb:info title="StaticInsured" description="Custom Schema for the
Elasticsearch insured data set.">
 <!-- Column definitions -->
 <attr name="_id" xs:type="string"
other:xPath="_id"
 other:sourceField="_id" other:analyzed="true" />
 <attr name="_score" xs:type="double"
other:xPath="_score"
 other:sourceField="_score" other:analyzed="true" />
 <attr name="name" xs:type="string"
other:xPath="_source/name"
 other:sourceField="name" other:analyzed="true" />
 <attr name="address.street" xs:type="string"
other:xPath="_source/address/street"
 other:sourceField="address.street" other:analyzed="true" />
 <attr name="address.city" xs:type="string"
other:xPath="_source/address/city"
 other:sourceField="address.city" other:analyzed="true" />
 <attr name="address.state" xs:type="string"
other:xPath="_source/address/state"
 other:sourceField="address.state" other:analyzed="true" />
 <attr name="insured_ages" xs:type="string"
other:xPath="_source/insured_ages"
other:valueFormat="aggregate" other:sourceField="insured_ages"
other:analyzed="false" />
 <attr name="insured_ages.0" xs:type="integer"
other:xPath="_source/insured_ages[0]"
 other:sourceField="insured_ages" other:analyzed="false" />
 <attr name="vehicles" xs:type="string"
other:xPath="_source/vehicles"
other:valueFormat="aggregate" other:sourceField="vehicles"
other:analyzed="true" />
 <attr name="vehicles.0.year" xs:type="integer"
other:xPath="_source/vehicles[0]/year"
 other:sourceField="vehicles.year" other:analyzed="true" />
 <attr name="vehicles.0.make" xs:type="string"
other:xPath="_source/vehicles[0]/make"
 other:sourceField="vehicles.make" other:analyzed="true" />
 <attr name="vehicles.0.model" xs:type="string"
other:xPath="_source/vehicles[0]/model"
 other:sourceField="vehicles.model" other:analyzed="true" />
 <attr name="vehicles.0.body_style" xs:type="string"
other:xPath="_source/vehicles[0]/body_style"
 other:sourceField="vehicles.body_style" other:analyzed="true" />
 <input name="rows@next" desc="Internal attribute used for paging
through data." />

TIBCO® Data Virtualization Elasticsearch Adapter Guide

44 | Elasticsearch Adapter

 </rsb:info>
 <rsb:set attr="es_index" value="auto"/>
 <rsb:set attr="es_type" value="insured"/>
 <rsb:script method="GET">
 <rsb:call op="elasticsearchadoSelect">
 <rsb:push/>
 </rsb:call>
 </rsb:script>
 <rsb:script method="POST">
 <rsb:call op="elasticsearchadoModify">
 <rsb:push/>
 </rsb:call>
 </rsb:script>
 <rsb:script method="MERGE">
 <rsb:call op="elasticsearchadoModify">
 <rsb:push/>
 </rsb:call>
 </rsb:script>
 <rsb:script method="DELETE">
 <rsb:call op="elasticsearchadoModify">
 <rsb:push/>
 </rsb:call>
 </rsb:script>
 </rsb:script>

Advanced Features
This section details a selection of advanced features of the Elasticsearch adapter.

User Defined Views

The adapter allows you to define virtual tables, called user defined views, whose contents
are decided by a pre-configured query. These views are useful when you cannot directly
control queries being issued to the drivers. See User Defined Views for an overview of
creating and configuring custom views.

SSL Configuration

Use SSL Configuration to adjust how adapter handles TLS/SSL certificate negotiations. You
can choose from various certificate formats; see the SSLServerCert property under
"Connection String Options" for more information.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

45 | Elasticsearch Adapter

Firewall and Proxy

Configure the adapter for compliance with Firewall and Proxy, including Windows proxies
and HTTP proxies. You can also set up tunnel connections.

Query Processing

The adapter offloads as much of the SELECT statement processing as possible to
Elasticsearch and then processes the rest of the query in memory (client-side).

See Query Processing for more information.

Logging

See Logging for an overview of configuration settings that can be used to refine CData
logging. For basic logging, you only need to set two connection properties, but there are
numerous features that support more refined logging, where you can select subsets of
information to be logged using the LogModules connection property.

 User Defined Views
The Elasticsearch Adapter allows you to define a virtual table whose contents are decided
by a pre-configured query. These are called User Defined Views, which are useful in
situations where you cannot directly control the query being issued to the driver, e.g. when
using the driver from a tool. The User Defined Views can be used to define predicates that
are always applied. If you specify additional predicates in the query to the view, they are
combined with the query already defined as part of the view.

There are two ways to create user defined views:

 l Create a JSON-formatted configuration file defining the views you want.

 l DDL statements.

Defining Views Using a Configuration File
 User Defined Views are defined in a JSON-formatted configuration file called
UserDefinedViews.json. The adapter automatically detects the views specified in this file.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

46 | Elasticsearch Adapter

You can also have multiple view definitions and control them using the UserDefinedViews
connection property. When you use this property, only the specified views are seen by the
adapter.

This User Defined View configuration file is formatted as follows:

 l Each root element defines the name of a view.

 l Each root element contains a child element, called query, which contains the custom
SQL query for the view.

For example:

{
 "MyView": {
 "query": "SELECT * FROM [CData].[Elasticsearch].Employee WHERE
MyColumn = 'value'"
 },
 "MyView2": {
 "query": "SELECT * FROM MyTable WHERE Id IN (1,2,3)"
 }
 }

 Use the UserDefinedViews connection property to specify the location of your JSON
configuration file. For example:

"UserDefinedViews",
"C:\\Users\\yourusername\\Desktop\\tmp\\UserDefinedViews.json"

Defining Views Using DDL Statements

The adapter is also capable of creating and altering the schema via DDL Statements such
as CREATE LOCAL VIEW, ALTER LOCAL VIEW, and DROP LOCAL VIEW.

Create a View
To create a new view using DDL statements, provide the view name and query as follows:

CREATE LOCAL VIEW [MyViewName] AS SELECT * FROM Customers LIMIT 20;

TIBCO® Data Virtualization Elasticsearch Adapter Guide

47 | Elasticsearch Adapter

If no JSON file exists, the above code creates one. The view is then created in the JSON
configuration file and is now discoverable. The JSON file location is specified by the
UserDefinedViews connection property.

Alter a View
To alter an existing view, provide the name of an existing view alongside the new query
you would like to use instead:

ALTER LOCAL VIEW [MyViewName] AS SELECT * FROM Customers WHERE
TimeModified > '3/1/2020';

The view is then updated in the JSON configuration file.

Drop a View
To drop an existing view, provide the name of an existing schema alongside the new query
you would like to use instead.

DROP LOCAL VIEW [MyViewName]

This removes the view from the JSON configuration file. It can no longer be queried.

Schema for User Defined Views
 User Defined Views are exposed in the UserViews schema by default. This is done to avoid
the view's name clashing with an actual entity in the data model. You can change the
name of the schema used for UserViews by setting the UserViewsSchemaName property.

Working with User Defined Views
 For example, a SQL statement with a User Defined View called UserViews.RCustomers only
lists customers in Raleigh:

SELECT * FROM Customers WHERE City = 'Raleigh';

 An example of a query to the driver:

SELECT * FROM UserViews.RCustomers WHERE Status = 'Active';

 Resulting in the effective query to the source:

TIBCO® Data Virtualization Elasticsearch Adapter Guide

48 | Elasticsearch Adapter

SELECT * FROM Customers WHERE City = 'Raleigh' AND Status = 'Active';

 That is a very simple example of a query to a User Defined View that is effectively a
combination of the view query and the view definition. It is possible to compose these
queries in much more complex patterns. All SQL operations are allowed in both queries
and are combined when appropriate.

 SSL Configuration

Customizing the SSL Configuration

By default, the adapter attempts to negotiate SSL/TLS by checking the server's certificate
against the system's trusted certificate store.

To specify another certificate, see the SSLServerCert property for the available formats to
do so.

Client SSL Certificates

The Elasticsearch adapter also supports setting client certificates. Set the following to
connect using a client certificate.

 l SSLClientCert: The name of the certificate store for the client certificate.

 l SSLClientCertType: The type of key store containing the TLS/SSL client certificate.

 l SSLClientCertPassword: The password for the TLS/SSL client certificate.

 l SSLClientCertSubject: The subject of the TLS/SSL client certificate.

 Firewall and Proxy

TIBCO® Data Virtualization Elasticsearch Adapter Guide

49 | Elasticsearch Adapter

Connecting Through a Firewall or Proxy

HTTP Proxies
To connect through the Windows system proxy, you do not need to set any additional
connection properties. To connect to other proxies, set ProxyAutoDetect to false.

In addition, to authenticate to an HTTP proxy, set ProxyAuthScheme, ProxyUser, and
ProxyPassword, in addition to ProxyServer and ProxyPort.

Other Proxies
Set the following properties:

 l To use a proxy-based firewall, set FirewallType, FirewallServer, and FirewallPort.

 l To tunnel the connection, set FirewallType to TUNNEL.

 l To authenticate, specify FirewallUser and FirewallPassword.

 l To authenticate to a SOCKS proxy, additionally set FirewallType to SOCKS5.

 Query Processing

Query Processing
 CData has a client-side SQL engine built into the adapter library. This enables support for
the full capabilities that SQL-92 offers, including filters, aggregations, functions, etc.

For sources that do not support SQL-92, the adapter offloads as much of SQL statement
processing as possible to Elasticsearch and then processes the rest of the query in memory
(client-side). This results in optimal performance.

For data sources with limited query capabilities, the adapter handles transformations of
the SQL query to make it simpler for the adapter. The goal is to make smart decisions
based on the query capabilities of the data source to push down as much of the
computation as possible. The Elasticsearch Query Evaluation component examines SQL
queries and returns information indicating what parts of the query the adapter is not
capable of executing natively.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

50 | Elasticsearch Adapter

The Elasticsearch Query Slicer component is used in more specific cases to separate a
single query into multiple independent queries. The client-side Query Engine makes
decisions about simplifying queries, breaking queries into multiple queries, and pushing
down or computing aggregations on the client-side while minimizing the size of the result
set.

There's a significant trade-off in evaluating queries, even partially, client-side. There are
always queries that are impossible to execute efficiently in this model, and some can be
particularly expensive to compute in this manner. CData always pushes down as much of
the query as is feasible for the data source to generate the most efficient query possible
and provide the most flexible query capabilities.

More Information
 For a full discussion of how CData handles query processing, see CData Architecture:
Query Execution.

 Logging
Capturing adapter logging can be very helpful when diagnosing error messages or other
unexpected behavior.

Basic Logging

You will simply need to set two connection properties to begin capturing adapter logging.

 l Logfile: A filepath which designates the name and location of the log file.

 l Verbosity: This is a numerical value (1-5) that determines the amount of detail in the
log. See the page in the Connection Properties section for an explanation of the five
levels.

 l MaxLogFileSize: When the limit is hit, a new log is created in the same folder with the
 date and time appended to the end. The default limit is 100 MB. Values lower than
100 kB will use 100 kB as the value instead.

 l MaxLogFileCount: A string specifying the maximum file count of log files. When the
limit is hit, a new log is created in the same folder with the date and time appended
to the end and the oldest log file will be deleted. Minimum supported value is 2. A
value of 0 or a negative value indicates no limit on the count.

https://www.cdata.com/blog/data_connectivity/20181213-cdata-architecture-query-execution
https://www.cdata.com/blog/data_connectivity/20181213-cdata-architecture-query-execution

TIBCO® Data Virtualization Elasticsearch Adapter Guide

51 | Elasticsearch Adapter

Once this property is set, the adapter will populate the log file as it carries out various
tasks, such as when authentication is performed or queries are executed. If the specified
file doesn't already exist, it will be created.

Log Verbosity

The verbosity level determines the amount of detail that the adapter reports to the Logfile.
 Verbosity levels from 1 to 5 are supported. These are described in the following list:

1 Setting Verbosity to 1 will log the query, the number of rows returned by it, the
start of execution and the time taken, and any errors.

2 Setting Verbosity to 2 will log everything included in Verbosity 1 and additional
information about the request.

3 Setting Verbosity to 3 will additionally log HTTP headers, as well as the body of the
request and the response.

4 Setting Verbosity to 4 will additionally log transport-level communication with the data
source. This includes SSL negotiation.

5 Setting Verbosity to 5 will additionally log communication with the data source and
additional details that may be helpful in troubleshooting problems. This includes
interface commands.

The Verbosity should not be set to greater than 1 for normal operation. Substantial
amounts of data can be logged at higher verbosities, which can delay execution times.

To refine the logged content further by showing/hiding specific categories of information,
see LogModules.

Sensitive Data
 Verbosity levels 3 and higher may capture information that you do not want shared
outside of your organization. The following lists information of concern for each level:

 l Verbosity 3: The full body of the request and the response, which includes all the
data returned by the adapter

TIBCO® Data Virtualization Elasticsearch Adapter Guide

52 | Elasticsearch Adapter

 l Verbosity 4: SSL certificates

 l Verbosity 5: Any extra transfer data not included at Verbosity 3, such as non human-
readable binary transfer data

Best Practices for Data Security

Although we mask sensitive values, such as passwords, in the connection string and any
request in the log, it is always best practice to review the logs for any sensitive information
before sharing outside your organization.

Java Logging

When Java logging is enabled in Logfile, the Verbosity will instead map to the following
logging levels.

 l 0: Level.WARNING

 l 1: Level.INFO

 l 2: Level.CONFIG

 l 3: Level.FINE

 l 4: Level.FINER

 l 5: Level.FINEST

Advanced Logging

You may want to refine the exact information that is recorded to the log file. This can be
accomplished using the LogModules property.

This property allows you to filter the logging using a semicolon-separated list of logging
modules.

All modules are four characters long. Please note that modules containing three letters
have a required trailing blank space. The available modules are:

 l EXEC: Query Execution. Includes execution messages for original SQL queries, parsed
SQL queries, and normalized SQL queries. Query and page success/failure messages
appear here as well.

 l INFO: General Information. Includes the connection string, driver version (build

TIBCO® Data Virtualization Elasticsearch Adapter Guide

53 | Elasticsearch Adapter

number), and initial connection messages.

 l HTTP: HTTP Protocol messages. Includes HTTP requests/responses (including POST
messages), as well as Kerberos related messages.

 l SSL : SSL certificate messages.

 l OAUT: OAuth related failure/success messages.

 l SQL : Includes SQL transactions, SQL bulk transfer messages, and SQL result set
messages.

 l META: Metadata cache and schema messages.

 l TCP : Incoming and Ongoing raw bytes on TCP transport layer messages.
 An example value for this property would be.

LogModules=INFO;EXEC;SSL ;SQL ;META;

Note that these modules refine the information as it is pulled after taking the Verbosity
into account.

SQL Compliance
The Elasticsearch Adapter supports several operations on data, including querying,
deleting, modifying, and inserting.

SELECT Statements

See SELECT Statements for a syntax reference and examples.

See Data Model for information on the capabilities of the Elasticsearch API.

INSERT Statements

See INSERT Statements for a syntax reference and examples, as well as retrieving the new
records' Ids.

UPDATE Statements

The primary key Id is required to update a record. See UPDATE Statements for a syntax
reference and examples.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

54 | Elasticsearch Adapter

UPSERT Statements

An UPSERT updates a record if it exists and inserts the record if it does not. See UPSERT
Statements for a syntax reference and examples.

DELETE Statements

The primary key Id is required to delete a record. See DELETE Statements for a syntax
reference and examples.

EXECUTE Statements

Use EXECUTE or EXEC statements to execute stored procedures. See EXECUTE Statements
for a syntax reference and examples.

Names and Quoting

 l Table and column names are considered identifier names; as such, they are restricted
to the following characters: [A-Z, a-z, 0-9, _:@].

 l To use a table or column name with characters not listed above, the name must be
quoted using double quotes ("name") in any SQL statement.

 l Strings must be quoted using single quotes (e.g., 'John Doe').

SELECT Statements
A SELECT statement can consist of the following basic clauses.

 l SELECT

 l INTO

 l FROM

 l JOIN

 l WHERE

 l GROUP BY

 l HAVING

TIBCO® Data Virtualization Elasticsearch Adapter Guide

55 | Elasticsearch Adapter

 l UNION

 l ORDER BY

 l LIMIT

SELECT Syntax

The following syntax diagram outlines the syntax supported by the Elasticsearch adapter:

SELECT {
 [TOP <numeric_literal> | DISTINCT]
 {
 *
 | {
 <expression> [[AS] <column_reference>]
 | { <table_name> | <correlation_name> } .*
 } [, ...]
 }
 [INTO csv:// [filename=] <file_path> [;delimiter=tab]]
 {
 FROM <table_reference> [[AS] <identifier>]
 }
 [WHERE <search_condition>]
 [GROUP BY <column_reference> [, ...]
 [
 ORDER BY
 <column_reference> [ASC | DESC] [NULLS FIRST | NULLS LAST]
]
 [
 LIMIT <expression>
 [
 { OFFSET | , }
 <expression>
]
]
 } | SCOPE_IDENTITY()
 <expression> ::=
 | <column_reference>
 | @ <parameter>
 | ?
 | COUNT(* | { [DISTINCT] <expression> })
 | { AVG | MAX | MIN | SUM | COUNT } (<expression>)
 | NULLIF (<expression> , <expression>)
 | COALESCE (<expression> , ...)
 | CASE <expression>
 WHEN { <expression> | <search_condition> } THEN { <expression> |

TIBCO® Data Virtualization Elasticsearch Adapter Guide

56 | Elasticsearch Adapter

NULL } [...]
 [ELSE { <expression> | NULL }]
 END
 | <literal>
 | <sql_function>
 <search_condition> ::=
 {
 <expression> { = | > | < | >= | <= | <> | != | LIKE | NOT LIKE |
IS NULL | IS NOT NULL | IN | NOT IN | AND | OR | BETWEEN | CONTAINS |
NOT CONTAINS } [<expression>]
 } [{ AND | OR } ...]

Examples

 1. Return all columns:

SELECT * FROM [CData].[Elasticsearch].Employee

 2. Rename a column:

SELECT "Name" AS MY_Name FROM [CData].[Elasticsearch].Employee

 3. Cast a column's data as a different data type:

SELECT CAST(AnnualRevenue AS VARCHAR) AS Str_AnnualRevenue FROM
[CData].[Elasticsearch].Employee

 4. Search data:

SELECT * FROM [CData].[Elasticsearch].Employee WHERE Industry =
'Floppy Disks'

 5. The Elasticsearch APIs support the following operators in the WHERE clause: =, >, <,
>=, <=, <>, !=, LIKE, NOT LIKE, IS NULL, IS NOT NULL, IN, NOT IN, AND, OR, BETWEEN,
CONTAINS, NOT CONTAINS.

SELECT * FROM [CData].[Elasticsearch].Employee WHERE Industry =
'Floppy Disks';

TIBCO® Data Virtualization Elasticsearch Adapter Guide

57 | Elasticsearch Adapter

 6. Return the number of items matching the query criteria:

SELECT COUNT(*) AS MyCount FROM [CData].[Elasticsearch].Employee

 7. Return the number of unique items matching the query criteria:

SELECT COUNT(DISTINCT Name) FROM [CData].[Elasticsearch].Employee

 8. Return the unique items matching the query criteria:

SELECT DISTINCT Name FROM [CData].[Elasticsearch].Employee

 9. Summarize data:

SELECT Name, MAX(AnnualRevenue) FROM [CData].
[Elasticsearch].Employee GROUP BY Name

 See Aggregate Functions for details.

 10. Sort a result set in ascending order:

SELECT Id, Name FROM [CData].[Elasticsearch].Employee ORDER BY
Name ASC

Aggregate Functions

Examples of Aggregate Functions
 Below are several examples of SQL aggregate functions. You can use these with a GROUP
BY clause to aggregate rows based on the specified GROUP BY criterion. This can be a
reporting tool.

COUNT
Returns the number of rows matching the query criteria.

SELECT COUNT(*) FROM [CData].[Elasticsearch].Employee WHERE Industry =
'Floppy Disks'

TIBCO® Data Virtualization Elasticsearch Adapter Guide

58 | Elasticsearch Adapter

COUNT(DISTINCT)
Returns the number of distinct, non-null field values matching the query criteria.

SELECT COUNT(DISTINCT Id) AS DistinctValues FROM [CData].
[Elasticsearch].Employee WHERE Industry = 'Floppy Disks'

AVG
Returns the average of the column values.

SELECT Name, AVG(AnnualRevenue) FROM [CData].[Elasticsearch].Employee
WHERE Industry = 'Floppy Disks' GROUP BY Name

MIN
Returns the minimum column value.

SELECT MIN(AnnualRevenue), Name FROM [CData].[Elasticsearch].Employee
WHERE Industry = 'Floppy Disks' GROUP BY Name

MAX
Returns the maximum column value.

SELECT Name, MAX(AnnualRevenue) FROM [CData].[Elasticsearch].Employee
WHERE Industry = 'Floppy Disks' GROUP BY Name

SUM
Returns the total sum of the column values.

SELECT SUM(AnnualRevenue) FROM [CData].[Elasticsearch].Employee WHERE
Industry = 'Floppy Disks'

 Predicate Functions

TIBCO® Data Virtualization Elasticsearch Adapter Guide

59 | Elasticsearch Adapter

COMMON(expression, cutoff_frequency)

Used to explicitly specify the query type to send and thus will send 'expression' in a
common terms query.

Example SQL Query:

SELECT * FROM employee WHERE COMMON(about) = 'like to build'

 Elasticsearch Query:

{"common":{"about":{"query":"like to build"}}}

 l expression: The expression to search for.

 l cutoff_frequency: The cutoff frequency value used to allocate terms to the high or
low frequency group. Can be an absolute frequency (>=1) or a relative frequency (0.0
.. 1.0).

FILTER(expression)

Used to explicitly specify the filter context and thus will send 'expression' in a filter context,
 rather than a query context. A filter context does not affect the calculated scores. This is
useful when performing queries where you want part of the filter to be used to calculate
scores but filter the results returned (without affecting the score) using additional criteria.

Example SQL Query:

SELECT * FROM employee WHERE FILTER(TERM(first_name)) = 'john'

 Elasticsearch Query:

{"filter":{"bool":{"must":{"term":{"first_name":"john"}}}}}

 l expression: Either a column or another function.

GEO_BOUNDING_BOX(column, top_left, bottom_right)

Used to specify a query to filter hits based on a point location using a bounding box.

Example SQL Query:

TIBCO® Data Virtualization Elasticsearch Adapter Guide

60 | Elasticsearch Adapter

SELECT * FROM cities WHERE GEO_BOUNDING_BOX(location, '[-74.1,40.73]', '
[-71.12,40.01]')

 Elasticsearch Query:

{"bool":{"filter":{"geo_bounding_box":{"location":{"top_left":[-
74.1,40.73],"bottom_right":[-71.12,40.01]}}},"must":[{"match_all":{}}]}}

 l column: A Geo-point column to perform the GEO_BOUNDING_BOX filter on.

 l top_left: The top-left coordinates of the bounding box. This value can be an array
[shown in example], object of lat and lon values, comma-separated list, or a geohash
of a latitude and longitude value.

 l bottom_right: The bottom-right coordinates of the bounding box. This value can be
an array [shown in example], object of lat and lon values, comma-separated list, or a
geohash of a latitude and longitude value.

GEO_BOUNDING_BOX(column, top, left, bottom, right)

Used to specify a query to filter hits based on a point location using a bounding box.

Example SQL Query:

SELECT * FROM cities WHERE GEO_BOUNDING_BOX(location, -74.1, 40.73, -
71.12, 40.01)

 Elasticsearch Query:

{"bool":{"filter":{"geo_bounding_box":{"location":{"top":-
74.1,"left":40.73,"bottom":-71.12,"right":40.01}}},"must":[{"match_all":
{}}]}}

 l column: A Geo-point column to perform the GEO_BOUNDING_BOX filter on.

 l top: The top coordinate of the bounding box.

 l left: The left coordinate of the bounding box.

 l bottom: The bottom coordinate of the bounding box.

 l right: The right coordinate of the bounding box.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

61 | Elasticsearch Adapter

GEO_DISTANCE(column, point_lat_lon, distance)

Used to specify a query to filter documents that include only the hits that exist within a
specific distance from a geo point.

Example SQL Query:

SELECT * FROM cities WHERE GEO_DISTANCE(location, '40,-70', '12mi')

 Elasticsearch Query:

{"bool":{"filter":{"geo_distance":{"location":"40,-
70","distance":"12mi"}},"must":[{"match_all":{}}]}}

 l column: A Geo-point column to perform the GEO_DISTANCE filter on.

 l point_lat_lon: The coordinates of a geo point that will be used to measure the
distance from. This value can be an array, object of lat and lon values, comma-
separated list [shown in example], or a geohash of a latitude and longitude value.

 l distance: The distance to search within from the specified geo point. This value
takes an numeric value along with a distance unit. Common distance units are: mi
(miles), yd (yards), ft (feet), in (inch), km (kilometers), m (meters). Please see Elastic
documentation for complete list of distance units.

GEO_DISTANCE_RANGE(column, point_lat_lon, from_distance, to_
distance)

Used to specify a query to filter documents that include only the hits that exist within a
range from a specific geo point.

Example SQL Query:

SELECT * FROM cities WHERE GEO_DISTANCE_RANGE(location, 'drn5x1g8cu2y',
'10mi', '20mi')

 Elasticsearch Query:

{"bool":{"filter":{"geo_distance_range":
{"location":"drn5x1g8cu2y","from":"10mi","to":"20mi"}},"must":[{"match_
all":{}}]}}

TIBCO® Data Virtualization Elasticsearch Adapter Guide

62 | Elasticsearch Adapter

 l column: A Geo-point column to perform the GEO_DISTANCE_RANGE filter on.

 l point_lat_lon: The coordinates of a geo point that will be used to measure the
range from. This value can be an array, object of lat and lon values, comma-
separated list, or a geohash [shown in example] of a latitude and longitude value.

 l from_distance: The starting distance to calculate the range from the specified geo
point. This value takes an numeric value along with a distance unit. Common
distance units are: mi (miles), yd (yards), ft (feet), in (inch), km (kilometers), m
(meters). Please see Elastic documentation for complete list of distance units.

 l to_distance: The end distance to calculate the range from the specified geo point.
This value takes an numeric value along with a distance unit. Common distance units
are: mi (miles), yd (yards), ft (feet), in (inch), km (kilometers), m (meters). Please see
Elastic documentation for complete list of distance units.

GEO_POLYGON(column, points)

Used to specify a query to filter hits that only fall within a polygon of points.

Example SQL Query:

SELECT * FROM cities WHERE GEO_POLYGON(location, '[{"lat":40,"lon":-70},
{"lat":30,"lon":-80},{"lat":20,"lon":-90}]')

 Elasticsearch Query:

{"bool":{"filter":{"geo_polygon":{"location":{"points":
[{"lat":40,"lon":-70},{"lat":30,"lon":-80},{"lat":20,"lon":-
90}]}}},"must":[{"match_all":{}}]}}

 l column: A Geo-point column to perform the GEO_POLYGON filter on.

 l points: A JSON array of points that make up a polygon. This value can be an array of
 arrays, object of lat and lon values [shown in example], comma-separated lists, or
geohashes of a latitude and longitude value.

GEO_SHAPE(column, type, points [, relation])

Used to specify an inline shape query to filter documents using the geo_shape type to find
documents that have a shape that intersects with the query shape.

Example SQL Query:

TIBCO® Data Virtualization Elasticsearch Adapter Guide

63 | Elasticsearch Adapter

SELECT * FROM shapes WHERE GEO_SHAPE(my_shape, 'envelope', '[[13.0,
53.0], [14.0, 52.0]]

 Elasticsearch Query:

{"bool":{"filter":{"geo_shape":{"my_shape":{"shape":
{"type":"envelope","coordinates":[[13.0, 53.0], [14.0,
52.0]]}}}},"must":[{"match_all":{}}]}}

 l column: A Geo-shape column to perform the GEO_SHAPE filter on.

 l type: The type of shape to search for. Valid values: point, linestring, polygon,
multipoint, multilinestring, multipolygon, geometrycollection, envelope, and circle.
Please see Elastic documentation for further information regarding these shapes.

 l points: The coordinates for the shape type specified. These coordinates and their
structure will vary depending upon the shape type desired. Please see Elastic search
documentation for further details.

 l relation: The name of the spatial relation operator to use at search time. Valid
values: intersects (default), disjoint, within, and contains. Please see Elastic
documentation for further information regarding spatial relations.

INARRAY(column)

Used to search for values contained within a primitive array. Supports comparison
operators based on the data type contained within the array, including the LIKE operator.

Example SQL Query:

SELECT * FROM employee WHERE INARRAY(skills) = 'coding'

 l column: A primitive array column to filter on.

MATCH(column)

Used to explicitly specify the query type to send and thus will send 'column' in a match
query.

Example SQL Query:

TIBCO® Data Virtualization Elasticsearch Adapter Guide

64 | Elasticsearch Adapter

SELECT * FROM employee WHERE MATCH(last_name) = 'SMITH'

 Elasticsearch Query:

{"match":{"last_name":"SMITH"}}

 l column: A column to perform the match query on.

MATCH_PHRASE(column)

Used to explicitly specify the query type to send and thus will send 'column' in a match
phrase query.

Example SQL Query:

SELECT * FROM employee WHERE MATCH_PHRASE(about) = 'rides motorbikes'

 Elasticsearch Query:

{"match_phrase":{"about":"rides motorbikes"}}

 l column: A column to perform the match phrase query on.

MATCH_PHRASE_PREFIX(column)

Used to explicitly specify the query type to send and thus will send 'column' in a match
phrase prefix query. The match phrase prefix query is the same as a match query except
that it allows for prefix matches on the last term in the text.

Example SQL Query:

SELECT * FROM employee WHERE MATCH_PHRASE_PREFIX(about) = 'quick brown
f'

 Elasticsearch Query:

{"match_phrase_prefix":{"about":"quick brown f"}}

 l expression: A column to perform the match phrase prefix query on.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

65 | Elasticsearch Adapter

TERM(column)

Used to explicitly specify the query type to send and thus will send 'column' in a term
query.

Example SQL Query:

SELECT * FROM employee WHERE TERM(last_name) = 'jacobs'

 Elasticsearch Query:

{"term":{"last_name":"jacobs"}}

 l column: A column to perform the term query on.

DSLQuery([table,] dsl_json)

Used to explicitly specify the Elasticsearch DSL query to send in the request. Can be used
along with other filters and the AND and OR operators.

DSL query JSON can contain a full 'bool' query object, a 'must', 'should', 'must_not', or
'filter' occurrence type, or just a clause object (which will append to a 'must' (default) or
'should' occurrence type depending on whether an AND or OR operator is used).

Example SQL Query (These examples generate the same query using a 'bool' object, 'must'
occurrence type, and query object):

SELECT * FROM employee WHERE DSLQuery('{"bool":{"must":[{"query_string":
{"default_field":"last_name","query":"\\"Smith\\""}}]}}')
 SELECT * FROM employee WHERE DSLQuery('{"must":[{"query_string":
{"default_field":"last_name","query":"\\"Smith\\""}}]}')
 SELECT * FROM employee WHERE DSLQuery('{"query_string":{"default_
field":"last_name","query":"\\"Smith\\""}}')

 Elasticsearch Query:

{"bool":{"must":[{"query_string":{"default_field":"last_
name","query":"\\"Smith\\""}}]}}

Example SQL Query (with OR operator):

TIBCO® Data Virtualization Elasticsearch Adapter Guide

66 | Elasticsearch Adapter

SELECT * FROM employee WHERE Age < 10 OR DSLQuery('{"should":[{"query_
string":{"default_field":"last_name","query":"\"Smith\""}}]}')

 Elasticsearch Query:

{"bool":{"should":[{"range":{"age":{"lt":10}}},{"query_string":
{"default_field":"last_name","query":"\"Smith\""}}]}}

Additionally you can specify the table that you want the DSLQuery to be issued on, this is
useful when executing queries against multiple tables such as JOIN queries.

Example SQL Query:

SELECT * FROM employee JOIN job ON employee.jobid = job.id WHERE
DSLQuery(employee, '{"bool":{"must":[{"query_string":{"default_
field":"last_name","query":"\\"Smith\\""}}]}}')

 l column: A column to perform the term query on.

 ORDER BY Functions

MAPFIELD(column, data_type)

Used to explicitly specify a mapping (by sending the 'unmapped_type' sort option) for a
column that does not have a mapping associated with it, which will enable sorting on the
column. By default, if a column does not have a mapping, an exception will be thrown
containing an error message similar to: "No mapping found for [column] in order to sort
on".

Example SQL Query:

SELECT * FROM employee ORDER BY MAPFIELD(start_date, 'long') DESC

 Elasticsearch Sort:

{"start_date":{"order":"desc", "unmapped_type": "long"}}

 l column: The column to perform the order by on.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

67 | Elasticsearch Adapter

 l data_type: The Elasticsearch data type to map the column to.

INSERT Statements
To create new records, use INSERT statements.

INSERT Syntax

The INSERT statement specifies the columns to be inserted and the new column values.
You can specify the column values in a comma-separated list in the VALUES clause, as
shown in the following example:

INSERT INTO <table_name>
 (<column_reference> [, ...])
 VALUES
 ({ <expression> | NULL } [, ...])

 <expression> ::=
 | @ <parameter>
 | ?
 | <literal>

 You can use the executeUpdate method of the Statement and PreparedStatement classes
to execute data manipulation commands and retrieve the rows affected. To retrieve the Id
of the last inserted record use getGeneratedKeys. Additionally, set the RETURN_
GENERATED_KEYS flag of the Statement class when you call prepareStatement.

String cmd = "INSERT INTO [CData].[Elasticsearch].Employee (Name) VALUES
(?)";
 PreparedStatement pstmt = connection.prepareStatement
(cmd,Statement.RETURN_GENERATED_KEYS);
 pstmt.setString(1, "Floppy Disks");
 int count = pstmt.executeUpdate();
 System.out.println(count+" rows were affected");
 ResultSet rs = pstmt.getGeneratedKeys();
 while(rs.next()){
 System.out.println(rs.getString("Id"));
 }
 connection.close();

UPDATE Statements
To modify existing records, use UPDATE statements.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

68 | Elasticsearch Adapter

Update Syntax

The UPDATE statement takes as input a comma-separated list of columns and new column
values as name-value pairs in the SET clause, as shown in the following example:

UPDATE <table_name> SET { <column_reference> = <expression> } [, ...]
WHERE { Id = <expression> } [{ AND | OR } ...]
 <expression> ::=
 | @ <parameter>
 | ?
 | <literal>

 You can use the executeUpdate method of the Statement or PreparedStatement classes to
execute data manipulation commands and retrieve the rows affected, as shown in the
following example:

String cmd = "UPDATE [CData].[Elasticsearch].Employee SET Name='Floppy
Disks' WHERE Id = ?";
 PreparedStatement pstmt = connection.prepareStatement(cmd);
 pstmt.setString(1, "1");
 int count = pstmt.executeUpdate();
 System.out.println(count + " rows were affected");
 connection.close();

 UPSERT Statements
An UPSERT statement updates an existing record or creates a new record if an existing
record is not identified.

UPSERT Syntax

The UPSERT syntax is the same as for INSERT. Elasticsearch uses the input provided in the
VALUES clause to determine whether the record already exists. If the record does not exist,
all columns required to insert the record must be specified. See Data Model for any table-
specific information.

UPSERT INTO <table_name>
 (<column_reference> [, ...])
 VALUES
 ({ <expression> | NULL } [, ...])

 <expression> ::=

TIBCO® Data Virtualization Elasticsearch Adapter Guide

69 | Elasticsearch Adapter

 | @ <parameter>
 | ?
 | <literal>

 You can use the executeUpdate method of the Statement and PreparedStatement classes
to issue data manipulation commands and retrieve the rows affected, as shown in the
following example: To retrieve the Id of the last inserted record, use getGeneratedKeys.
Additionally, set the RETURN_GENERATED_KEYS flag of the Statement class when you call
prepareStatement.

String cmd = "UPSERT INTO [CData].[Elasticsearch].Employee (Name) VALUES
(?)";
 PreparedStatement pstmt = connection.prepareStatement
(cmd,Statement.RETURN_GENERATED_KEYS);
 pstmt.setString(1, "Floppy Disks");
 int count = pstmt.executeUpdate();
 System.out.println(count+" rows were affected");
 ResultSet rs = pstmt.getGeneratedKeys();
 while(rs.next()){
 System.out.println(rs.getString("Id"));
 }
 connection.close();

DELETE Statements
To delete information from a table, use DELETE statements.

DELETE Syntax

The DELETE statement requires the table name in the FROM clause and the row's primary
key in the WHERE clause, as shown in the following example:

<delete_statement> ::= DELETE FROM <table_name> WHERE { Id =
<expression> } [{ AND | OR } ...]
 <expression> ::=
 | @ <parameter>
 | ?
 | <literal>

 You can use the executeUpdate method of the Statement or PreparedStatement classes to
execute data manipulation commands and retrieve the number of affected rows, as shown
in the following example:

TIBCO® Data Virtualization Elasticsearch Adapter Guide

70 | Elasticsearch Adapter

Connection connection = DriverManager.getConnection
("jdbc:elasticsearch:Server=127.0.0.1;Port=9200;",);
 String cmd = "DELETE FROM [CData].[Elasticsearch].Employee WHERE Id =
?";
 PreparedStatement pstmt = connection.prepareStatement(cmd);
 pstmt.setString(1, "1");
 int count=pstmt.executeUpdate();
 connection.close();

EXECUTE Statements
To execute stored procedures, you can use EXECUTE or EXEC statements.

EXEC and EXECUTE assign stored procedure inputs, referenced by name, to values or
parameter names.

Stored Procedure Syntax

To execute a stored procedure as an SQL statement, use the following syntax:

 { EXECUTE | EXEC } <stored_proc_name>
 {
 [@] <input_name> = <expression>
 } [, ...]
 <expression> ::=
 | @ <parameter>
 | ?
 | <literal>

Example Statements

Reference stored procedure inputs by name:

EXECUTE my_proc @second = 2, @first = 1, @third = 3;

Execute a parameterized stored procedure statement:

EXECUTE my_proc second = @p1, first = @p2, third = @p3;

TIBCO® Data Virtualization Elasticsearch Adapter Guide

71 | Elasticsearch Adapter

PIVOT and UNPIVOT
PIVOT and UNPIVOT can be used to change a table-valued expression into another table.

PIVOT
 PIVOT rotates a table-value expression by turning unique values from one column into
multiple columns in the output. PIVOT can run aggregations where required on any column
value.

PIVOT Synax

 "SELECT 'AverageCost' AS Cost_Sorted_By_Production_Days, [0], [1], [2],
[3], [4]
 FROM
 (
 SELECT DaysToManufacture, StandardCost
 FROM Production.Product
) AS SourceTable
 PIVOT
 (
 AVG(StandardCost)
 FOR DaysToManufacture IN ([0], [1], [2], [3], [4])
) AS PivotTable;"

UNPIVOT
 UNPIVOT carries out nearly the opposite to PIVOT by rotating columns of a table-valued
expressions into column values.

UNPIVOT Sytax

 "SELECT VendorID, Employee, Orders
 FROM
 (SELECT VendorID, Emp1, Emp2, Emp3, Emp4, Emp5
 FROM pvt) p

TIBCO® Data Virtualization Elasticsearch Adapter Guide

72 | Elasticsearch Adapter

 UNPIVOT
 (Orders FOR Employee IN
 (Emp1, Emp2, Emp3, Emp4, Emp5)
)AS unpvt;"

For further information on PIVOT and UNPIVOT, see FROM clause plus JOIN, APPLY, PIVOT
(Transact-SQL)

Data Model
The Elasticsearch Adapter models Elasticsearch entities in relational Tables, Views, and
Stored Procedures.

Tables
 The table definitions are dynamically retrieved. When you connect, the adapter connects
to Elasticsearch and retrieves the schemas, list of tables, and the metadata for the tables
by querying the Elasticsearch REST server.

Searching with SQL describes in further detail how the tables are dynamically retrieved.

Views
 Views are created from Elasticsearch aliases and the definitions are dynamically retrieved.
When you connect, the adapter connects to Elasticsearch and retrieves the list of views and
the metadata for the views by querying the Elasticsearch REST server.

Views are treated in a similar manner to Tables and thus exhibit similar behavior. There are
some differences in the background though which are a direct result of how aliases work
within Elasticsearch. (Note: In the following description, 'alias', 'index', 'type', and 'field' are
referring to the Elasticsearch objects and not directly to anything within the adapter).

Views (aliases) are tied to an index and thus span all the types within an index. Additionally
 aliases can span multiple indices. Therefore you may see an alias (view) listed multiple
times under different schemas (index). When querying the view, regardless of the schema
specified, data will be retrieved and returned for all indices and types associated with the
corresponding alias. Thus the generated metadata will contain a column for each field
within each type of each index associated with the alias.

Searching with SQL describes in further detail how the views are dynamically retrieved.

https://docs.microsoft.com/en-us/sql/t-sql/queries/from-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/queries/from-transact-sql?view=sql-server-ver15

TIBCO® Data Virtualization Elasticsearch Adapter Guide

73 | Elasticsearch Adapter

The ModifyIndexAliases stored procedure can be used to create index aliases within
Elasticsearch.

In addition to the Elasticsearch aliases, an '_all' view is returned which enables querying
the _all endpoint to retrieve data for all indices in a single query. Given how many indices
and documents the _all view could cover, certain queries agains the '_all' view could be
very expensive. Additionally, for scanning for table metadata, as governed by
RowScanDepth, will be less accurate for '_all' views that cover very large or very
heterogenous indices. See The adapter automatically infers a relational schema by
retrieving the mapping of the Elasticsearch type. The columns and data types are
generated from the retrieved mapping.

Detecting Arrays
Any field within Elasticsearch can be an array of values, but this is not explicitly defined
within the mapping. To account for this, the adapter will query the data to detect if any
fields contain arrays. The number of Elasticsearch documents retrieved during this array
scanning is based on the RowScanDepth property.

Elasticsearch nested types are special types that denote an array of objects and thus will
always be treated as such when generating the metadata.

Detecting Columns
The columns identified during the discovery process depend on the FlattenArrays and
FlattenObjects properties.

Example Data Set
To provide an example of how these options work, consider the following mapping (where
'insured' is the name of the table):

{
 "insured": {
 "properties": {
 "name": { "type":"string" },
 "address": {
 "street": { "type":"string" },

TIBCO® Data Virtualization Elasticsearch Adapter Guide

74 | Elasticsearch Adapter

 "city": { "type":"string" },
 "state": { "type":"string" }
 },
 "insured_ages": { "type": "integer" },
 "vehicles": {
 "type": "nested",
 "properties": {
 "year": { "type":"integer" },
 "make": { "type":"string" },
 "model": { "type":"string" },
 "body_style" { "type": "string" }
 }
 }
 }
 }
 }

Also consider the following example data for the above mapping:

{
 "_source": {
 "name": "John Smith",
 "address": {
 "street": "Main Street",
 "city": "Chapel Hill",
 "state": "NC"
 },
 "insured_ages": [17, 43, 45],
 "vehicles": [
 {
 "year": 2015,
 "make": "Dodge",
 "model": "RAM 1500",
 "body_style": "TK"
 },
 {
 "year": 2015,
 "make": "Suzuki",
 "model": "V-Strom 650 XT",
 "body_style": "MC"
 },
 {
 "year": 2012,
 "make": "Honda",
 "model": "Accord",
 "body_style": "4D"
 }

TIBCO® Data Virtualization Elasticsearch Adapter Guide

75 | Elasticsearch Adapter

]
 }
 }

Using FlattenObjects

If FlattenObjects is set, all nested objects will be flattened into a series of columns. The
above example will be represented by the following columns:

Column Name Data
Type

Example Value

name String John Smith

address.street String Main Street

address.city String Chapel Hill

address.state String NC

insured_ages String [17, 43, 45]

vehicles String [{ "year": "2015", "make": "Dodge", ... }, { "year": "2015",
"make": "Suzuki", ... }, { "year": "2012", "make": "Honda", ... }]

If FlattenObjects is not set, then the address.street, address.city, and address.state columns
will not be broken apart. The address column of type string will instead represent the
entire object. Its value would be the following:

{street: "Main Street", city: "Chapel Hill", state: "NC"}

 See JSON Functions for more details on working with JSON aggregates.

Using FlattenArrays

The FlattenArrays property can be used to flatten array values into columns of their own.
This is only recommended for arrays that are expected to be short. It is best to leave

TIBCO® Data Virtualization Elasticsearch Adapter Guide

76 | Elasticsearch Adapter

unbounded arrays as they are and piece out the data for them as needed using JSON
Functions.

Note: Only the top-most array will be flattened. Any subarrays will be represented as the
entire array.

The FlattenArrays property can be set to 3 to represent the arrays in the example above as
follows (this example is with FlattenObjects not set):

Column Name Data
Type

Example Value

insured_ages String [17, 43, 45]

insured_ages.0 Integer 17

insured_ages.1 Integer 43

insured_ages.2 Integer 45

vehicles String [{ "year": "2015", "make": "Dodge", ... }, { "year": "2015",
"make": "Suzuki", ... }, { "year": "2012", "make": "Honda", ...
}]

vehicles.0 String { "year": "2015", "make": "Dodge", "model": "RAM 1500",
"body_style": "TK" }

vehicles.1 String { "year": "2015", "make": "Suzuki", "model": "V-Strom 650
XT", "body_style": "MC" }

vehicles.2 String { "year": "2012", "make": "Honda", "model": "Accord",
"body_style": "4D" }

Using Both FlattenObjects and FlattenArrays

If FlattenObjects is set along with FlattenArrays (set to 1 for brevity), the vehicles field will
be represented as follows:

TIBCO® Data Virtualization Elasticsearch Adapter Guide

77 | Elasticsearch Adapter

Column Name Data
Type

Example Value

vehicles String [{ "year": "2015", "make": "Dodge", ... }, { "year":
"2015", "make": "Suzuki", ... }, { "year": "2012", "make":
"Honda", ... }]

vehicles.0.year String 2015

vehicles.0.make String Dodge

vehicles.0.model String RAM 1500

vehicles.0.body_style String TK

for more information about this.

Stored Procedures
Stored Procedures are function-like interfaces to Elasticsearch which can be used to
perform various tasks.

 Stored Procedures
Stored procedures are function-like interfaces that extend the functionality of the adapter
beyond simple SELECT/INSERT/UPDATE/DELETE operations with Elasticsearch.

Stored procedures accept a list of parameters, perform their intended function, and then
return, if applicable, any relevant response data from Elasticsearch, along with an
indication of whether the procedure succeeded or failed.

Elasticsearch Adapter Stored Procedures

Name Description

CreateIndex Submits a request to create an index with specified settings.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

78 | Elasticsearch Adapter

Name Description

CreateSchema Creates a schema file for the collection.

ModifyIndexAliases Submits an alias request to modify index aliases.

CreateIndex
Submits a request to create an index with specified settings.

EXECUTE Example:

EXECUTE CreateIndex Index = 'firstindex', Alias = 'search',
NumberOfShards = '3'

Input

 Name Type Description

 Index

String The name of the index.

 Alias

String The name of the alias to optionally associate the
index with.

 AliasFilter

String Raw Query DSL object used to limit documents the
alias can access.

 AliasIndexRouting

String Value used for the alias to route indexing operations
to a specific shard. If specified, this overwrites the
routing value for indexing operations.

 AliasIsHidden

String Boolean value controlling whether or not the alias is
hidden. All indices for the alias must have the same
is_hidden value.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

79 | Elasticsearch Adapter

 Name Type Description

 AliasIsWriteIndex

String Boolean value controlling whether the index is the
write index for the alias.

 AliasRouting

String Value used for the alias to route indexing and
search operations to a specific shard. May be
overwritten by AliasIndexRouting or
AliasSearchRouting for certain operations.

 AliasSearchRouting

String Value used for the alias to route search operations
to a specific shard. If specified, this overwrites the
routing value for search operations.

 Mappings

String Raw JSON object specifying explicit mapping for the
index.

 NumberOfShards

String The number of primary shards that the created
index should have.

 NumberOfRoutingShards

String Number used by Elasticsearch internally with the
value from NumberOfShards to route documents to
a primary shard.

 OtherSettings

String Raw JSON object of settings. Cannot be used in
conjunction with NumberOfRoutingShards or
NumberOfShards.

Result Set Columns

Name Type Description

 CompletedBeforeTimeout

String Returns True if the index was created before
timeout. Note that if this value is false, the index
could still be created successfully on Elasticsearch.
In this case, completion of creating the index,
updating the cluster state, and requisite sharding

TIBCO® Data Virtualization Elasticsearch Adapter Guide

80 | Elasticsearch Adapter

Name Type Description

would occur after the timeout window for the
request response elapsed.

 ShardsAcknowledged

String Boolean indicating whether the requisite number
of shard copies were started for each shard in the
index before timing out.

 IndexName

String Name in Elasticsearch of the created index.

CreateSchema
Creates a schema file for the collection.

Input

 Name Type Accepts
Output
Streams

Description

 SchemaName

String False For use with Elasticsearch versions earlier than
7.0. The name of the schema (the Elasticsearch
index).

 TableName

String False Pre Elasticsearch 7.0, the name of Elasticsearch
mapping type. Post Elasticsearch 7.0, the name
of the Elasticsearch index.

 FileName

String False The file name sans extension of the generated
schema.

 FileStream

String True OutputStream to write the created schema.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

81 | Elasticsearch Adapter

Result Set Columns

Name Type Description

 Result

String Returns Success or Failure.

 FileData

String The generated schema encoded in base64. Only returned if
none of FileName, FileLocation, or FileStream are set.

ModifyIndexAliases
Submits an alias request to modify index aliases.

EXECUTE Example:

EXECUTE ModifyIndexAliases Action = 'add;add', Index = 'index_1;index_
2', Alias = 'my_alias;my_alias'

Note: The Index parameter supports the asterisk (*) character to perform a pattern match
to add all matching indices to the alias.

Note: This procedure makes use of indexed parameters. These input parameters are
denoted with a '#' character at the end of their names.

Indexed parameters facilitate providing multiple instances a single parameter as inputs for
the procedure.

Suppose there is an input parameter named Param#. Input multiple instances of an
indexed parameter like this:

EXEC ProcedureName Param#1 = "value1", Param#2 = "value2", Param#3 =
"value3"

Input

TIBCO® Data Virtualization Elasticsearch Adapter Guide

82 | Elasticsearch Adapter

 Name Type Description

 Action#

String The action to perform such as 'add', 'remove', or 'remove_
index'. Multiple actions are semi-colon separated.

 Index#

String The name of the index. Multiple indexes are semi-colon
separated.

 Alias#

String The name of the alias. Multiple aliases are semi-colon
separated.

 Filter#

String A filter to use when creating the alias. This takes the raw
JSON filter using Query DSL. Multiple filters are semi-colon
separated.

 Routing#

String The routing value to associate with the alias. Multiple routing
values are semi-colon separated.

 SearchRouting#

String The routing value to associate with the alias for searching
operations. Multiple search routing values are semi-colon
separated.

 IndexRouting#

String The routing value to associate with the alias for indexing
operations. Multiple index routing values are semi-colon
separated.

Result Set Columns

Name Type Description

 Success

String Returns True if successful.

 Data Type Mapping

TIBCO® Data Virtualization Elasticsearch Adapter Guide

83 | Elasticsearch Adapter

Data Type Mappings

The adapter maps types from the data source to the corresponding data type available in
the schema. The table below documents these mappings.

Elasticsearch CData Schema

array A JSON structure*

binary binary

boolean boolean

byte string

completion string

date datetime

date_range datetime (one field per value)

double double

double_range double (one field per value)

float float

float_range float (one field per value)

geo_point string

geo_shape string

half_float float

integer integer

integer_range integer (one field per value)

TIBCO® Data Virtualization Elasticsearch Adapter Guide

84 | Elasticsearch Adapter

Elasticsearch CData Schema

ip string

keyword string

long long

long_range long (one field per value)

nested A JSON structure.*

object Flattened into multiple fields.

scaled_float float

short short

text> string

*Parsed into multiple fields with individual types (see FlattenArrays)

Connection String Options
The connection string properties are the various options that can be used to establish a
connection. This section provides a complete list of the options you can configure in the
connection string for this provider. Click the links for further details. For more information
on establishing a connection, see Basic Tab.

Authentication

Property Description

AuthScheme The scheme used for authentication. Accepted entries are None, Basic,
Negotiate (Kerberos), AwsRootKeys, AwsIAMRoles, and APIKey. None is the
default.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

85 | Elasticsearch Adapter

Property Description

User The user who is authenticating to Elasticsearch.

Password The password used to authenticate to Elasticsearch.

Server The host name or IP address of the Elasticsearch REST server. Alternatively,
multiple nodes in a single cluster can be specified, though all such nodes
must be able to support REST API calls.

Port The port for the Elasticsearch REST server.

APIKey The APIKey used to authenticate to Elasticsearch.

APIKeyId The APIKey Id to authenticate to Elasticsearch.

Connection

Property Description

DataModel Specifies the data model to use when parsing Elasticsearch
documents and generating the database metadata.

UseLakeFormation When this property is set to true, AWSLakeFormation service will be
used to retrieve temporary credentials, which enforce access policies
against the user based on the configured IAM role. The service can be
used when authenticating through OKTA, ADFS, AzureAD,
PingFederate, while providing a SAML assertion.

AWS Authentication

Property Description

AWSAccessKey Your AWS account access key. This value is accessible from
your AWS security credentials page.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

86 | Elasticsearch Adapter

Property Description

AWSSecretKey Your AWS account secret key. This value is accessible from your
AWS security credentials page.

AWSRoleARN The Amazon Resource Name of the role to use when
authenticating.

AWSRegion The hosting region for your Amazon Web Services.

AWSSessionToken Your AWS session token.

TemporaryTokenDuration The amount of time (in seconds) an AWS temporary token will
last.

AWSExternalId A unique identifier that might be required when you assume a
role in another account.

Kerberos

Property Description

KerberosKDC The Kerberos Key Distribution Center (KDC) service used to
authenticate the user.

KerberosRealm The Kerberos Realm used to authenticate the user.

KerberosSPN The service principal name (SPN) for the Kerberos Domain
Controller.

KerberosKeytabFile The Keytab file containing your pairs of Kerberos principals and
encrypted keys.

KerberosServiceRealm The Kerberos realm of the service.

KerberosServiceKDC The Kerberos KDC of the service.

KerberosTicketCache The full file path to an MIT Kerberos credential cache file.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

87 | Elasticsearch Adapter

SSL

Property Description

SSLClientCert The TLS/SSL client certificate store for SSL Client Authentication
(2-way SSL).

SSLClientCertType The type of key store containing the TLS/SSL client certificate.

SSLClientCertPassword The password for the TLS/SSL client certificate.

SSLClientCertSubject The subject of the TLS/SSL client certificate.

SSLServerCert The certificate to be accepted from the server when connecting
using TLS/SSL.

Firewall

Property Description

FirewallType The protocol used by a proxy-based firewall.

FirewallServer The name or IP address of a proxy-based firewall.

FirewallPort The TCP port for a proxy-based firewall.

FirewallUser The user name to use to authenticate with a proxy-based firewall.

FirewallPassword A password used to authenticate to a proxy-based firewall.

Proxy

TIBCO® Data Virtualization Elasticsearch Adapter Guide

88 | Elasticsearch Adapter

Property Description

ProxyAutoDetect This indicates whether to use the system proxy settings or not. This
takes precedence over other proxy settings, so you'll need to set
ProxyAutoDetect to FALSE in order use custom proxy settings.

ProxyServer The hostname or IP address of a proxy to route HTTP traffic through.

ProxyPort The TCP port the ProxyServer proxy is running on.

ProxyAuthScheme The authentication type to use to authenticate to the ProxyServer
proxy.

ProxyUser A user name to be used to authenticate to the ProxyServer proxy.

ProxyPassword A password to be used to authenticate to the ProxyServer proxy.

ProxySSLType The SSL type to use when connecting to the ProxyServer proxy.

ProxyExceptions A semicolon separated list of destination hostnames or IPs that are
exempt from connecting through the ProxyServer .

Logging

Property Description

LogModules Core modules to be included in the log file.

Schema

Property Description

Location A path to the directory that contains the schema files defining tables,
views, and stored procedures.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

89 | Elasticsearch Adapter

Property Description

FlattenObjects Set FlattenObjects to true to flatten object properties into columns of their
own. Otherwise, objects nested in arrays are returned as strings of JSON.

FlattenArrays Set FlattenArrays to the number of nested array elements you want to
return as table columns. By default, nested arrays are returned as strings
of JSON.

Miscellaneous

Property Description

ClientSideEvaluation Set ClientSideEvaluation to true to perform
Evaluation client side on nested objects.

GenerateSchemaFiles Indicates the user preference as to when schemas
should be generated and saved.

MaxResults The maximum number of total results to return from
Elasticsearch when using the default Search API.

MaxRows Limits the number of rows returned when no
aggregation or GROUP BY is used in the query. This
takes precedence over LIMIT clauses.

Other These hidden properties are used only in specific use
cases.

PageSize The number of results to return per request from
Elasticsearch.

QueryPassthrough This option allows you to pass exact queries to
Elasticsearch.

Readonly You can use this property to enforce read-only access
to Elasticsearch from the provider.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

90 | Elasticsearch Adapter

Property Description

RowScanDepth The maximum number of rows to scan when
generating table metadata. Set this property to gain
more control over how the provider detects arrays.

ScrollDuration Specifies the time unit to use when retrieving results
via the Scroll API.

Timeout The value in seconds until the timeout error is
thrown, canceling the operation.

UseFullyQualifiedNestedTableName Set this to true to set the generated table name as
the complete source path when flattening nested
documents using Relational DataModel .

UserDefinedViews A filepath pointing to the JSON configuration file
containing your custom views.

Authentication

This section provides a complete list of the Authentication properties you can configure in
the connection string for this provider.

Property Description

AuthScheme The scheme used for authentication. Accepted entries are None, Basic,
Negotiate (Kerberos), AwsRootKeys, AwsIAMRoles, and APIKey. None is the
default.

User The user who is authenticating to Elasticsearch.

Password The password used to authenticate to Elasticsearch.

Server The host name or IP address of the Elasticsearch REST server. Alternatively,
multiple nodes in a single cluster can be specified, though all such nodes
must be able to support REST API calls.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

91 | Elasticsearch Adapter

Property Description

Port The port for the Elasticsearch REST server.

APIKey The APIKey used to authenticate to Elasticsearch.

APIKeyId The APIKey Id to authenticate to Elasticsearch.

AuthScheme
The scheme used for authentication. Accepted entries are None, Basic, Negotiate
(Kerberos), AwsRootKeys, AwsIAMRoles, and APIKey. None is the default.

Possible Values
 AwsIAMRoles, None, APIKey, BASIC, TemporaryCredentials, Negotiate, AwsRootKeys

Data Type
string

Default Value
"None"

Remarks
This field is used to authenticate against the server. Use the following options to select
your authentication scheme:

 l None: No authentication is performed, unless User and Password properties are set
in which BASIC authentication will be performed.

 l Basic: Basic authentication is performed.

 l Negotiate: If AuthScheme is set to Negotiate, the adapter will negotiate an
authentication mechanism with the server. Set AuthScheme to Negotiate if you want
to use Kerberos authentication.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

92 | Elasticsearch Adapter

 l AwsRootKeys: Set this to use the root user access key and secret. Useful for quickly
testing, but production use cases are encouraged to use something with narrowed
permissions.

 l AwsIAMRoles: Set to use IAM Roles for the connection.

 l APIKey: Set to use APIKey and APIKeyId for the connection.

User
The user who is authenticating to Elasticsearch.

Data Type
string

Default Value
""

Remarks
The user who is authenticating to Elasticsearch.

Password
The password used to authenticate to Elasticsearch.

Data Type
string

Default Value
""

TIBCO® Data Virtualization Elasticsearch Adapter Guide

93 | Elasticsearch Adapter

Remarks
The password used to authenticate to Elasticsearch.

Server
The host name or IP address of the Elasticsearch REST server. Alternatively, multiple nodes
in a single cluster can be specified, though all such nodes must be able to support REST
API calls.

Data Type
string

Default Value
""

Remarks
The host name or IP address of the Elasticsearch REST server. Alternatively, multiple nodes
in a single cluster can be specified, though all such nodes must be able to support REST
API calls.

To use SSL, prefix the host name or IP address with 'https://' and set SSL connection
properties such as SSLServerCert.

To specify multiple nodes, set the property to a comma delimited list of addresses, with
ports optionally specified after the address and delimited from the address by a colon. For
example, you could specify two dedicated, coordinating nodes for your cluster with
'https://01.01.01.01:1234,https://02.02.02.02:5678'. If a port is specified with a node, that
port will take precedence over the Port property for connections to that node only.

Port
The port for the Elasticsearch REST server.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

94 | Elasticsearch Adapter

Data Type
string

Default Value
"9200"

Remarks
The port the Elasticsearch REST server is bound to.

APIKey
The APIKey used to authenticate to Elasticsearch.

Data Type
string

Default Value
""

Remarks
The APIKey used to authenticate to Elasticsearch.

APIKeyId
The APIKey Id to authenticate to Elasticsearch.

Data Type
string

TIBCO® Data Virtualization Elasticsearch Adapter Guide

95 | Elasticsearch Adapter

Default Value
""

Remarks
The APIKey Id to authenticate to Elasticsearch.

Connection

This section provides a complete list of the Connection properties you can configure in the
connection string for this provider.

Property Description

DataModel Specifies the data model to use when parsing Elasticsearch
documents and generating the database metadata.

UseLakeFormation When this property is set to true, AWSLakeFormation service will be
used to retrieve temporary credentials, which enforce access policies
against the user based on the configured IAM role. The service can be
used when authenticating through OKTA, ADFS, AzureAD,
PingFederate, while providing a SAML assertion.

DataModel
Specifies the data model to use when parsing Elasticsearch documents and generating the
database metadata.

Possible Values
 Document, FlattenedDocuments, Relational

Data Type
string

TIBCO® Data Virtualization Elasticsearch Adapter Guide

96 | Elasticsearch Adapter

Default Value
"Document"

Remarks
Select a DataModel configuration to configure how the adapter models nested documents
into tables. See Parsing Hierarchical Data for examples of querying the data in the different
configurations.

Selecting a Data Modeling Strategy
The following DataModel configurations are available. See Parsing Hierarchical Data for
examples of querying the data in the different configurations.

 l Document

Returns a single table representing a row for each document. In this data model, any
nested documents will not be flattened and will be returned as aggregates.

 l FlattenedDocuments

Returns a single table representing a JOIN of the parent and nested documents. In
this data model, nested documents will act in the same manner as a SQL JOIN.
Additionally, nested sibling documents (nested documents at same height), will be
treated as a SQL CROSS JOIN. The adapter will identify the nested documents
available by parsing the returned document.

 l Relational

Returns multiple tables, one for each nested document (including the parent
document) in the document. In this data model, any nested documents will be
returned as relational tables that contain a primary key and a foreign key that links
to the parent table.

See Also

 l FlattenArrays and FlattenObjects: Customize the columns that will be identified for
each of these data models. See Automatic Schema Discovery for examples of using
these properties.

 l Parsing Hierarchical Data: Compare the schemas resulting from different DataModel

TIBCO® Data Virtualization Elasticsearch Adapter Guide

97 | Elasticsearch Adapter

settings, with example queries.

 l Searching with SQL: Learn about the data modeling and flattening techniques
available in the adapter.

UseLakeFormation
When this property is set to true, AWSLakeFormation service will be used to retrieve
temporary credentials, which enforce access policies against the user based on the
configured IAM role. The service can be used when authenticating through OKTA, ADFS,
AzureAD, PingFederate, while providing a SAML assertion.

Data Type
bool

Default Value
false

Remarks
When this property is set to true, AWSLakeFormation service will be used to retrieve
temporary credentials, which enforce access policies against the user based on the
configured IAM role. The service can be used when authenticating through OKTA, ADFS,
AzureAD, PingFederate, while providing a SAML assertion.

AWS Authentication

This section provides a complete list of the AWS Authentication properties you can
configure in the connection string for this provider.

Property Description

AWSAccessKey Your AWS account access key. This value is accessible from
your AWS security credentials page.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

98 | Elasticsearch Adapter

Property Description

AWSSecretKey Your AWS account secret key. This value is accessible from your
AWS security credentials page.

AWSRoleARN The Amazon Resource Name of the role to use when
authenticating.

AWSRegion The hosting region for your Amazon Web Services.

AWSSessionToken Your AWS session token.

TemporaryTokenDuration The amount of time (in seconds) an AWS temporary token will
last.

AWSExternalId A unique identifier that might be required when you assume a
role in another account.

AWSAccessKey
Your AWS account access key. This value is accessible from your AWS security credentials
page.

Data Type
string

Default Value
""

Remarks
Your AWS account access key. This value is accessible from your AWS security credentials
page:

 1. Sign into the AWS Management console with the credentials for your root account.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

99 | Elasticsearch Adapter

 2. Select your account name or number and select My Security Credentials in the menu
that is displayed.

 3. Click Continue to Security Credentials and expand the Access Keys section to manage
or create root account access keys.

AWSSecretKey
Your AWS account secret key. This value is accessible from your AWS security credentials
page.

Data Type
string

Default Value
""

Remarks
Your AWS account secret key. This value is accessible from your AWS security credentials
page:

 1. Sign into the AWS Management console with the credentials for your root account.

 2. Select your account name or number and select My Security Credentials in the menu
that is displayed.

 3. Click Continue to Security Credentials and expand the Access Keys section to manage
or create root account access keys.

AWSRoleARN
The Amazon Resource Name of the role to use when authenticating.

Data Type
string

TIBCO® Data Virtualization Elasticsearch Adapter Guide

100 | Elasticsearch Adapter

Default Value
""

Remarks
When authenticating outside of AWS, it is common to use a Role for authentication instead
of your direct AWS account credentials. Entering the AWSRoleARN will cause the
Elasticsearch Adapter to perform a role based authentication instead of using the
AWSAccessKey and AWSSecretKey directly. The AWSAccessKey and AWSSecretKey must still
be specified to perform this authentication. You cannot use the credentials of an AWS root
user when setting RoleARN. The AWSAccessKey and AWSSecretKey must be those of an IAM
user.

AWSRegion
The hosting region for your Amazon Web Services.

Possible Values
 OHIO, NORTHERNVIRGINIA, NORTHERNCALIFORNIA, OREGON, CAPETOWN, HONGKONG,
JAKARTA, MUMBAI, OSAKA, SEOUL, SINGAPORE, SYDNEY, TOKYO, CENTRAL, BEIJING,
NINGXIA, FRANKFURT, IRELAND, LONDON, MILAN, PARIS, STOCKHOLM, ZURICH, BAHRAIN,
UAE, SAOPAULO, GOVCLOUDEAST, GOVCLOUDWEST

Data Type
string

Default Value
"NORTHERNVIRGINIA"

Remarks
The hosting region for your Amazon Web Services. Available values are OHIO,
NORTHERNVIRGINIA, NORTHERNCALIFORNIA, OREGON, CAPETOWN, HONGKONG, JAKARTA,
MUMBAI, OSAKA, SEOUL, SINGAPORE, SYDNEY, TOKYO, CENTRAL, BEIJING, NINGXIA,

TIBCO® Data Virtualization Elasticsearch Adapter Guide

101 | Elasticsearch Adapter

FRANKFURT, IRELAND, LONDON, MILAN, PARIS, STOCKHOLM, ZURICH, BAHRAIN, UAE,
SAOPAULO, GOVCLOUDEAST, and GOVCLOUDWEST.

AWSSessionToken
Your AWS session token.

Data Type
string

Default Value
""

Remarks
Your AWS session token. This value can be retrieved in different ways. See this link for
more info.

TemporaryTokenDuration
The amount of time (in seconds) an AWS temporary token will last.

Data Type
string

Default Value
"3600"

Remarks
Temporary tokens are used with Role based authentication. Temporary tokens will
eventually time out, at which time a new temporary token must be obtained. The

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html

TIBCO® Data Virtualization Elasticsearch Adapter Guide

102 | Elasticsearch Adapter

Elasticsearch Adapter will internally request a new temporary token once the temporary
token has expired.

For Role based authentication, the minimum duration is 900 seconds (15 minutes) while
the maximum if 3600 (1 hour).

AWSExternalId
A unique identifier that might be required when you assume a role in another account.

Data Type
string

Default Value
""

Remarks
A unique identifier that might be required when you assume a role in another account.

Kerberos

This section provides a complete list of the Kerberos properties you can configure in the
connection string for this provider.

Property Description

KerberosKDC The Kerberos Key Distribution Center (KDC) service used to
authenticate the user.

KerberosRealm The Kerberos Realm used to authenticate the user.

KerberosSPN The service principal name (SPN) for the Kerberos Domain
Controller.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

103 | Elasticsearch Adapter

Property Description

KerberosKeytabFile The Keytab file containing your pairs of Kerberos principals and
encrypted keys.

KerberosServiceRealm The Kerberos realm of the service.

KerberosServiceKDC The Kerberos KDC of the service.

KerberosTicketCache The full file path to an MIT Kerberos credential cache file.

KerberosKDC
The Kerberos Key Distribution Center (KDC) service used to authenticate the user.

Data Type
string

Default Value
""

Remarks
The Kerberos properties are used when using SPNEGO or Windows Authentication. The
adapter will request session tickets and temporary session keys from the Kerberos KDC
service. The Kerberos KDC service is conventionally colocated with the domain controller.

If Kerberos KDC is not specified, the adapter will attempt to detect these properties
automatically from the following locations:

 l KRB5 Config File (krb5.ini/krb5.conf): If the KRB5_CONFIG environment variable is
set and the file exists, the adapter will obtain the KDC from the specified file.
Otherwise, it will attempt to read from the default MIT location based on the OS:
C:\ProgramData\MIT\Kerberos5\krb5.ini (Windows) or /etc/krb5.conf (Linux).

 l Java System Properties: Using the system properties java.security.krb5.realm and
java.security.krb5.kdc.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

104 | Elasticsearch Adapter

 l Domain Name and Host: If the Kerberos Realm and Kerberos KDC could not be
inferred from another location, the adapter will infer them from the configured
domain name and host.

Note: Windows authentication is supported in JRE 1.6 and above only.

KerberosRealm
The Kerberos Realm used to authenticate the user.

Data Type
string

Default Value
""

Remarks
The Kerberos properties are used when using SPNEGO or Windows Authentication. The
Kerberos Realm is used to authenticate the user with the Kerberos Key Distribution Service
(KDC). The Kerberos Realm can be configured by an administrator to be any string, but
conventionally it is based on the domain name.

If Kerberos Realm is not specified, the adapter will attempt to detect these properties
automatically from the following locations:

 l KRB5 Config File (krb5.ini/krb5.conf): If the KRB5_CONFIG environment variable is
set and the file exists, the adapter will obtain the default realm from the specified
file. Otherwise, it will attempt to read from the default MIT location based on the OS:
C:\ProgramData\MIT\Kerberos5\krb5.ini (Windows) or /etc/krb5.conf (Linux)

 l Java System Properties: Using the system properties java.security.krb5.realm and
java.security.krb5.kdc.

 l Domain Name and Host: If the Kerberos Realm and Kerberos KDC could not be
inferred from another location, the adapter will infer them from the user-configured
domain name and host. This might work in some Windows environments.

Note: Kerberos-based authentication is supported in JRE 1.6 and above only.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

105 | Elasticsearch Adapter

KerberosSPN
The service principal name (SPN) for the Kerberos Domain Controller.

Data Type
string

Default Value
""

Remarks
If the SPN on the Kerberos Domain Controller is not the same as the URL that you are
authenticating to, use this property to set the SPN.

KerberosKeytabFile
The Keytab file containing your pairs of Kerberos principals and encrypted keys.

Data Type
string

Default Value
""

Remarks
The Keytab file containing your pairs of Kerberos principals and encrypted keys.

KerberosServiceRealm
The Kerberos realm of the service.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

106 | Elasticsearch Adapter

Data Type
string

Default Value
""

Remarks
The KerberosServiceRealm is the specify the service Kerberos realm when using cross-
realm Kerberos authentication.

In most cases, a single realm and KDC machine are used to perform the Kerberos
authentication and this property is not required.

This property is available for complex setups where a different realm and KDC machine are
used to obtain an authentication ticket (AS request) and a service ticket (TGS request).

KerberosServiceKDC
The Kerberos KDC of the service.

Data Type
string

Default Value
""

Remarks
The KerberosServiceKDC is used to specify the service Kerberos KDC when using cross-
realm Kerberos authentication.

In most cases, a single realm and KDC machine are used to perform the Kerberos
authentication and this property is not required.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

107 | Elasticsearch Adapter

This property is available for complex setups where a different realm and KDC machine are
used to obtain an authentication ticket (AS request) and a service ticket (TGS request).

KerberosTicketCache
The full file path to an MIT Kerberos credential cache file.

Data Type
string

Default Value
""

Remarks
This property can be set if you wish to use a credential cache file that was created using
the MIT Kerberos Ticket Manager or kinit command.

SSL

This section provides a complete list of the SSL properties you can configure in the
connection string for this provider.

Property Description

SSLClientCert The TLS/SSL client certificate store for SSL Client Authentication
(2-way SSL).

SSLClientCertType The type of key store containing the TLS/SSL client certificate.

SSLClientCertPassword The password for the TLS/SSL client certificate.

SSLClientCertSubject The subject of the TLS/SSL client certificate.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

108 | Elasticsearch Adapter

Property Description

SSLServerCert The certificate to be accepted from the server when connecting
using TLS/SSL.

SSLClientCert
The TLS/SSL client certificate store for SSL Client Authentication (2-way SSL).

Data Type
string

Default Value
""

Remarks
The name of the certificate store for the client certificate.

The SSLClientCertType field specifies the type of the certificate store specified by
SSLClientCert. If the store is password protected, specify the password in
SSLClientCertPassword.

SSLClientCert is used in conjunction with the SSLClientCertSubject field in order to specify
client certificates. If SSLClientCert has a value, and SSLClientCertSubject is set, a search for
a certificate is initiated. See SSLClientCertSubject for more information.

Designations of certificate stores are platform-dependent.

The following are designations of the most common User and Machine certificate stores in
Windows:

TIBCO® Data Virtualization Elasticsearch Adapter Guide

109 | Elasticsearch Adapter

MY A certificate store holding personal certificates with their associated private
keys.

CA Certifying authority certificates.

ROOT Root certificates.

SPC Software publisher certificates.

In Java, the certificate store normally is a file containing certificates and optional private
keys.

When the certificate store type is PFXFile, this property must be set to the name of the file.
When the type is PFXBlob, the property must be set to the binary contents of a PFX file (for
example, PKCS12 certificate store).

SSLClientCertType
The type of key store containing the TLS/SSL client certificate.

Possible Values
 USER, MACHINE, PFXFILE, PFXBLOB, JKSFILE, JKSBLOB, PEMKEY_FILE, PEMKEY_BLOB,
PUBLIC_KEY_FILE, PUBLIC_KEY_BLOB, SSHPUBLIC_KEY_FILE, SSHPUBLIC_KEY_BLOB,
P7BFILE, PPKFILE, XMLFILE, XMLBLOB

Data Type
string

Default Value
"USER"

Remarks
This property can take one of the following values:

TIBCO® Data Virtualization Elasticsearch Adapter Guide

110 | Elasticsearch Adapter

USER - default For Windows, this specifies that the certificate store is a
certificate store owned by the current user. Note that this
store type is not available in Java.

MACHINE For Windows, this specifies that the certificate store is a machine
store. Note that this store type is not available in Java.

PFXFILE The certificate store is the name of a PFX (PKCS12) file containing
certificates.

PFXBLOB The certificate store is a string (base-64-encoded) representing a
certificate store in PFX (PKCS12) format.

JKSFILE The certificate store is the name of a Java key store (JKS) file
containing certificates. Note that this store type is only available
in Java.

JKSBLOB The certificate store is a string (base-64-encoded) representing a
certificate store in JKS format. Note that this store type is only
available in Java.

PEMKEY_FILE The certificate store is the name of a PEM-encoded file that
contains a private key and an optional certificate.

PEMKEY_BLOB The certificate store is a string (base64-encoded) that contains a
private key and an optional certificate.

PUBLIC_KEY_FILE The certificate store is the name of a file that contains a PEM- or
DER-encoded public key certificate.

PUBLIC_KEY_BLOB The certificate store is a string (base-64-encoded) that contains a
PEM- or DER-encoded public key certificate.

SSHPUBLIC_KEY_FILE The certificate store is the name of a file that contains an SSH-
style public key.

SSHPUBLIC_KEY_BLOB The certificate store is a string (base-64-encoded) that contains an
SSH-style public key.

P7BFILE The certificate store is the name of a PKCS7 file containing

TIBCO® Data Virtualization Elasticsearch Adapter Guide

111 | Elasticsearch Adapter

USER - default For Windows, this specifies that the certificate store is a
certificate store owned by the current user. Note that this
store type is not available in Java.

certificates.

PPKFILE The certificate store is the name of a file that contains a PuTTY
Private Key (PPK).

XMLFILE The certificate store is the name of a file that contains a
certificate in XML format.

XMLBLOB The certificate store is a string that contains a certificate in XML
format.

SSLClientCertPassword
The password for the TLS/SSL client certificate.

Data Type
string

Default Value
""

Remarks
If the certificate store is of a type that requires a password, this property is used to specify
that password to open the certificate store.

SSLClientCertSubject
The subject of the TLS/SSL client certificate.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

112 | Elasticsearch Adapter

Data Type
string

Default Value
"*"

Remarks
When loading a certificate the subject is used to locate the certificate in the store.

If an exact match is not found, the store is searched for subjects containing the value of
the property. If a match is still not found, the property is set to an empty string, and no
certificate is selected.

The special value "*" picks the first certificate in the certificate store.

The certificate subject is a comma separated list of distinguished name fields and values.
For example, "CN=www.server.com, OU=test, C=US, E=support@company.com". The
common fields and their meanings are shown below.

Field Meaning

CN Common Name. This is commonly a host name like www.server.com.

O Organization

OU Organizational Unit

L Locality

S State

C Country

E Email Address

If a field value contains a comma, it must be quoted.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

113 | Elasticsearch Adapter

SSLServerCert
The certificate to be accepted from the server when connecting using TLS/SSL.

Data Type
string

Default Value
""

Remarks
If using a TLS/SSL connection, this property can be used to specify the TLS/SSL certificate
to be accepted from the server. Any other certificate that is not trusted by the machine is
rejected.

This property can take the following forms:

Description Example

A full PEM Certificate (example shortened for brevity) -----BEGIN CERTIFICATE-----
MIIChTCCAe4CAQAwDQYJKoZIhv......Qw
== -----END CERTIFICATE-----

A path to a local file containing the certificate C:\cert.cer

The public key (example shortened for brevity) -----BEGIN RSA PUBLIC KEY-----
MIGfMA0GCSq......AQAB -----END RSA
PUBLIC KEY-----

The MD5 Thumbprint (hex values can also be either space or
 colon separated)

ecadbdda5a1529c58a1e9e09828d70e4

The SHA1 Thumbprint (hex values can also be either space or
 colon separated)

34a929226ae0819f2ec14b4a3d904f801c
bb150d

TIBCO® Data Virtualization Elasticsearch Adapter Guide

114 | Elasticsearch Adapter

If not specified, any certificate trusted by the machine is accepted.

Certificates are validated as trusted by the machine based on the System's trust store. The
trust store used is the 'javax.net.ssl.trustStore' value specified for the system. If no value is
specified for this property, Java's default trust store is used (for example, JAVA_
HOME\lib\security\cacerts).

Use '*' to signify to accept all certificates. Note that this is not recommended due to
security concerns.

Firewall

This section provides a complete list of the Firewall properties you can configure in the
connection string for this provider.

Property Description

FirewallType The protocol used by a proxy-based firewall.

FirewallServer The name or IP address of a proxy-based firewall.

FirewallPort The TCP port for a proxy-based firewall.

FirewallUser The user name to use to authenticate with a proxy-based firewall.

FirewallPassword A password used to authenticate to a proxy-based firewall.

FirewallType
The protocol used by a proxy-based firewall.

Possible Values
 NONE, TUNNEL, SOCKS4, SOCKS5

TIBCO® Data Virtualization Elasticsearch Adapter Guide

115 | Elasticsearch Adapter

Data Type
string

Default Value
"NONE"

Remarks
This property specifies the protocol that the adapter will use to tunnel traffic through the
FirewallServer proxy. Note that by default, the adapter connects to the system proxy; to
disable this behavior and connect to one of the following proxy types, set ProxyAutoDetect
to false.

Type Default
Port

Description

TUNNEL

80 When this is set, the adapter opens a connection to
Elasticsearch and traffic flows back and forth through the
proxy.

SOCKS4

1080 When this is set, the adapter sends data through the SOCKS
4 proxy specified by FirewallServer and FirewallPort and
passes the FirewallUser value to the proxy, which
determines if the connection request should be granted.

SOCKS5

1080 When this is set, the adapter sends data through the SOCKS
5 proxy specified by FirewallServer and FirewallPort. If your
proxy requires authentication, set FirewallUser and
FirewallPassword to credentials the proxy recognizes.

To connect to HTTP proxies, use ProxyServer and ProxyPort. To authenticate to HTTP
proxies, use ProxyAuthScheme, ProxyUser, and ProxyPassword.

FirewallServer
The name or IP address of a proxy-based firewall.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

116 | Elasticsearch Adapter

Data Type
string

Default Value
""

Remarks
This property specifies the IP address, DNS name, or host name of a proxy allowing
traversal of a firewall. The protocol is specified by FirewallType: Use FirewallServer with
this property to connect through SOCKS or do tunneling. Use ProxyServer to connect to an
HTTP proxy.

Note that the adapter uses the system proxy by default. To use a different proxy, set
ProxyAutoDetect to false.

FirewallPort
The TCP port for a proxy-based firewall.

Data Type
int

Default Value
0

Remarks
This specifies the TCP port for a proxy allowing traversal of a firewall. Use FirewallServer to
specify the name or IP address. Specify the protocol with FirewallType.

FirewallUser
The user name to use to authenticate with a proxy-based firewall.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

117 | Elasticsearch Adapter

Data Type
string

Default Value
""

Remarks
The FirewallUser and FirewallPassword properties are used to authenticate against the
proxy specified in FirewallServer and FirewallPort, following the authentication method
specified in FirewallType.

FirewallPassword
A password used to authenticate to a proxy-based firewall.

Data Type
string

Default Value
""

Remarks
This property is passed to the proxy specified by FirewallServer and FirewallPort, following
the authentication method specified by FirewallType.

Proxy

This section provides a complete list of the Proxy properties you can configure in the
connection string for this provider.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

118 | Elasticsearch Adapter

Property Description

ProxyAutoDetect This indicates whether to use the system proxy settings or not. This
takes precedence over other proxy settings, so you'll need to set
ProxyAutoDetect to FALSE in order use custom proxy settings.

ProxyServer The hostname or IP address of a proxy to route HTTP traffic through.

ProxyPort The TCP port the ProxyServer proxy is running on.

ProxyAuthScheme The authentication type to use to authenticate to the ProxyServer
proxy.

ProxyUser A user name to be used to authenticate to the ProxyServer proxy.

ProxyPassword A password to be used to authenticate to the ProxyServer proxy.

ProxySSLType The SSL type to use when connecting to the ProxyServer proxy.

ProxyExceptions A semicolon separated list of destination hostnames or IPs that are
exempt from connecting through the ProxyServer .

ProxyAutoDetect
This indicates whether to use the system proxy settings or not. This takes precedence over
other proxy settings, so you'll need to set ProxyAutoDetect to FALSE in order use custom
proxy settings.

Data Type
bool

Default Value
true

TIBCO® Data Virtualization Elasticsearch Adapter Guide

119 | Elasticsearch Adapter

Remarks
This takes precedence over other proxy settings, so you'll need to set ProxyAutoDetect to
FALSE in order use custom proxy settings.

NOTE: When this property is set to True, the proxy used is determined as follows:

 l A search from the JVM properties (http.proxy, https.proxy, socksProxy, etc.) is
performed.

 l In the case that the JVM properties don't exist, a search from
java.home/lib/net.properties is performed.

 l In the case that java.net.useSystemProxies is set to True, a search from the
SystemProxy is performed.

 l In Windows only, an attempt is made to retrieve these properties from the Internet
Options in the registry.

To connect to an HTTP proxy, see ProxyServer. For other proxies, such as SOCKS or
tunneling, see FirewallType.

ProxyServer
The hostname or IP address of a proxy to route HTTP traffic through.

Data Type
string

Default Value
""

Remarks
The hostname or IP address of a proxy to route HTTP traffic through. The adapter can use
the HTTP, Windows (NTLM), or Kerberos authentication types to authenticate to an HTTP
proxy.

If you need to connect through a SOCKS proxy or tunnel the connection, see FirewallType.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

120 | Elasticsearch Adapter

By default, the adapter uses the system proxy. If you need to use another proxy, set
ProxyAutoDetect to false.

ProxyPort
The TCP port the ProxyServer proxy is running on.

Data Type
int

Default Value
80

Remarks
The port the HTTP proxy is running on that you want to redirect HTTP traffic through.
Specify the HTTP proxy in ProxyServer. For other proxy types, see FirewallType.

ProxyAuthScheme
The authentication type to use to authenticate to the ProxyServer proxy.

Possible Values
 BASIC, DIGEST, NONE, NEGOTIATE, NTLM, PROPRIETARY

Data Type
string

Default Value
"BASIC"

TIBCO® Data Virtualization Elasticsearch Adapter Guide

121 | Elasticsearch Adapter

Remarks
This value specifies the authentication type to use to authenticate to the HTTP proxy
specified by ProxyServer and ProxyPort.

Note that the adapter will use the system proxy settings by default, without further
configuration needed; if you want to connect to another proxy, you will need to set
ProxyAutoDetect to false, in addition to ProxyServer and ProxyPort. To authenticate, set
ProxyAuthScheme and set ProxyUser and ProxyPassword, if needed.

The authentication type can be one of the following:

 l BASIC: The adapter performs HTTP BASIC authentication.

 l DIGEST: The adapter performs HTTP DIGEST authentication.

 l NEGOTIATE: The adapter retrieves an NTLM or Kerberos token based on the
applicable protocol for authentication.

 l PROPRIETARY: The adapter does not generate an NTLM or Kerberos token. You must
supply this token in the Authorization header of the HTTP request.

If you need to use another authentication type, such as SOCKS 5 authentication, see
FirewallType.

ProxyUser
A user name to be used to authenticate to the ProxyServer proxy.

Data Type
string

Default Value
""

Remarks
The ProxyUser and ProxyPassword options are used to connect and authenticate against
the HTTP proxy specified in ProxyServer.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

122 | Elasticsearch Adapter

You can select one of the available authentication types in ProxyAuthScheme. If you are
using HTTP authentication, set this to the user name of a user recognized by the HTTP
proxy. If you are using Windows or Kerberos authentication, set this property to a user
name in one of the following formats:

user@domain
 domain\user

ProxyPassword
A password to be used to authenticate to the ProxyServer proxy.

Data Type
string

Default Value
""

Remarks
This property is used to authenticate to an HTTP proxy server that supports NTLM
(Windows), Kerberos, or HTTP authentication. To specify the HTTP proxy, you can set
ProxyServer and ProxyPort. To specify the authentication type, set ProxyAuthScheme.

If you are using HTTP authentication, additionally set ProxyUser and ProxyPassword to
HTTP proxy.

If you are using NTLM authentication, set ProxyUser and ProxyPassword to your Windows
password. You may also need these to complete Kerberos authentication.

For SOCKS 5 authentication or tunneling, see FirewallType.

By default, the adapter uses the system proxy. If you want to connect to another proxy, set
ProxyAutoDetect to false.

ProxySSLType
The SSL type to use when connecting to the ProxyServer proxy.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

123 | Elasticsearch Adapter

Possible Values
 AUTO, ALWAYS, NEVER, TUNNEL

Data Type
string

Default Value
"AUTO"

Remarks
This property determines when to use SSL for the connection to an HTTP proxy specified
by ProxyServer. This value can be AUTO, ALWAYS, NEVER, or TUNNEL. The applicable
values are the following:

AUTO Default setting. If the URL is an HTTPS URL, the adapter will use the
TUNNEL option. If the URL is an HTTP URL, the component will use the
NEVER option.

ALWAYS The connection is always SSL enabled.

NEVER The connection is not SSL enabled.

TUNNEL The connection is through a tunneling proxy. The proxy server opens a
connection to the remote host and traffic flows back and forth through the
proxy.

ProxyExceptions
A semicolon separated list of destination hostnames or IPs that are exempt from
connecting through the ProxyServer .

Data Type
string

TIBCO® Data Virtualization Elasticsearch Adapter Guide

124 | Elasticsearch Adapter

Default Value
""

Remarks
The ProxyServer is used for all addresses, except for addresses defined in this property. Use
semicolons to separate entries.

Note that the adapter uses the system proxy settings by default, without further
configuration needed; if you want to explicitly configure proxy exceptions for this
connection, you need to set ProxyAutoDetect = false, and configure ProxyServer and
ProxyPort. To authenticate, set ProxyAuthScheme and set ProxyUser and ProxyPassword, if
needed.

Logging

This section provides a complete list of the Logging properties you can configure in the
connection string for this provider.

Property Description

LogModules Core modules to be included in the log file.

LogModules
Core modules to be included in the log file.

Data Type
string

Default Value
""

TIBCO® Data Virtualization Elasticsearch Adapter Guide

125 | Elasticsearch Adapter

Remarks
Only the modules specified (separated by ';') will be included in the log file. By default all
modules are included.

See the Logging page for an overview.

Schema

This section provides a complete list of the Schema properties you can configure in the
connection string for this provider.

Property Description

Location A path to the directory that contains the schema files defining tables,
views, and stored procedures.

FlattenObjects Set FlattenObjects to true to flatten object properties into columns of their
own. Otherwise, objects nested in arrays are returned as strings of JSON.

FlattenArrays Set FlattenArrays to the number of nested array elements you want to
return as table columns. By default, nested arrays are returned as strings
of JSON.

Location
A path to the directory that contains the schema files defining tables, views, and stored
procedures.

Data Type
string

Default Value
"%APPDATA%\\CData\\Elasticsearch Data Provider\\Schema"

TIBCO® Data Virtualization Elasticsearch Adapter Guide

126 | Elasticsearch Adapter

Remarks
The path to a directory which contains the schema files for the adapter (.rsd files for tables
and views, .rsb files for stored procedures). The folder location can be a relative path from
the location of the executable. The Location property is only needed if you want to
customize definitions (for example, change a column name, ignore a column, and so on) or
extend the data model with new tables, views, or stored procedures.

If left unspecified, the default location is "%APPDATA%\\CData\\Elasticsearch Data
Provider\\Schema" with %APPDATA% being set to the user's configuration directory:

Platform %APPDATA%

Windows The value of the APPDATA environment variable

Mac ~/Library/Application Support

Linux ~/.config

FlattenObjects
Set FlattenObjects to true to flatten object properties into columns of their own. Otherwise,
 objects nested in arrays are returned as strings of JSON.

Data Type
bool

Default Value
true

Remarks
Set FlattenObjects to true to flatten object properties into columns of their own. Otherwise,
objects nested in arrays are returned as strings of JSON. The property name is
concatenated onto the object name with a period to generate the column name.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

127 | Elasticsearch Adapter

For example, you can flatten the nested objects below at connection time:

"manager": {
 "name": "Alice White",
 "age": 30
 }

 When FlattenObjects is set to true, the preceding object is flattened into the following
table:

Column Name Column Value

manager.name Alice White

manager.age 30

FlattenArrays
Set FlattenArrays to the number of nested array elements you want to return as table
columns. By default, nested arrays are returned as strings of JSON.

Data Type
string

Default Value
""

Remarks
By default, nested arrays are returned as strings of JSON. The FlattenArrays property can
be used to flatten the elements of nested arrays into columns of their own. This is only
recommended for arrays that are expected to be short.

Set FlattenArrays to the number of elements you want to return from nested arrays. The
specified elements are returned as columns. The zero-based index is concatenated to the
column name. Other elements are ignored.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

128 | Elasticsearch Adapter

For example, you can return an arbitrary number of elements from an array of strings:

"employees": [
 {
 "name": "John Smith",
 "age": 34
 },
 {
 "name": "Peter Brown",
 "age": 26
 },
 {
 "name": "Paul Jacobs",
 "age": 30
 }
]

 When FlattenArrays is set to 2, the preceding array is flattened into the following table:

Column Name Column Value

employees.0.name John Smith

employees.0.age 34

employees.1.name Peter Brown

employees.1.age 26

See JSON Functions to use JSON paths to work with unbounded arrays.

Miscellaneous

This section provides a complete list of the Miscellaneous properties you can configure in
the connection string for this provider.

Property Description

ClientSideEvaluation Set ClientSideEvaluation to true to perform

TIBCO® Data Virtualization Elasticsearch Adapter Guide

129 | Elasticsearch Adapter

Property Description

Evaluation client side on nested objects.

GenerateSchemaFiles Indicates the user preference as to when schemas
should be generated and saved.

MaxResults The maximum number of total results to return from
Elasticsearch when using the default Search API.

MaxRows Limits the number of rows returned when no
aggregation or GROUP BY is used in the query. This
takes precedence over LIMIT clauses.

Other These hidden properties are used only in specific use
cases.

PageSize The number of results to return per request from
Elasticsearch.

QueryPassthrough This option allows you to pass exact queries to
Elasticsearch.

Readonly You can use this property to enforce read-only access
to Elasticsearch from the provider.

RowScanDepth The maximum number of rows to scan when
generating table metadata. Set this property to gain
more control over how the provider detects arrays.

ScrollDuration Specifies the time unit to use when retrieving results
via the Scroll API.

Timeout The value in seconds until the timeout error is
thrown, canceling the operation.

UseFullyQualifiedNestedTableName Set this to true to set the generated table name as
the complete source path when flattening nested
documents using Relational DataModel .

TIBCO® Data Virtualization Elasticsearch Adapter Guide

130 | Elasticsearch Adapter

Property Description

UserDefinedViews A filepath pointing to the JSON configuration file
containing your custom views.

ClientSideEvaluation
Set ClientSideEvaluation to true to perform Evaluation client side on nested objects.

Data Type
bool

Default Value
false

Remarks
Set ClientSideEvaluation to true to perform Evaluation (GROUP BY, filtering) client side on
nested objects.

For example, with ClientSideEvaluation set to false(default value), GROUP BY on nested
object 'property.0.name' would be grouped as 'property.*.name', while if set to true, results
would be grouped as 'property.0.name'.

Similarly, with ClientSideEvaluation set to false(default value), filtering on nested object
'property.0.name' would be filtered as 'property.*.name', while if set to true, results would
be filtered as 'property.0.name'.

This would affect performance as query is evaluated client side.

GenerateSchemaFiles
Indicates the user preference as to when schemas should be generated and saved.

Possible Values
 Never, OnUse, OnStart, OnCreate

TIBCO® Data Virtualization Elasticsearch Adapter Guide

131 | Elasticsearch Adapter

Data Type
string

Default Value
"Never"

Remarks
This property outputs schemas to .rsd files in the path specified by Location.

Available settings are the following:

 l Never: A schema file will never be generated.

 l OnUse: A schema file will be generated the first time a table is referenced, provided
the schema file for the table does not already exist.

 l OnStart: A schema file will be generated at connection time for any tables that do
not currently have a schema file.

 l OnCreate: A schema file will be generated by when running a CREATE TABLE SQL
query.

 Note that if you want to regenerate a file, you will first need to delete it.

Generate Schemas with SQL
When you set GenerateSchemaFiles to OnUse, the adapter generates schemas as you
execute SELECT queries. Schemas are generated for each table referenced in the query.

When you set GenerateSchemaFiles to OnCreate, schemas are only generated when a
CREATE TABLE query is executed.

Generate Schemas on Connection
Another way to use this property is to obtain schemas for every table in your database
when you connect. To do so, set GenerateSchemaFiles to OnStart and connect.

MaxResults

TIBCO® Data Virtualization Elasticsearch Adapter Guide

132 | Elasticsearch Adapter

The maximum number of total results to return from Elasticsearch when using the default
Search API.

Data Type
string

Default Value
"10000"

Remarks
This property corresponds to the Elasticsearch index.max_result_window index setting.
Thus the default value is 10000, which is Elasticsearch's default limit.

This value is not applicable when using the Scroll API. Set ScrollDuration to use this API.

When a LIMIT is specified in a query, the LIMIT will be taken into account provided it is less
than MaxResults. Otherwise the number of results returned will be limited to the
MaxResults value.

If you receive an error stating that the result window is too large, this is caused by the
MaxResults value being greater than the Elasticsearch index.max_result_window index
setting. You can either change the MaxResults value to match the index.max_result_window
 index setting or use the Scroll API by setting ScrollDuration.

MaxRows
Limits the number of rows returned when no aggregation or GROUP BY is used in the
query. This takes precedence over LIMIT clauses.

Data Type
int

Default Value
-1

TIBCO® Data Virtualization Elasticsearch Adapter Guide

133 | Elasticsearch Adapter

Remarks
Limits the number of rows returned when no aggregation or GROUP BY is used in the
query. This takes precedence over LIMIT clauses.

Other
These hidden properties are used only in specific use cases.

Data Type
string

Default Value
""

Remarks
The properties listed below are available for specific use cases. Normal driver use cases
and functionality should not require these properties.

Specify multiple properties in a semicolon-separated list.

Integration and Formatting

DefaultColumnSize Sets the default length of string fields when the data source
does not provide column length in the metadata. The
default value is 2000.

ConvertDateTimeToGMT Determines whether to convert date-time values to GMT, instead
of the local time of the machine.

RecordToFile=filename Records the underlying socket data transfer to the specified file.

PageSize

TIBCO® Data Virtualization Elasticsearch Adapter Guide

134 | Elasticsearch Adapter

The number of results to return per request from Elasticsearch.

Data Type
string

Default Value
"10000"

Remarks
The PageSize can control the number of results received per request from Elasticsearch on
a given query.

The default value is 10000, which is Elasticsearch's default limit (based on the Elasticsearch
 index.max_result_window index setting).

QueryPassthrough
This option allows you to pass exact queries to Elasticsearch.

Data Type
bool

Default Value
false

Remarks
Setting this property to True enables the adapter to pass an Elasticsearch query as-is to
Elasticsearch. There are two options for submitting as-is queries to Elasticsearch: SQL and
Search DSL.

SQL API

TIBCO® Data Virtualization Elasticsearch Adapter Guide

135 | Elasticsearch Adapter

Elasticsearch version 6.3 and above supports a SQL API endpoint. When set to true, this
option allows you to pass SQL queries directly to the Elasticsearch SQL API. Columns will
be identified based on the metadata returned in the response.

Supported SQL syntax and commands can be found in the Elasticsearch documentation.

Note: SQL functionality is limited to what is supported by Elasticsearch.

Search DSL

Alternatively, queries can be submitted using Elasticsearch's Search DSL language, which
includes Query DSL. This functionality is available in all versions of Elasticsearch.

The supported query syntax is JSON using the query passthrough syntax described below.

The JSON Passthrough Query Syntax supports the following elements:

Element Name Function

index The Elasticsearch index (or schema) to query. This is a JSON element that
takes a string value.

type The Elasticsearch type (or table) to query within index. This is a JSON
element that takes a string value.

docid The Id of the document to query within index.type. This is a JSON
element that takes a string value.

apiendpoint The Elasticsearch API Endpoint to query. Default value is '_search'. This is
a JSON element that takes a string value.

requestdata The raw Elasticsearch Search DSL that will be sent to Elasticsearch as is.
The value is a JSON object that maps directly to the format required by
Elasticsearch.

The index, type, docid, and apiendpoint are used to generate the URL where the
requestdata will be sent. The URL is generated using the following format: [Server]:[Port]/
[index]/[type]/[docid]/[apiendpoint]. If any of the JSON passthrough elements are not
specified, they will not be added to the URL.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

136 | Elasticsearch Adapter

Below is an example of a passthrough query. This example will retrieve the first 10
documents from megacorp.employee that contain a last_name of 'smith'. The results will
be ordered by first_name in descending order.

{
 "index": "megacorp",
 "type": "employee",
 "requestdata":
 {
 "from": 0,
 "size": 10,
 "query": {"bool":{"must":{"term":{"last_name":"smith"}}}},
 "sort": {"first_name":{"order":"desc"}}
 }
 }

When using QueryPassthrough queries, the metadata is determined by the data returned in
the response. RowScanDepth identifies the depth of the records that will be scanned to
determine the metadata (columns and types). Since the metadata is based on the response
data, passthrough queries may display different metadata than a similar query performed
using the SQL syntax (where the metadata is retrieved directly from Elasticsearch).

Readonly
You can use this property to enforce read-only access to Elasticsearch from the provider.

Data Type
bool

Default Value
false

Remarks
If this property is set to true, the adapter will allow only SELECT queries. INSERT, UPDATE,
DELETE, and stored procedure queries will cause an error to be thrown.

RowScanDepth

TIBCO® Data Virtualization Elasticsearch Adapter Guide

137 | Elasticsearch Adapter

The maximum number of rows to scan when generating table metadata. Set this property
to gain more control over how the provider detects arrays.

Data Type
string

Default Value
"100"

Remarks
This property is used when generating table metadata and specifically is used to identify
arrays within the data. Elasticsearch allows any field to be an array and does not identify
which fields are arrays in the mapping data. Thus RowScanDepth rows will be queried and
scanned to identify if any of the fields contain arrays.

When QueryPassthrough is set to True, the columns in a table must be determined by
scanning the data returned in the request. This value determines the maximum number of
rows that will be scanned to determine the table metadata. The default value is 100.

Setting a high value may decrease performance. Setting a low value may prevent the data
type from being determined properly, especially when there is null data or when the
scanned documents are very heterogenous.

ScrollDuration
Specifies the time unit to use when retrieving results via the Scroll API.

Data Type
string

Default Value
"1m"

TIBCO® Data Virtualization Elasticsearch Adapter Guide

138 | Elasticsearch Adapter

Remarks
When a nonzero value is specified, the Scroll API will be used.

The time unit specified will be sent in each request made to Elasticsearch to specify how
long the server should keep the search context alive. The value specified only needs to be
long enough to process the previous batch of results (not to process all the data). This is
because the ScrollDuration value will be sent in each request, which will extend the context
time.

Once all the results have been retrieved, the search context will be cleared.

The format for this value is: [integer][time unit]. For example: 1m = 1 minute.

Setting this property to '0' will cause the default Search API to be used. In such a case, the
maximum number of results that can be returned are equal to MaxResults.

Supported Time Units:

Value Description

y Year

M Month

w Week

d Day

h Hour

m Minute

s Second

ms Milli-second

Timeout
The value in seconds until the timeout error is thrown, canceling the operation.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

139 | Elasticsearch Adapter

Data Type
int

Default Value
60

Remarks
If Timeout = 0, operations do not time out. The operations run until they complete
successfully or until they encounter an error condition.

If Timeout expires and the operation is not yet complete, the adapter throws an exception.

UseFullyQualifiedNestedTableName
Set this to true to set the generated table name as the complete source path when
flattening nested documents using Relational DataModel .

Data Type
bool

Default Value
false

Remarks
Set this to true to set the generated table name as the complete source path when
flattening nested documents using Relational DataModel.

UserDefinedViews
A filepath pointing to the JSON configuration file containing your custom views.

TIBCO® Data Virtualization Elasticsearch Adapter Guide

140 | Elasticsearch Adapter

Data Type
string

Default Value
""

Remarks
User Defined Views are defined in a JSON-formatted configuration file called
UserDefinedViews.json. The adapter automatically detects the views specified in this file.

You can also have multiple view definitions and control them using the UserDefinedViews
connection property. When you use this property, only the specified views are seen by the
adapter.

This User Defined View configuration file is formatted as follows:

 l Each root element defines the name of a view.

 l Each root element contains a child element, called query, which contains the custom
SQL query for the view.

For example:

{
 "MyView": {
 "query": "SELECT * FROM [CData].[Elasticsearch].Employee WHERE
MyColumn = 'value'"
 },
 "MyView2": {
 "query": "SELECT * FROM MyTable WHERE Id IN (1,2,3)"
 }
 }

 Use the UserDefinedViews connection property to specify the location of your JSON
configuration file. For example:

"UserDefinedViews",
"C:\\Users\\yourusername\\Desktop\\tmp\\UserDefinedViews.json"

TIBCO® Data Virtualization Elasticsearch Adapter Guide

141 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services
For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the Product Documentation website,
mainly in HTML and PDF formats.

The Product Documentation website is updated frequently and is more current than any
other documentation included with the product.

Product-Specific Documentation

The following documentation for this product is available on the TIBCO® Data Virtualization
page.

Users

TDV Getting Started Guide

TDV User Guide

TDV Web UI User Guide

TDV Client Interfaces Guide

TDV Tutorial Guide

TDV Northbay Example

Administration

TDV Installation and Upgrade Guide

TDV Administration Guide

TDV Active Cluster Guide

TDV Security Features Guide

Data Sources

TDV Adapter Guides

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-data-virtualization

TIBCO® Data Virtualization Elasticsearch Adapter Guide

142 | TIBCO Documentation and Support Services

TDV Data Source Toolkit Guide (Formerly Extensibility Guide)

References

TDV Reference Guide

TDV Application Programming Interface Guide

Other

TDV Business Directory Guide

TDV Discovery Guide

TDV and Business Directory Release Notes - Read the release notes for a list of
new and changed features. This document also contains lists of known issues
and closed issues for this release.

Release Version Support

TDV 8.5 and 8.8 are designated as Long Term Support (LTS) versions. Some release
versions of TIBCO® Data Virtualization products are selected to be long-term support (LTS)
versions. Defect corrections will typically be delivered in a new release version and as
hotfixes or service packs to one or more LTS versions. See also Long Term Support.

How to Contact Support for TIBCO Products

You can contact the Support team in the following ways:

 l To access the Support Knowledge Base and getting personalized content about
products you are interested in, visit our product Support website.

 l To create a Support case, you must have a valid maintenance or support contract
with a Cloud Software Group entity. You also need a username and password to log
in to the our product Support website. If you do not have a username, you can
request one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature

https://docs.tibco.com/pub/tdv/general/LTS/tdv_LTS_releases.htm
https://support.tibco.com/s/
https://support.tibco.com/s/

TIBCO® Data Virtualization Elasticsearch Adapter Guide

143 | TIBCO Documentation and Support Services

requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

https://ideas.tibco.com/
https://community.tibco.com/

TIBCO® Data Virtualization Elasticsearch Adapter Guide

144 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

TIBCO, TIBCO logo, TIBCO O logo, ActiveSpaces, Enterprise Messaging Service, Spotfire, TERR, S-
PLUS, and S+ are either registered trademarks or trademarks of TIBCO Software Inc. in the United
States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle
and/or its affiliates.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file

https://www.cloud.com/legal
https://scripts.sil.org/OFL

TIBCO® Data Virtualization Elasticsearch Adapter Guide

145 | Legal and Third-Party Notices

for the availability of a specific version of Cloud SG software on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.tibco.com/patents.

Copyright © 2002-2023. Cloud Software Group, Inc. All Rights Reserved.

https://www.tibco.com/patents

	Contents
	Elasticsearch Adapter
	Getting Started
	Basic Tab
	Obtain AWS Keys
	Standard Authentication
	Securing Elasticsearch Connections
	Root Credentials
	Temporary Credentials
	AWS IAM Roles
	Kerberos
	API Key

	Logging
	Configure Logging for the Elasticsearch Adapter

	Using Kerberos
	MIT Kerberos Credential Cache File
	Keytab File
	User and Password

	Fine-Tuning Data Access
	Querying Multiple Indices
	Performance
	Changelog

	Searching with SQL
	Schema Mapping
	Parent-Child Relationships
	Raw Data
	Automatic Schema Discovery
	Detecting Arrays
	Detecting Columns
	Example Data Set

	Parsing Hierarchical Data
	Flattened Documents Model
	Query
	Results

	Top-Level Document Model
	Query
	Results

	Relational Model
	Query
	Results

	JSON Functions
	Query Mapping
	Equals and Not Equals
	IN and NOT IN
	LIKE and NOT LIKE

	Custom Schema Definitions
	Custom Schema Example

	Advanced Features
	User Defined Views
	Create a View
	Alter a View
	Drop a View

	SSL Configuration
	Firewall and Proxy
	HTTP Proxies
	Other Proxies

	Query Processing
	Logging

	SQL Compliance
	SELECT Statements
	Aggregate Functions
	COUNT
	COUNT(DISTINCT)
	AVG
	MIN
	MAX
	SUM

	Predicate Functions

	ORDER BY Functions
	INSERT Statements
	UPDATE Statements
	UPSERT Statements
	DELETE Statements
	EXECUTE Statements
	PIVOT and UNPIVOT
	PIVOT
	PIVOT Synax
	UNPIVOT
	UNPIVOT Sytax

	Data Model
	Detecting Arrays
	Detecting Columns
	Example Data Set
	Stored Procedures
	CreateIndex
	Input
	Result Set Columns

	CreateSchema
	Input
	Result Set Columns

	ModifyIndexAliases
	Input
	Result Set Columns

	Data Type Mapping
	Connection String Options
	Authentication
	AuthScheme
	Possible Values
	Data Type
	Default Value
	Remarks

	User
	Data Type
	Default Value
	Remarks

	Password
	Data Type
	Default Value
	Remarks

	Server
	Data Type
	Default Value
	Remarks

	Port
	Data Type
	Default Value
	Remarks

	APIKey
	Data Type
	Default Value
	Remarks

	APIKeyId
	Data Type
	Default Value
	Remarks

	Connection
	DataModel
	Possible Values
	Data Type
	Default Value
	Remarks
	Selecting a Data Modeling Strategy

	UseLakeFormation
	Data Type
	Default Value
	Remarks

	AWS Authentication
	AWSAccessKey
	Data Type
	Default Value
	Remarks

	AWSSecretKey
	Data Type
	Default Value
	Remarks

	AWSRoleARN
	Data Type
	Default Value
	Remarks

	AWSRegion
	Possible Values
	Data Type
	Default Value
	Remarks

	AWSSessionToken
	Data Type
	Default Value
	Remarks

	TemporaryTokenDuration
	Data Type
	Default Value
	Remarks

	AWSExternalId
	Data Type
	Default Value
	Remarks

	Kerberos
	KerberosKDC
	Data Type
	Default Value
	Remarks

	KerberosRealm
	Data Type
	Default Value
	Remarks

	KerberosSPN
	Data Type
	Default Value
	Remarks

	KerberosKeytabFile
	Data Type
	Default Value
	Remarks

	KerberosServiceRealm
	Data Type
	Default Value
	Remarks

	KerberosServiceKDC
	Data Type
	Default Value
	Remarks

	KerberosTicketCache
	Data Type
	Default Value
	Remarks

	SSL
	SSLClientCert
	Data Type
	Default Value
	Remarks

	SSLClientCertType
	Possible Values
	Data Type
	Default Value
	Remarks

	SSLClientCertPassword
	Data Type
	Default Value
	Remarks

	SSLClientCertSubject
	Data Type
	Default Value
	Remarks

	SSLServerCert
	Data Type
	Default Value
	Remarks

	Firewall
	FirewallType
	Possible Values
	Data Type
	Default Value
	Remarks

	FirewallServer
	Data Type
	Default Value
	Remarks

	FirewallPort
	Data Type
	Default Value
	Remarks

	FirewallUser
	Data Type
	Default Value
	Remarks

	FirewallPassword
	Data Type
	Default Value
	Remarks

	Proxy
	ProxyAutoDetect
	Data Type
	Default Value
	Remarks

	ProxyServer
	Data Type
	Default Value
	Remarks

	ProxyPort
	Data Type
	Default Value
	Remarks

	ProxyAuthScheme
	Possible Values
	Data Type
	Default Value
	Remarks

	ProxyUser
	Data Type
	Default Value
	Remarks

	ProxyPassword
	Data Type
	Default Value
	Remarks

	ProxySSLType
	Possible Values
	Data Type
	Default Value
	Remarks

	ProxyExceptions
	Data Type
	Default Value
	Remarks

	Logging
	LogModules
	Data Type
	Default Value
	Remarks

	Schema
	Location
	Data Type
	Default Value
	Remarks

	FlattenObjects
	Data Type
	Default Value
	Remarks

	FlattenArrays
	Data Type
	Default Value
	Remarks

	Miscellaneous
	ClientSideEvaluation
	Data Type
	Default Value
	Remarks

	GenerateSchemaFiles
	Possible Values
	Data Type
	Default Value
	Remarks
	Generate Schemas with SQL
	Generate Schemas on Connection

	MaxResults
	Data Type
	Default Value
	Remarks

	MaxRows
	Data Type
	Default Value
	Remarks

	Other
	Data Type
	Default Value
	Remarks
	Integration and Formatting

	PageSize
	Data Type
	Default Value
	Remarks

	QueryPassthrough
	Data Type
	Default Value
	Remarks

	Readonly
	Data Type
	Default Value
	Remarks

	RowScanDepth
	Data Type
	Default Value
	Remarks

	ScrollDuration
	Data Type
	Default Value
	Remarks

	Timeout
	Data Type
	Default Value
	Remarks

	UseFullyQualifiedNestedTableName
	Data Type
	Default Value
	Remarks

	UserDefinedViews
	Data Type
	Default Value
	Remarks

	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

