
TIBCO® Enterprise Administrator
Developer's Guide
Software Release 2.2.0
March 2015

Two-Second Advantage®

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY
(OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND
CONDITIONS OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED
SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE
CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD
OR INSTALLATION OF THE SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE)
OR IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER
LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE
SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND
YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE
BOUND BY THE SAME.

This document contains confidential information that is subject to U.S. and international copyright laws
and treaties. No part of this document may be reproduced in any form without the written
authorization of TIBCO Software Inc.

TIBCO and Two-Second Advantage are either registered trademarks or trademarks of TIBCO Software
Inc. in the United States and/or other countries.

Enterprise Java Beans (EJB), Java Platform Enterprise Edition (Java EE), Java 2 Platform Enterprise
Edition (J2EE), and all Java-based trademarks and logos are trademarks or registered trademarks of
Oracle Corporation in the U.S. and other countries.

All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT
ALL OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED
AT THE SAME TIME. SEE THE README FILE FOR THE AVAILABILITY OF THIS SOFTWARE
VERSION ON A SPECIFIC OPERATING SYSTEM PLATFORM.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO
SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE,
INCLUDING BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

Copyright © 1996-2015 TIBCO Software Inc. ALL RIGHTS RESERVED.

TIBCO Software Inc. Confidential Information

2

TIBCO® Enterprise Administrator Developer's Guide

Contents

Figures . 6

TIBCO Documentation and Support Services .7

TIBCO® Enterprise Administrator Concepts . 8

TIBCO Enterprise Administrator SDK Architecture . 8

Components of TIBCO Enterprise Administrator . 9

Running the HelloWorld Sample .11

The HelloWorld Sample: Lessons for Agent Developers . 11

Enabling Developer Mode .14

Reloading an Agent during Iterative Development . 14

Developer Documentation . 15

Viewing the Structural Overview Diagram of an Agent . 15

Exposing the Agent API to Python Scripts . 17

Setting SSL Properties on the Agent .18

SSL Properties . 19

Support for IPv6 Addresses in TEA .26

Setting up TIBCO Enterprise Administrator Agent Library .27

Running TIBCO Enterprise Administrator Agent Library in the Server mode . 27

Running TIBCO Enterprise Administrator Agent Library in the Servlet mode . 28

Agent ID . 29

Configuring TIBCO Enterprise Administrator Agent for Auto-Registration . 30

Auto-Registering in the Server Mode .30

Auto-Registering in the Servlet Mode . 30

Unregistering an Agent . 31

Developing an Agent . 32

Managed Objects . 33

Aspects of Managed Objects .34

Configuration .34

States .34

Operations . 34

References .34

Concept Types of Managed Objects . 36

Product (Top Level Object) . 36

Application . 36

Process . 36

Access Point . 37

Resource . 37

Group . 37

Support for POJOs . 38

3

TIBCO® Enterprise Administrator Developer's Guide

Limitations of POJO . 38

Analyzing a System of Managed Objects .39

Example Analysis of Managed Objects for Tomcat . 40

Sharing Data and Resources (TeaObjects) Between Agents . 42

How to Share a TeaObject .42

How to Get Shared TeaObjects . 42

How to Get Shared TeaObject Along with All the References . 43

How to Unshare a TeaObject . 45

Object Type Definition: Overview .46

Interface Style . 47

Defining an Object Type in Interface Style .47

Defining a Singleton Object Type in Interface Style . 48

Defining a Top-Level Object Type in Interface Style .49

Access to Instances .50

Provider Interface . 51

Defining References for Object Types with Interfaces . 51

Annotation Style . 53

Defining an Object Type in Annotation Style .53

Defining Multiple Object Types on One Class . 54

Defining References for Object Types with Annotations . 55

Aspects for Object Types—Interfaces and Annotations . 56

Modeling State in Interface Style .56

Modeling Configuration in Interface Style .57

Modeling Members in Interface Style .57

Modeling State in Annotation Style .58

Modeling Configuration in Annotation Style .58

Modeling Members in Annotation Style .59

Defining Operations . 60

Adding Developer Notes .62

Specifying the Availability of TeaOperations in TIBCO Enterprise Administrator Clients .63

Passing Data Streams to Operation Methods . 64

Customizing Parameters of an Operation in the Shell Interface . 64

Getting the User Name of the Logged In User . 65

Object ID . 66

Solution . 67

Permissions . 68

Roles . 69

User Interface Customization . 71

Selecting a Specific Version of the TIBCO Enterprise Administrator UI Library . 74

Linking Across Two Products . 75

4

TIBCO® Enterprise Administrator Developer's Guide

Reference to Customize the User Interface . 77

Services . 77

teaLocation . 77

teaObjectService . 79

teaAuthService . 81

teaScopeDecorator .82

Directives . 84

teaPanel .84

teaMasthead .85

teaAttribute . 86

teaLongAttribute . 86

teaConstraint . 86

Types . 87

TeaObject . 87

TeaObjectType . 87

TeaOperation . 88

TeaParam . 88

TeaReference . 89

Error Handling in Agents and Custom User Interfaces . 90

Coding Exceptions in Agent Operations . 90

Exceptions and Implicit HTTP Status Codes . 91

Extracting Error Information in the GUI . 91

Receive Agent Registration Notifications . 92

Notify Agents about Session Timeouts . 93

TIBCO Enterprise Administrator Server Services . 95

LDAP Realm Configurations . 95

Retrieve All LDAP Realm Configurations . 95

Retrieve LDAP Configurations by Providing the Realm Name . 96

Notify Changes Related to LDAP Realm Configurations .97

Upgrading Agents and Agent Coexistance . 99

Troubleshooting . 100

API Reference Pages . 101

5

TIBCO® Enterprise Administrator Developer's Guide

Figures

Relationships among Managed Objects in Tomcat . 41

Access to Instances . 50

6

TIBCO® Enterprise Administrator Developer's Guide

TIBCO Documentation and Support Services

All TIBCO documentation is available on the TIBCO Documentation site, which can be found here:

https://docs.tibco.com

Product-Specific Documentation

Documentation for TIBCO products is not bundled with the software. Instead, it is available on the
TIBCO Documentation site. To directly access documentation for this product, double-click one of the
following file depending upon the variant of TIBCO Enterprise Administrator you are using:

For TIBCO Enterprise Administrator SDK use: TIBCO_HOME\release_notes\TIB_tea-
sdk_<version>_docinfo.html.

For TIBCO Enterprise Administrator use:TIBCO_HOME\release_notes
\TIB_tea_<version>_docinfo.html

The following documents can be found in the TIBCO Documentation Library for TIBCO® Enterprise
Administrator:

● TIBCO® Enterprise Administrator Release Notes
● TIBCO® Enterprise Administrator Installation
● TIBCO® Enterprise Administrator User's Guide
● TIBCO® Enterprise Administrator Developer's Guide
● TIBCO® Enterprise Administrator Agent for TIBCO Enterprise Message Service™ Guide

● TIBCO® Enterprise Administrator Agent for TIBCO® Security Server Guide

How to Contact TIBCO Support

For comments or problems with this manual or the software it addresses, contact TIBCO Support as
follows:

● For an overview of TIBCO Support, and information about getting started with TIBCO Support,
visit this site:

http://www.tibco.com/services/support

● If you already have a valid maintenance or support contract, visit this site:

https://support.tibco.com

Entry to this site requires a user name and password. If you do not have a user name, you can
request one.

How to Join TIBCOmmunity

TIBCOmmunity is an online destination for TIBCO customers, partners, and resident experts. It is a
place to share and access the collective experience of the TIBCO community. TIBCOmmunity offers
forums, blogs, and access to a variety of resources. To register, go to:

https://www.tibcommunity.com

7

TIBCO® Enterprise Administrator Developer's Guide

https://docs.tibco.com
http://www.tibco.com/services/support
https://support.tibco.com
https://www.tibcommunity.com

TIBCO® Enterprise Administrator Concepts

TIBCO® Enterprise Administrator provides a centralized administrative interface to manage and
monitor multiple TIBCO products deployed in an enterprise.

You can perform common administrative tasks such as authenticating and configuring runtime artifacts
across all TIBCO products within one administrative interface. You can also manage products that do
not have a complete administrative interface, providing you a unified and simplified administrative
experience.

The following are the salient features of TIBCO Enterprise Administrator:

● Centralized Administration: TIBCO Enterprise Administrator provides a single-point access to
multiple products deployed across an enterprise. You can easily manage and monitor runtime
artifacts.

● Simple to use: TIBCO Enterprise Administrator is simple to install, develop, use, and maintain.
● Shared Services Model: TIBCO Enterprise Administrator shares common administrative concepts

across all products thereby promoting a consistent and reusable shared services model.
● Pluggable and Extensible: As your enterprise evolves, you can add new products to the TIBCO

Enterprise Administrator.
● Rich set of API: With TIBCO Enterprise Administrator Agent Library, organizations can develop

custom TIBCO Enterprise Administrator agents to manage TIBCO and non-TIBCO products and
applications. TIBCO products such as TIBCO ActiveMatrix BusinessWorks™ and TIBCO® MDM
provide agents for TIBCO Enterprise Administrator. If you have installed the TIBCO Enterprise
Administrator SDK variant, you can develop your own agents to expose your product on TIBCO
Enterprise Administrator. The SDK variant comes with a set of APIs that is both declarative and
extensible. You can develop your own agents and decide what part of your product needs to be
rendered on TIBCO Enterprise Administrator.

● Support for Interactive Shell: TIBCO Enterprise Administrator provides a command-line utility
called TIBCO Enterprise Administrator Shell. You can use the shell to perform almost all the tasks
offered by the web-based GUI.

TIBCO Enterprise Administrator SDK Architecture
TIBCO Enterprise Administrator SDK consists of two main components—the TIBCO Enterprise
Administrator server and the agent library. An agent is a program that mediates between the TIBCO
Enterprise Administrator server and a specific product. You can use the agent library to develop agents
for any product.

The TIBCO Enterprise Administrator server has two distinct user interfaces—a web-based GUI and a
command line shell interface.

To manage a product using TIBCO Enterprise Administrator, the corresponding agent must be
registered with the TIBCO Enterprise Administrator server.

To monitor and manage your product with TIBCO Enterprise Administrator

1. Develop an agent.
2. Compile and start the agent.
3. Register the agent with the TIBCO Enterprise Administrator server.
You can develop agents for any product using the agent library. The TIBCO Enterprise Administrator
SDK includes sample agents that demonstrate aspects of agent development.

Develop an agent

An agent represents your product in TIBCO Enterprise Administrator. An agent identifies the assets of
the product that need to be rendered on the TIBCO Enterprise Administrator. Use the agent library to

8

TIBCO® Enterprise Administrator Developer's Guide

model the set of assets available in your product. The agent library provides you with five basic
concepts to represent your product on TIBCO Enterprise Administrator. The concepts are: Process,
Application, Resource, Access_Point, and Top_Level. For example, in the ActiveMatrix world, a node is
an operating system Process, the DAA file is an Application, an environment is a Group, an enterprise
is a Top_Level concept, and a SOAP endpoint is the Access_Point. In this manner, assets available in
your product can be modelled into a concept provided by the agent library.

Every asset can have attributes, actions, and relationships associated with it. For example, some
attributes of an ActiveMatrix node are the name of a node, the default state, and the location of the
node. Creating a node, starting or stopping a node are the actions that can be performed on the node.
The correlation that the node has with its environment is the relationship it shares with the environment.
As an agent developer, you must start by identifying the assets that need to be modelled using the
agent library. You then must define the attributes, actions, and relationships of each asset.

Compile and Start the Agent

After developing the agent, compile and start the agent by running the appropriate ant scripts.

Register an Agent with the Server

After starting the agent, register the agent with the TIBCO Enterprise Administrator server.

Components of TIBCO Enterprise Administrator
The TIBCO Enterprise Administrator comprises a server, an agent corresponding to a product, a server
UI, a shell interface, and python scripts.

The TIBCO Enterprise Administrator has the following components:

The Server
The server is the equivalent of a web server. The server is hosted within a web server and caters to the
HTTP requests coming from the browser. The server manages the communication between the
browser and agents. The server interacts with the agent to get data about the products registered on
the TIBCO Enterprise Administrator. The server is responsible for:

● Collecting data on all the products registered with it

● Maintaining a cache of the data; thereby promoting faster searches

● Hosting all the TIBCO Enterprise Administrator server views

● Responding to auto-registration requests from agents

● Providing details about the machines on which the products are running

● Providing user management features such as granting and revoking a user's permissions

The Agent
An agent is a bridge between the TIBCO Enterprise Administrator server and a product. When an
agent is registered with the TIBCO Enterprise Administrator, it discovers the product that must be
exposed to the administrator. The agent creates a graph of objects specific to the product that needs to
be rendered on the TIBCO Enterprise Administrator server UI. The agent interacts with the server
using the REST API. TIBCO Enterprise Administrator agents can run in any of the following ways:
standalone, embedded, or hosted. TIBCO Enterprise Administrator comes with an extensible API that
helps you develop your own agents for your products. An agent provides the following basic
concepts:

● Group: is a container of artifacts. For example, a cluster, domain, and ActiveMatrix environment.

● Process: is any operating system process. For example, a BusinessWorks engine, and ActiveMatrix
node.

9

TIBCO® Enterprise Administrator Developer's Guide

● Resource: is a shareable configuration or artifact. For example, a JMS connection, or a port number.

● Application: is any deployable archive. For example, a WAR and DAA.

● Access_Point: is a means of interacting with an application. For example, an ActiveMatrix service
endpoint, or an EMS queue.

● Top_level: A special type that represents the root-level object in the tree. There can be only one
such instance of the object per agent. This is the only object that cannot have a configuration or
state. Note that methods that access objects of this type do not have the key argument that is
otherwise required by other concepts.

Web UI
TIBCO Enterprise Administrator provides a default UI to manage and monitor products. You can
customize labels and icons on the UI to match the object types of your product. You can add more
views to suit your product requirements.

Shell
TIBCO Enterprise Administrator provides a command-line utility called the TIBCO Enterprise
Administrator shell. It is a remote shell based on the SSH protocol. The Shell is accessible using any
terminal program such as Putty. The scripting language is similar to bash from UNIX, but has
important differences. You can use the Shell to perform almost all the tasks offered by the server UI.

Python Scripting
You can use Python scripting to perform any activity you performed using the Web UI. Python
scripting is especially useful when you have to repeat a task for multiple users or use control
structures to work through some conditions in your environment. Although you can use the Shell
utility to use the command-line UI, the Shell UI does not support conditional statements and control
structures. Python scripting proves to be useful in such cases.

10

TIBCO® Enterprise Administrator Developer's Guide

Running the HelloWorld Sample

You can begin to explore TIBCO Enterprise Administrator SDK by running the Hello world sample.

Prerequisites

Ensure that

● JRE 1.7 (or later) and Apache Ant 1.7 (or later) are installed
● The jar files that implement the TEA agent library are installed
● TIBCO Enterprise Administrator server is running, and your browser can connect to it

Procedure

1. In a command shell, navigate to <TIBCO_HOME>/tea/tea_version/samples/helloworld.

2. Run ant.
The default ant target compiles and runs the sample program.

3. Register the HelloWorld agent with the TIBCO Enterprise Administrator server.
a) In a web browser, navigate to the server home page.
b) In the Settings pane, click the Agents icon.
c) Click the Register new button.
d) Enter a name for the agent; for example, HelloWorld Agent.
e) Enter the URL where the agent accepts requests from the TIBCO Enterprise Administrator

server: http://localhost:1234/helloworldagent
f) Enter a description string for the sample agent; for example, My sample HelloWorld agent.
g) Click the Register button to complete registration.

4. Test the HelloWorld agent.
a) In the TIBCO Enterprise Administrator server GUI, navigate to the home page.
b) In the Products pane, click the HelloWorldTopLevelType icon.

This action navigates to the HelloWorld product page.
c) Click the hw button, which invokes the agent's only operation.
d) In the dialog, select Hello World Agent as the operation target.
e) Enter a string in the greetings field.
f) Click the hw button to complete the operation.

The agent outputs a greeting in the alert box.
g) Click the Dismiss button to close the alert box.

What to do next

To learn more about the sample code, see The HelloWorld Sample: Lessons for Agent Developers.

The HelloWorld Sample: Lessons for Agent Developers
The HelloWorld sample is a minimum viable agent program. It illustrates a lower bound on code
complexity, API support and operating environment. Careful examination of its code can yield
valuable information for novice agent developers.

The HelloWorld sample is a stand-alone agent process, which runs in a Jetty server.

We have coded the sample's top-level object in the interface style. That is, we define the class
HelloWorldAgent to implement the TopLevelTeaObject interface. (For background information, see
Object Type Definition: Overview and Interface Style.)

11

TIBCO® Enterprise Administrator Developer's Guide

We begin by defining the five required methods of that interface—getName, getDescription,
getMembers, getTypeName, getTypeDescription. For the purposes of this sample, all five methods do
the minimum work—getMembers returns an empty list, while the others each return a constant string.
public class HelloWorldAgent implements TopLevelTeaObject{
 private static final String NAME = "hw";
 private static final String DESC = "Hello World";

 @Override
 public String getDescription() {
 return DESC;
 }

 @Override
 public String getName() {
 return NAME;
 }

 @Override
 public Collection<BaseTeaObject> getMembers() {
 return Collections.EMPTY_LIST;
 }

 @Override
 public String getTypeDescription() {
 return "Top level type for HelloWorld";
 }

 @Override
 public String getTypeName() {
 return "HelloWorldTopLevelType";
 }

We also define a method named helloworld, and annotate it as a @TeaOperation. This method
implements the one operation that this agent offers to users. If you ignore the annotations, you can see
that the method itself is simple; it concatenates two strings (one of which is the method's argument) and
returns the resulting string. The @TeaOperation annotation makes this method available in the TIBCO
Enterprise Administrator server as an operation of the agent. Java introspection of the annotation gives
the server the operation's name and description. The @TeaParam annotation tells the server to prompt
the user for the operation's argument.
 @TeaOperation(name = NAME, description = "Send greetings")
 public String helloworld(
 @TeaParam(name = "greetings", description = "Greetings parameter")
final String greetings) throws IOException {
 return "Hello " + greetings;
 }

The main method initializes the agent process:

 public static void main(final String[] args) throws Exception {
 TeaAgentServer server = new TeaAgentServer("HelloWorldAgent", "1.0", "Hello
World Agent", 1234, "/helloworldagent", true);
 server.registerInstance(new HelloWorldAgent());
 server.start();
 }

1. It instantiates a TeaAgentServer—an object that wraps a Jetty instance. This instance, server,
represents the dedicated Jetty server within which the agent runs.

(Notice that we must distinguish between two distinct servers—the Jetty web server instance, and
the TIBCO Enterprise Administrator server.)

The fourth and fifth arguments to the constructor—port and contextPath—together specify the
URL where agent listens for requests from the TIBCO Enterprise Administrator server.

2. It creates a singleton instance of the agent's top-level object, HelloWorldAgent.

12

TIBCO® Enterprise Administrator Developer's Guide

3. server.registerInstance introspects that instance, gathering metadata from the annotations
(@TeaOperation and @TeaParam, above).

The TIBCO Enterprise Administrator server later requests this metadata from the Jetty server, and
uses it to implement its user interface for the agent.

4. server.start starts the Jetty server and deploys the agent code within it.

13

TIBCO® Enterprise Administrator Developer's Guide

Enabling Developer Mode

Developer mode offers tools for agent and GUI developers. To use these tools, you must enable
developer mode in the server's configuration file.

Procedure

1. Configure developer mode.
a) Open the file <TIBCO_CONFIG_HOME>\tibco\cfgmgmt\tea\conf\tea.conf in a text editor.
b) Enable the property tea.dev.developer-mode.

tea.dev.developer-mode=true

c) Save the file.

2. Restart the TIBCO Enterprise Administrator server (to use the modified configuration).

Reloading an Agent during Iterative Development
When agent metadata and static resources change during the development cycle, you can reload the
agent to the server.
When you register an agent, the server requests and caches the agent's metadata and static resources.
This information is likely to change during iterative development. Instead of unregistering the agent
and then re-registering it, it is faster and more convenient to reload the agent, which caches the new
information in the server.

Prerequisites

Development mode must be enabled for the server.

The agent must already be registered. The server must have connected to the agent at least once, before
modification.

Four metadata items are integral to the agent. Reloading does not update these items. (If you change
any of these items, then you must unregister and re-register the agent.)

● type name (For stand-alone agents, this is the name argument to the TeaAgentServer constructor. For
servlet agents, this is the agentName argument to the TeaAgentServlet.autoRegisterAgent method.)

● version (For stand-alone agents, this is the version argument to the TeaAgentServer constructor. For
servlet agents, this is an init-param in the agent's web.xml file.

● agent ID (This is a unique ID, which the agent code may set.)
● product ID (This is the type name of the top level object.)

Reloading does not update role and permission metadata. (If you change roles or permissions, then you
must unregister and re-register the agent.)

Procedure

1. Restart the agent.
That is, after modifying the agent code, stop the old agent, and start the modified agent.

2. Navigate to the Agent Management page of the server GUI.

3. Select the agent to reload.

4. Click the Reload operation button.

14

TIBCO® Enterprise Administrator Developer's Guide

Developer Documentation
When developer mode is enabled, the Help screen lets you access additional help pages specifically for
developers.

Click the operation button Go to Developer Documentation.

Viewing the Structural Overview Diagram of an Agent
Developer mode lets GUI developers see a structural overview of an agent's managed object model.
The overview includes agent type, object types, operations, parameters, return types, and developer
notes. You can collapse and expand the branches of the overview diagram.

Prerequisites

Enable developer mode.

Procedure

1. Navigate to an agent page.
a) Navigate to the home page.
b) In the Settings pane, click the Agents icon.

The server GUI displays the Agent Management page.
c) Click an agent row.

An Open API Documentation button appears among the operations for the agent. This button is
visible only when developer mode is enabled. It is visible to all users.

2. Click the Open API Documentation operation button to view the agent's structural overview
diagram.

15

TIBCO® Enterprise Administrator Developer's Guide

3. Use the diagram to do the following:

● Collapse or expand subtrees of the diagram using the - or + icons.
● Collapse or expand all the operations of an object type with one click using the - or + button to

the right of that Object Type item in the diagram.
● Download a JSON file representing the information in the diagram by clicking the Export link

to the right of the Agent Type item at the top of the diagram.

16

TIBCO® Enterprise Administrator Developer's Guide

Exposing the Agent API to Python Scripts

TIBCO Enterprise Administrator includes a Python module that has the ability to expose any agent as a
collection of objects in Python, by generating Python classes that mimic the object types defined by
your agent, and constructing Python objects as necessary to reflect your agent's object instances. This
exposure to Python is not automatic. Your agent must specifically request the exposure.
To expose the agent API over Python binding use the following in your agent code:

TeaAgentServer.setExposePythonAPI(true) - in server mode agent. The product will be accessible
from EnterpriseAdministrator.products dictionary

or

TeaAgentServlet.setExposePythonAPI(true) - in servlet mode agent. The product will be accessible
from EnterpriseAdministrator.products dictionary.

The default value for setExposePythonAPI() is false in which case you will not need to call the method
at all. When set to false, the product will be accessible from
EnterpriseAdministrator.products_with_provisional_apis dictionary. TIBCO Enterprise
Administrator will still provide access to the "provisional" APIs, but you will see a message saying that
the API is provisional when you try to access it using
EnterpriseAdministrator.products_with_provisional_apis function.

For more details, refer to the TIBCO Enterprise Administrator User's Guide.

If agent's developed with TEA Agent Library version prior to 2.0.0 are registered with TIBCO
Enterprise Administrator server having version above or equal to 2.0.0, the product will be considered
as "provisional product" and will be accessible from
EnterpriseAdministrator.products_with_provisional_apis dictionary. This is because the
setExposePythonAPI is not available in the pre-2.0.0 agents library.

17

TIBCO® Enterprise Administrator Developer's Guide

Setting SSL Properties on the Agent

To enable SSL, you must set the SSL system properties on both the TIBCO Enterprise Administrator
server and the Agent.

Refer to the SSL Properties section for details on the system properties to be set.

Procedure

1. On the Agent, you can set the SSL system properties in one of the following ways:

● Set the properties using the API.

For example,
server.setKeystorePath(
“/tea/keystore/httpserversslkeys.jceks”
server.setKeyStorePath("/tea/keystore/httpserversslkeys.jceks");
server.setKeyStorePassword("password");
server.setCertAlias("httpserver");
server.setTrustStorePath("/tea/keystore/httpserverssltrusts.jceks");
server.setTrustStorePassword("password");
server.setKeyManagerPassword("password");
server.setWantClientAuth(true);
server.setNeedClientAuth(true);

server.setHttpClientKeyStorePath("/tea/keystore/httpclientsslkeys.jceks");
server.setHttpClientKeyStorePassword("password");
server.setHttpClientCertAlias("httpclient");
server.setHttpClientTrustStorePath("/tea/keystore/
httpclientssltrusts.jceks");
server.setHttpClientTrustStorePassword("password");
server.setHttpClientKeyManagerPassword("password");

● Create an SSLContext and inject it into the TIBCO Enterprise Administrator server using the
Agent API.

To do so:

1. Create an SSLContext object. Follow the JDK documentation on the Oracle web site for
instructions on how to do so.

2. Use the SSLContext API to set the configuration properties into the SSLContext instance.
Follow the JDK documentation on the Oracle web site for instructions on how to do so.

3. Inject the SSLContext instance into the TEA Agent's HttpServer and HttpClient using one
of the following APIs:
public TeaAgentServer(final String name, final String version, final
String agentinfo, final int port, final String contextPath,
final Boolean enableMetrics, final SSLContext sslContextForHttpServer,
final SSLContext sslContextForHttpClient)

or
public TeaAgentServer(final String name, final String version, final
String agentinfo, final String hostname, final int port,
final String contextPath, final Boolean enableMetrics, final SSLContext
sslContextForHttpServer, final SSLContext sslContextForHttpClient)

If you choose not to specify the hostname parameter as shown in the first
interface above, a default value of localhost will be used for the hostname.

An example of using the first API above:
final TeaAgentServer server = new
TeaAgentServer("SSLTestAgent","1.1","Agent for SSL test",port,"/
ssltestagent",true,
sslContextForServer, sslContextForClient);

18

TIBCO® Enterprise Administrator Developer's Guide

● Set the properties from the command line using these System.properties when running the
Agent.

For example,
-Dtea.agent.http.keystore="/Users/<username>/tea/keystore/
httpserversslkeys.jceks"
-Dtea.agent.http.truststore="/Users/<username>/tea/keystore/
httpserverssltrusts.jceks"
-Dtea.agent.http.keystore.password="password"
-Dtea.agent.http.truststore.password="password"
-Dtea.agent.http.keymanager.password="password"
-Dtea.agent.http.cert-alias="httpserver"
-Dtea.agent.http.want.client.auth=true
-Dtea.agent.http.need.client.auth=true
-Dtea.agent.http.client.keystore="/Users/<username>/tea/keystore/
httpclientsslkeys.jceks"
-Dtea.agent.http.client.truststore="/Users/<username>/tea/keystore/
httpclientssltrusts.jceks"
-Dtea.agent.http.client.keystore.password="password"
-Dtea.agent.http.client.truststore.password="password"
-Dtea.agent.http.client.keymanager.password="password"
-Dtea.agent.http.client.cert-alias="httpclient"

2. Start the Agent. If you did not set the system properties using the API or create and inject an
SSLContext, then make sure to start the Agent in SSL mode by setting the properties through the
command line as shown in the example in the last bullet item above.

SSL Properties
When configuring SSL on the TIBCO Enterprise Administrator, you need to set some properties on
both the TIBCO Enterprise Administrator server as well as the Agent.

Setting the HttpClient properties on both the Agent and the TIBCO Enterprise Administrator server is
mandatory only if you want to set up a two-way SSL configuration. You do not need to set the
HttpClient properties if you want to set up a one-way SSL configuration or do not want to set up SSL at
all. If you do not set the HttpClient properties on the Agent and the TIBCO Enterprise Administrator
server, the HttpClients residing on both of them will be configured to "Trust All".

To enable SSL on the TIBCO Enterprise Administrator server, set these properties for the HttpServer
and HttpClient residing on the TIBCO Enterprise Administrator server:

TIBCO Enterprise Administrator Server Properties

Property Description

Properties for the HttpServer on the TIBCO Enterprise Administrator server

tea.http.keystore The file name or URL of the key store location

For example: tea.http.keystore = "/Users/<username>/tea/
keystore/httpserversslkeys.jceks"

tea.http.keystore-password Password for the key store residing on the TIBCO Enterprise
Administrator server. This is the password that was set when the key
store was created

For example:
tea.http.keystore-password = "MyPassword"

19

TIBCO® Enterprise Administrator Developer's Guide

Property Description

tea.http.cert-alias Alias for the SSL certificate. The certificate can be identified by this
alias in case there are multiple certificates in the trust store

For example:
tea.http.cert-alias = "httpserver"

tea.http.key-manager-
password

The password for the specific key within the key store. This is the
password that was set when the key pair was created

For example:

tea.http.key-manager-password = "password"

tea.http.truststore The file name or URL of the trust store location

For example:

tea.http.truststore = "/Users/<username>/tea/keystore/

httpserverssltrusts.jceks"

tea.http.truststore-
password

The password for the trust store

For example:

tea.http.truststore-password = "password"

tea.http.want.client.auth See section Guidelines to set the tea.http.want.client.auth and
tea.http.need.client.auth Parameters below. This property is used for
mutual authentication

For example:
tea.http.want.client.auth = true

tea.http.need.client.auth See section Guidelines to set the tea.http.want.client.auth and
tea.http.need.client.auth Parameters below. This property is used for
mutual authentication

For example:
tea.http.need.client.auth = true

20

TIBCO® Enterprise Administrator Developer's Guide

Property Description

tea.http.exclude.protocols The property to list the protocols to be excluded. To exclude multiple
protocols, use comma as a delimiter.

For example, tea.http.exclude.protocols="SSLv3,TLS1"
If the property is not mentioned, the SSLV3 protocol is excluded. If
TIBCO Enterprise Administrator server must support all protocols
including SSLV3, set the property to be empty.

For example, tea.http.exclude.protocols=""

When connecting using HTTPS, some versions of the popular
browsers may be configured to use SSLv3 as the protocol. If you have
problems accessing secured TIBCO Enterprise Administrator server
(by default the SSLv3 is disabled) using the browser, follow the
browser's user guide to configure that browser to excludeSSLv3
protocol.

Properties for the HttpClient on the TIBCO Enterprise Administrator server

Only required if you want to set up a two-way SSL configuration

tea.http.client.keystore The file name or URL of the key store location

For example:
tea.http.client.keystore = "/Users/<username>/tea/

keystore/httpclientsslkeys.jceks"

tea.http.client.keystore-
password

The password for the key store residing on the client (Agent)

For example:
tea.http.client.keystore-password = "password"

tea.http.client.cert-alias Alias for the SSL certificate. The certificate can be identified by this
alias in case there are multiple certificates in the trust store

For example:
tea.http.client.cert-alias = "httpclient"

tea.http.client.key-
manager-password

The password for the specific key within the key store

For example:
tea.http.client.key-manager-password = "password"

tea.http.client.truststore The file name or URL of the trust store location

For example:
tea.http.client.truststore = "/Users/<username>/tea/

keystore/httpclientssltrusts.jceks"

tea.http.client.truststore-
password

The password for the trust store

For example:
tea.http.client.truststore-password = "password"

21

TIBCO® Enterprise Administrator Developer's Guide

Property Description

tea.http.client.exclude.prot
ocols

The property to list the protocols to be excluded. To exclude multiple
protocols, use comma as a delimiter.

For example, tea.http.exclude.protocols="SSLv3,TLS1"
If the property is not mentioned, the SSLV3 protocol is excluded. If
TIBCO Enterprise Administrator server must support all protocols
including SSLV3, set the property to be empty.

For example, tea.http.exclude.protocols=""

When connecting using HTTPS, some versions of the popular
browsers may be configured to use SSLv3 as the protocol. If you have
problems accessing secured TIBCO Enterprise Administrator server
(by default the SSLv3 is disabled) using the browser, follow the
browser's user guide to configure that browser to excludeSSLv3
protocol.

Agent Properties

To enable SSL on the Agent, set the following properties for the HttpServer and HttpClient residing on
the Agent:

Property Description

Properties for the HttpServer on the Agent

tea.agent.http.keystore The file name or URL of the key store location

For example: tea.agent.http.keystore = "/Users/
<username>/tea/keystore/httpserversslkeys.jceks"

tea.agent.http.keystore.pas
sword

Password for the key store residing on the Agent. This is the
password that was set when the key store was created

For example:
tea.agent.http.keystore.password = "MyPassword"

tea.agent.http.cert.alias Alias for the SSL certificate. The certificate can be identified by this
alias in case there are multiple certificates in the trust store

For example:
tea.agent.http.cert.alias = "httpserver"

tea.agent.http.keymanager.
password

The password for the specific key within the key store. This is the
password that was set when the key pair was created

For example:

tea.agent.http.keymanager.password = "password"

22

TIBCO® Enterprise Administrator Developer's Guide

Property Description

tea.agent.http.truststore The file name or URL of the trust store location

For example:

tea.agent.http.truststore = "/Users/<username>/tea/

keystore/httpserverssltrusts.jceks"

tea.agent.http.truststore.pa
ssword

The password for the trust store

For example:

tea.agent.http.truststore.password = "password"

tea.agent.http.want.client.a
uth

See section Guidelines to set the tea.http.want.client.auth and
tea.http.need.client.auth Parameters below. This property is used for
mutual authentication

For example:
tea.agent.http.want.client.auth = true

tea.agent.http.need.client.a
uth

See section Guidelines to set the tea.http.want.client.auth and
tea.http.need.client.auth Parameters below. This property is used for
mutual authentication

For example:
tea.agent.http.need.client.auth = true

tea.agent.http.exclude.prot
ocols

The property to list the protocols to be excluded. To exclude multiple
protocols, use comma as a delimiter.

For example, tea.http.exclude.protocols="SSLv3,TLS1"
If the property is not set either using system properties or using Agent
Server API, the SSLV3 protocol is excluded. If TIBCO Enterprise
Administrator Agent must support all protocols including SSLV3, set
the property to be empty.

For example, tea.http.exclude.protocols=""

When connecting using HTTPS, some versions of the popular
browsers may be configured to use SSLv3 as the protocol. If you have
problems accessing secured TIBCO Enterprise Administrator server
(by default the SSLv3 is disabled) using the browser, follow the
browser's user guide to configure that browser to excludeSSLv3
protocol.

Properties for the HttpClient on the Agent

Only required if you want to set up a two-way SSL configuration

tea.agent.http.client.keysto
re

The file name or URL of the key store location

For example:
tea.agent.http.client.keystore = "/Users/<username>/tea/

keystore/httpclientsslkeys.jceks"

23

TIBCO® Enterprise Administrator Developer's Guide

Property Description

tea.agent.http.client.keysto
re.password

The password for the key store residing on the client (Agent)

For example:
tea.agent.http.client.keystore.password = "password"

tea.agent.http.client.cert.ali
as

Alias for the SSL certificate. The certificate can be identified by this
alias in case there are multiple certificates in the trust store

For example:
tea.agent.http.client.cert.alias = "httpclient"

tea.agent.http.client.keyma
nager.password

The password for the specific key within the key store

For example:
tea.agent.http.client.keymanager.password = "password"

tea.agent.http.client.trustst
ore

The file name or URL of the trust store location

For example:
tea.agent.http.client.truststore = "/Users/

<username>/tea/keystore/httpclientssltrusts.jceks"

tea.agent.http.client.trustst
ore.password

The password for the trust store

For example:
tea.agent.http.client.truststore.password = "password"

tea.agent.http.client.exclud
e.protocols

The property to list the protocols to be excluded. To exclude multiple
protocols, use comma as a delimiter.

For example, tea.http.exclude.protocols="SSLv3,TLS1"
If the property is not set either using system properties or using Agent
Server API, the SSLV3 protocol is excluded. If TIBCO Enterprise
Administrator Agent must support all protocols including SSLV3, set
the property to be empty.

For example, tea.http.exclude.protocols=""

When connecting using HTTPS, some versions of the popular
browsers may be configured to use SSLv3 as the protocol. If you have
problems accessing secured TIBCO Enterprise Administrator server
(by default the SSLv3 is disabled) using the browser, follow the
browser's user guide to configure that browser to excludeSSLv3
protocol.

Guidelines to set the tea.http.want.client.auth and tea.http.need.client.auth Parameters

Here are some guidelines for setting these parameters depending on the scenario you want to
implement:

24

TIBCO® Enterprise Administrator Developer's Guide

For this type of
authentication...

setting the parameters in
this combination... will result in...

Certification-based
two-way
authentication

http.want.client.auth = true

http.need.client.auth = false

The TEA server asks the client (web browser
or Agent) to provide its client certificate
while handshaking. But the client chooses
not to provide authentication information
about itself, but the authentication process
will continue.

So that would mean that the client
certification is optional which in turn means
that no certificate needs to be generated on
the client.

End Result

The authentication process is successful.

http.want.client.auth = false

http.need.client.auth = true

The TEA server asks the client (web browser
or Agent) to provide its client certificate
while handshaking, but the client chooses
not to provide authentication information
about itself, the authentication process will
stop.

So that would mean that the client
certification is required which in turn means
that a keypair and certificate must be
generated on the client (Agent).

End Result

The authentication process fails

http.want.client.auth = true

http.need.client.auth = true

Same as the above case where the client
certification is required and a keypair and
certificate must be generated on the client
(Agent).

End Result

The authentication process fails

Certification-based
one-way
authentication

http.want.client.auth = false

http.need.client.auth = false

Both of the parameters set to 'false' which
means that it is a One-way Authentication,
where only the client (web browser or
Agent) will verify the TEA server but the
TEA server trusts all the clients without
verification.

No need to generate any certificates at all.

End Result

The authentication process is successful, as
long as the user name and password
provided by the agent are both correct.

25

TIBCO® Enterprise Administrator Developer's Guide

Support for IPv6 Addresses in TEA

Starting in version 2.2.0, TIBCO® Enterprise Adminsitrator (TEA) provides support for IPv6 address
format.

By default, TEA uses IPv4 address format. To use IPv6 address format you must set the
java.net.preferIPv6addresses system property to true. This property is set to false by default. Set
this system property when running the agent:
-Djava.net.preferIPv6addresses=true

If you choose to use the IPv6 format, make a note of the following points:

● For TEA agents that are older than version 2..2.0 and are registered with TEA server version 2.2.0 or
greater, the IPv6 Address column in the Machines view in the TEA Web user interface will be
blank. The IPv6 address for the agent's machine will not be displayed in the IPv6 Address column.

● When registering an agent to a server, use square brackets around the IPv6 address. The following
is an example of a URL that uses an IPv6 address format to register a Tomcat agent to the TEA
server:

http://[FEDC:BA98:7654:3210:FEDC:BA98:7654:3210]:8082/tomcatagent

● The syntax to use the scp command is as follows:
scp -P 2222 admin@[10::4]:<filename>

where 10::4 is the IPv6 address of the machine.

The syntax to use the sftp command is as follows:
sftp -P 2222 admin@[10::4]

You can use the above command with or without the square brackets around the IP address.
● The syntax to use the ssh command is as follows:

ssh -p 2222 admin@10::4

where 10::4 is the IPv6 address of the machine.

26

TIBCO® Enterprise Administrator Developer's Guide

Setting up TIBCO Enterprise Administrator Agent Library

You can configure and setup the TIBCO Enterprise Administrator Agent library either in the server or
the servlet modes.

Running TIBCO Enterprise Administrator Agent Library in the Server mode
In the server mode, the TIBCO Enterprise Administrator Agent runs as a standalone process. The
TIBCO Enterprise Administrator Agent Library comes bundled with the Jetty server which will be used
for serving the agent service endpoints.

Procedure

1. To configure the TIBCO Enterprise Administrator Agent library to run in server mode, instantiate
an object of the class com.tibco.tea.agent.server.TeaAgentServer. There are a few overloaded
constructors available to instantiate the TeaAgentServer. The one used in this example takes the
following arguments:

Option Description

name Name of the agent

version Version of the agent

agentinfo Description for the agent

hostname Hostname for the jetty connector

port Port for the jetty connector

context-path Path for ServletContext

enable-metrics Enables metrics for the TIBCO Enterprise Administrator SDK Agent Library

TeaAgentServer server = new TeaAgentServer("HelloWorldAgent", "1.1", "Hello
World Agent", 1234, "/helloworldagent", true);

2. To register Object Types with the TIBCO Enterprise Administrator Agent library, use any of the
following: com.tibco.tea.agent.server.TeaAgentServer.registerInstance() and
com.tibco.tea.agent.server.TeaAgentServer.registerInstances(). The
registerInstance() method takes an instance of a TeaAgent as a parameter. The
registerInstances() method takes a varargs parameter that receives a variable number of Object
Types.
server.registerInstance(new HelloWorldAgent());
server.registerInstances(arg0);

3. You can configure the TIBCO Enterprise Administrator Agent library to customize the content
specific to your requirements. The content includes HTML, CSS, javascript, images, and so on. Use
com.tibco.tea.agent.server.TeaAgentServer.registerResourceLocation() to register the
resource location that has these files.
server.registerResourceLocation(file);

4. (Optional) To disable the default search capability of an agent registered in the server, use the
method disableIndex() on the server instance.
server.disableIndex();

5. After the TIBCO Enterprise Administrator agent server has been configured, use
com.tibco.tea.agent.server.TeaAgentServer.start() to initiate and start the TIBCO
Enterprise Administrator agent server.
server.start();

27

TIBCO® Enterprise Administrator Developer's Guide

Starting the sample: HelloWorldAgent
TeaAgentServer server = new TeaAgentServer("HelloWorldAgent", "1.1", "Hello
World Agent", 1234, "/helloworldagent", true);
server.registerInstance(new HelloWorldAgent());
server.registerInstances(arg0)
server.registerResourceLocation(file);
server.start();

Running TIBCO Enterprise Administrator Agent Library in the Servlet mode
TIBCO Enterprise Administrator provides an abstract servlet that needs to be subclassed to register
object instances.

Procedure

1. Extend the abstract servlet of TIBCO Enterprise Administrator to define the object that needs to be
registered.

The following example code defines only one object to register in the server.

In the getObjectInstances method, instances of TopLevelTeaObject and TeaObjectProvider
must be passed. For example, if you have a class implementing the TeaObject interface,
and you write a class that implements a TeaObjectProvider in order to provide an instance
of this class, while registering the instance in servlet mode, you must pass the
TeaObjectProvider instance instead of the TeaObject instance itself in addition to the
TopLevelTeaObject instance.

public class HelloWorldServlet extends TeaAgentServlet {

 /*
 * (non-Javadoc)
 *
 * @see com.tibco.tea.agent.server.TeaAgentServlet#getObjectInstances()
 */
 @Override
 protected Object[] getObjectInstances() throws ServletException {
 return new Object[]{new HelloWorldAgent()};
 }
}

2. Configure the servlet with proper parameters using web.xml. Map the agent servlet to /* as further
dispatches are done by the servlet.
<web-app xmlns="http://java.sun.com/xml/ns/j2ee" version="2.4">

 <display-name>HelloWorld Agent</display-name>

 <servlet>
 <servlet-name>HelloWorldAgent</servlet-name>
 <servlet-class>HelloWorldServlet</servlet-class>
 <init-param>
 <param-name>name</param-name>
 <param-value>HelloWorldAgent</param-value>
 </init-param>
 <init-param>
 <param-name>version</param-name>
 <param-value>1.1</param-value>
 </init-param>
 <init-param>
 <param-name>agent-info</param-name>
 <param-value>HelloWorld Agent</param-value>
 </init-param>
 <init-param>
 <param-name>agent-id</param-name>
 <param-value>HelloWorldAgent</param-value>
 </init-param>

28

TIBCO® Enterprise Administrator Developer's Guide

 </servlet>
 <servlet-mapping>
 <servlet-name>HelloWorldAgent</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>

</web-app>

If you deploy the agent as a part of an existing web application, you can have a specific URL pattern
matching instead of /* for your agent servlet. For example,

 <init-param>
 <param-name>agent-contextPath</param-name>
 <param-value>/path1/path2</param-value>
 </init-param>
 <servlet-mapping>
 <servlet-name>HelloWorldAgentServlet</servlet-name>
 <url-pattern>/path1/path2/*</url-pattern>
 </servlet-mapping>

3. Deploy the servlet using the standard servlet container mechanisms. To verify, you can start an
embedded Jetty server, with the programmatically deployed servlet. For a standalone agent
process, configuration through the server mode is a better approach.
public static void main(final String[] args) throws Exception {

 Server server = new Server(1234);
 ServletContextHandler servletContextHandler = new
ServletContextHandler(server, "/helloworldagent", false, false);

 ServletHolder servletHolder =
servletContextHandler.addServlet(HelloWorldServlet.class, "/*");
 servletHolder.setInitParameter("name", "HelloWorldAgent");
 servletHolder.setInitParameter("version", "1.1");
 servletHolder.setInitParameter("agent-info", "HelloWorld Agent");
 server.start();

 server.join();
}

It is recommended that you do not set the load-on-startup flag to false otherwise the
servlet is not loaded on startup.

Agent ID
By default, TIBCO Enterprise Administrator uses the name provided during the registration of the
agent to uniquely identify an agent. You can override that behavior by providing an agent identifier
that will be used instead of the name.

Registering another agent with the same id will automatically unregister the previously registered
agent. Ensure that the Agent identifier is set before agent server is started. For example:
server.setAgentId("uniqueAgentId");
server.start();

29

TIBCO® Enterprise Administrator Developer's Guide

Configuring TIBCO Enterprise Administrator Agent for
Auto-Registration

The TIBCO Enterprise Administrator agent library can be configured to auto-register itself with the
TIBCO Enterprise Administrator server. When TIBCO Enterprise Administrator Agent comes up, the
agent library connects to the server and registers itself. Ensure that the agent library is setup with the
correct connection details for the server.

If the TIBCO Enterprise Administrator server and the agent are on different machines, use the
following constructor:
TeaAgentServer(String name, String version, String agentInfo,
String hostName, int port, String contextPath, boolean enableMetrics)

Auto-Registering in the Server Mode

The following example shows how the TeaAgentServer can be configured to auto-register itself.

TeaAgentServer server =
new TeaAgentServer("HelloWorldAgent", "1.1", "Hello World Agent", 1234, "/
helloworldagent", true);
server.registerInstance(new HelloWorldAgent());
server.registerAgentAutoRegisterListener("http://localhost:8777/tea");
server.start();

com.tibco.tea.agent.server.TeaAgentServer.registerAgentAutoRegisterListener() is used to register the
agent with the server. The method takes the server URL as the parameter.

Auto-Registering in the Servlet Mode

The following example shows how the TeaAgentServlet can be configured to auto-register itself.

public class HelloWorldAgentServlet extends TeaAgentServlet{
 private static final long serialVersionUID = 8327019718482894467L;

 @Override
 public void init() throws ServletException {
 super.init();
this.autoRegisterAgent("http://localhost:8777", "http://localhost:8080");
 }

 @Override
 protected Object[] getObjectInstances() throws ServletException {
 return new Object[] {new HelloWorld()};
 }
}

After making a call to the init method in the super class of TeaAgentServlet, call
thecom.tibco.tea.agent.server.TeaAgentServlet.autoRegisterAgent() method.

The com.tibco.tea.agent.server.TeaAgentServlet.autoRegisterAgent() must be the last line in the code
for the class. You cannot call any other method such as the unregisterAgent() method after this line.

30

TIBCO® Enterprise Administrator Developer's Guide

Unregistering an Agent

The agent is unregistered by using the TeaAgentServer.unregisterAgent() method.

Prior to version 1.1.0, when you unregistered an agent, the associated data got deleted automatically
from <TIBCO_HOME>\tea\1.0\data\sr\<Agent_Name>\<Version>*.*. Now, you can control this
setting manually by setting a flag in the <TIBCO_CONFIG_HOME>\tibco\cfgmgmt\tea\conf\tea.conf
file. Set tea.dev.unregistration-cleanup=false to delete the files manually. If you have set the
property to false, remember to cleanup manually after unregistering an agent.

31

TIBCO® Enterprise Administrator Developer's Guide

Developing an Agent

An agent lets administrative users monitor and manage a system of objects, which correspond to the
moving parts of a software product. As an agent developer, your most important task is modeling that
system of managed objects.

Procedure

1. Analyze the software product to understand its components and its administrative interactions.
(For detailed instructions, see Analyzing a System of Managed Objects.)
Your analysis produces a table and a diagram—artifacts that guide subsequent coding. (For
example artifacts, see Example Analysis of Managed Objects for Tomcat)

2. Translate your model into a Java program using the API constructs in the SDK.

32

TIBCO® Enterprise Administrator Developer's Guide

Managed Objects

Managed objects are entities in the world that users can monitor and manipulate using TIBCO
Enterprise Administrator.

Administrative users interact with managed objects using the TIBCO Enterprise Administrator server.

Within the server, each agent models a set of interrelated managed objects. TIBCO Enterprise
Administrator SDK lets you build agents that model managed objects.

When building an agent, the most obvious managed object is the product that you are modeling. For
example, the sample Tomcat agent would surely include Tomcat server processes as managed objects.

You can also expose components of a managed object as managed objects in their own right. For
example, the sample Tomcat agent exposes the web applications deployed within a Tomcat server.

Sometimes it is useful to model a group of managed objects as a managed object in its own right. For
example, a Tomcat agent could model a group of Tomcat server processes as a Tomcat cluster.

33

TIBCO® Enterprise Administrator Developer's Guide

Aspects of Managed Objects

Aspects of an object describe its internal structure and behavior, and its relationship to other managed
objects. These aspects shape the way users view and interact with the object.

When you analyze a system of managed objects, you must describe the behavior of each object. Four
aspects guide your analysis and contribute to the description. One or more of these aspects apply to
every managed object:

● Configuration Aspect
● States
● Operations
● References
When coding an agent, these aspects translate into the building blocks of the SDK.

Configuration
The configuration of a managed object consists of name and value pairs that describe the object or affect
its behavior.

Configuration can include any parameters of a managed object for which an administrator could
supply values. For example, when creating a Tomcat server process, the administrator could supply a
name for the server and an HTTP port number.

Configuration can also include attribute values that the administrator might need to know, but cannot
modify. For example, the built-in model for a machine displays a computer's host name, IP address,
operating system and hardware details.

The server GUI presents configuration parameters as name and value pairs. The default format lists the
pairs in three columns, alphabetized by parameter name.

The value for a name can be either simple or complex (for example, the value could itself be a list of
name and value pairs). However, the server GUI can display only simple values.

States
The states of a managed object reflect its operating states, from the administrator's point of view.

For example, a process could have states Running and Stopped. A data queue might have states
DataAvailable, Empty and Full.

A managed object can be in only one state at a time.

The server GUI presents states with an icon and state name.

Operations
Operations include any commands that the administrator could use to manipulate a managed object.

For example, an administrator might start, stop, pause and resume a process; enable and disable
communication on a port.

The server GUI presents operations as buttons.

References
References denote the relationships among the managed objects in a model.

For example, groups contain members, processes listen using HTTP connectors, file system directories
contain files and other directories, and a web service might depend on a database.

The server GUI presents each relationship in a separate visual block.

34

TIBCO® Enterprise Administrator Developer's Guide

When only one object stands in a relationship, the GUI presents its details.

When several objects stand in the same relationship, the GUI presents them in a table. Each table row
represents one object in that relationship (for example, one group member). A column can display
information about each object—either the object's current state, or one of its configurations (for
configurations, the column header is the name, and the cells display the values).

35

TIBCO® Enterprise Administrator Developer's Guide

Concept Types of Managed Objects

The concept type of an object describes its role within the larger system of managed objects.

When analyzing a system of managed objects, classify each object as one of six types. When coding an
agent, these types translate into the enumerated constants of TeaConcept.

● Product (top level object)
● Application
● Process
● Access Point
● Resource
● Group

Product (Top Level Object)
The top level object represents a product or system as a whole.

In any system of managed objects, you must distinguish exactly one object as the top level object.

If the system is a product, then the top level object represents the product.

If the system is not a product, then the top level object represents the system as a whole. For example,
the server's built-in User Management facility is a top level object.

A top level object usually has relationships to other objects. (The sample HelloWorld agent is a
degenerate case, in which the model has no other objects, so there cannot be any relationships.)

A top level object can have operations. For example, in the sample Tomcat agent, creating Tomcat
servers is an operation of the top level object.

A top level object cannot have configuration or state.

Top level objects appear as icons on the home page of the server GUI.

Application
An application object represents something that can execute, such as Java code, a shell script, a web
app.

An application usually has configuration and state.

An application could have relationships to other objects.

An application could have operations, such as start and stop.

Process
A process object represents a process executing on a host computer.

A process usually has configuration and state.

A process could have relationships to other objects. For example, a process could refer to an application
that runs within the process, or to access points.

An application could have operations, such as start and stop. In a Tomcat agent, a server process could
have operations to deploy a web application, and to manage HTTP connectors.

36

TIBCO® Enterprise Administrator Developer's Guide

Access Point
An access point object represents an endpoint or entry point that serves as the source or destination of a
data stream. Examples include a network interface, HTTP connector, TCP port, WSDL endpoint, JMS
topic or queue, or TIBCO Rendezvous transport.

An access point usually has configuration.

An access point usually has state; for example, it can be enabled or disabled. If the object had no state,
then it might be simpler to think of it as a configuration of some other object.

An access point can have operations, for example to enable or disable it.

An access point can have relationships, for example, references back to the processes or applications
that use it.

Resource
A resource object represents a shared resource, such as a file, thread pool, database connection pool,
LDAP connection pool, or other objects defined using JNDI.

A resource usually has configuration.

A resource can have relationships, for example, references back to the objects that use it.

A resource can have state, for example, availability.

A resource can have operations. For example, administrators can adjust the parameters of thread pool,
increasing its size.

Group
A group object represents a homogeneous set of objects.

For example, a Tomcat cluster could contain Tomcat servers.

A group usually has relationships to other objects (namely, the members of the group).

A group can have operations, for example to add and remove members. It is unusual for a group to
have state and configuration.

37

TIBCO® Enterprise Administrator Developer's Guide

Support for POJOs

TeaOperation supports Plain Old Java Object (POJO) as parameters and return types.

To enable POJO support, you must enable the enable_class_generation property on
EnterpriseAdministrator as follows:
import tibco.tea
tea =tibco.tea.EnterpriseAdministrator(config={'enable_class_generation':True})

The property is, by default, set to false, so ensure that you set this to true if you want the Python
scripts to support POJO objects. POJO support comes with some supported scenarios and limitations.

Supported Scenarios

The following java objects are supported as a parameter or a return type:

1. A POJO

2. Array of POJO

3. List of POJOs

4. Map of POJOs

5. Nested POJOs

6. A list of POJOs passed as a parameter to a Map is supported as a return type.

7. If you have classes with same names in different packages, underscore separated fully qualified
names are used to distinguish them. For example, if there is a class by the name, TeaAgent in
com.tibco.tea.agentA, and com.tibco.tea.agent.agentB, the class in package agentA is
identified by using com_tibco_tea_agent_agentA_TeaAgent and the class in agentB is identified
by using com_tibco_tea_agent_agentB_TeaAgent.

Fully Qualified Name in Java Fully Qualified Name in Python

com.tibco.tea.agent.agentA.TeaA

gent

com_tibco_tea_agent_agentA_TeaAgent

com.tibco.tea.agent.agentB.TeaA

gent

com_tibco_tea_agent_agentB_TeaAgent

Limitations of POJO
The POJO support comes with some limitations.

The following POJOs are not supported:

1. A Map cannot have a POJO as a key

2. Nested maps

3. Nested lists

4. A List that takes a List of POJOs as a parameter

38

TIBCO® Enterprise Administrator Developer's Guide

Analyzing a System of Managed Objects

The first step in creating an agent for a system of managed objects is to analyze the system. Your
analysis produces artifacts (a table and a diagram), to guide you as you code the agent.

Prerequisites

To do this task, you must first understand managed objects:

● Managed Objects
● Aspects of Managed Objects
● Concept Types of Managed Objects

Do the first three steps of this task in the order shown below. After that, you can do the remaining three
steps in any order (you can even interleave them).

Procedure

1. Identify the entities in the system that users can monitor and manage.
Organize this information as a table, with a row for each entity.

2. Classify the entities using concept types.
See Concept Types of Managed Objects.

Add the concept types as the second column of your table.

3. Identify relationships among the entities.
a) Name each relationship.
b) Draw a diagram of the entities (as nodes) and relationships (as edges)—separate from the table.
c) Determine the cardinality of the relationship.

Can this relationship include at most one other entity, or many entities? Add the cardinality
information to your diagram.

d) Copy the relationship information from your diagram into the third column of your table.

4. Determine the configuration for each entity—its parameters and attributes.
Add this information as the fourth column of your table.

5. Determine the operations for each entity.
What can users do with the entity?
Add this information as the fifth column of your table.

6. Determine the states for each entity.
Add this information as the sixth column of your table.

39

TIBCO® Enterprise Administrator Developer's Guide

Example Analysis of Managed Objects for Tomcat
Analyzing a system of managed objects produces artifacts to guide you as you develop an agent. As an
example, analysis of Tomcat might produce this table and this relationship diagram.

Managed Objects in Tomcat

Entity
Concept

Type
Relationships Configuration States

Operatio
ns

Tomcat
Product

Top Level
Object

Manages* > Tomcat
 Cluster

Add
Cluster

Remove
Cluster

Tomcat
Cluster

Group Members* >
Tomcat Server

Add
Server

Remove
Server

Tomcat
Server

Process Deploys* > WebApp

Listens* >
HTTP Connector

Installation
Folder

Running

Stopped

Start

Stop

Deploy
App

Add
Connecto

r

Remove
Connecto

r

WebApp Applicati
on

Listens* >
HTTP Connector

Context Path Running

Stopped

Start

Stop

HTTP
Connecto

r

Access
Point

Port Number

SSL
Parameters

Enabled

Disabled

Enable

Disable

The third step might produce a diagram such as the following:

40

TIBCO® Enterprise Administrator Developer's Guide

Relationships among Managed Objects in Tomcat

This example does not correspond exactly to the sample Tomcat agent. To illustrate a wider range of
concept types, this example explicitly models the cluster and HTTP connector as managed objects. The
sample code implements a simpler model, which omits these entities.

41

TIBCO® Enterprise Administrator Developer's Guide

Sharing Data and Resources (TeaObjects) Between
Agents

TIBCO Enterprise Administrator allows agents to share data or resources (TeaObjects) which can be
used by other agents that are registered with the same TIBCO Enterprise Administrator server. For
example, an LDAP resource that is created and shared by a TSS server could be used by the TIBCO
Policy Director to create policies. TIBCO Enterprise Administrator provides some APIs that you can use
to share data and resources.

In order to use this feature, you must set up the TIBCO Enterprise Administrator server to enable the
data sharing API. Refer to the TIBCO Enterprise Administrator SDK Installation Guide for details on how
to set up the TIBCO Enterprise Administrator server for this feature.

Once the agent gets registered with the server, the proper Data Sharing configuration gets passed to the
agent so TeaObjects can be shared and retrieved. No configuration is needed on the agent

The property @objectId contains the id of the TeaObject in the form of a
com.tibco.tea.agent.api.ObjectId, this class is the recommended way to manage the @objectId
property since it will encode and decode the id accordingly. The objectId in the Data Sharing API
agentId and agentTypeVersion are always empty.

Limitations

● All TeaObjects shared in the same AgentType must have an ObjectType name that is different when
its non alphanumeric values are converted to "_". The reason for that is that the ObjectType name is
used as part of the Name of the DDBB where the shared object is stored. (For example: an invalid
ObjectType name will be 2 objects with: "abc-def" and "abc.def" as object type names)

● There is currently no support in tea to change username and password for the DDBB, so an external
utility should be used for managing the DDBB.

How to Share a TeaObject
To share an object, use the share() method of the TeaPersistence class. Once an object is shared, it is
available for other agents to use. When you share a TeaObject, you share all the references in that object
too. For example, if you share a person object called Peter who has cousins (references in the object
Peter) named Adam, Sarah, and Brian, when you share Peter, you effectively share objects Adam, Sarah
and Brian too.

Here is a sample code which shares a TeaObject, John:
@TeaOperation(name = "sharePerson", description = "Share a Person object")
public void sharePerson() throws IOException {
 // Person implements TeaObject and has objectTypeName="Person" in this
instance
 the key="John"
 final Person person = new Person("John", "Public John Person");
 //teaAgentServer is an instance of
com.tibco.tea.agent.server.TeaAgentServer or
 com.tibco.tea.agent.server.TeaAgentServlet
 final TeaPersistence persistence = teaAgentServer.getPersistence();
 persistence.share(person);
}

How to Get Shared TeaObjects
Any TeaObjects that are shared by an agent can be used by other agents that are registered with the
same TIBCO Enterprise Administrator server. The objects are returned in JSON format.

To get a single shared TeaObject use the getObject() method as shown in the example below:
@TeaOperation(name = "getJohn", description = "getJohn")
public String getJohn() throws IOException {

42

TIBCO® Enterprise Administrator Developer's Guide

 //teaAgentServer is an instance of com.tibco.tea.agent.server.TeaAgentServer or
 com.tibco.tea.agent.server.TeaAgentServlet
final TeaPersistence persistence = teaAgentServer.getPersistence();
 // We query the method getObject(String agentTypeName, String agentTypeVersion,
String objectTypeName,
 // String key);
 // That returns a org.json.JSONObject, in this case the Json Representation of
Person with key John
final JSONObject object = persistence.getObject("agentTypeNameHere", "Person",
"john");
return object.toString();
}

Below is an example of how to get all shared TeaObjects for a specific TeaObjectType:
@TeaOperation(name = "getAllPersons", description = "getAllPersons")
public String getAllPersons() throws IOException {
//teaAgentServer is an instance of com.tibco.tea.agent.server.TeaAgentServer or
 com.tibco.tea.agent.server.TeaAgentServlet
final TeaPersistence persistence = teaAgentServer.getPersistence();
final Map<String, JSONObject> allPersons =
persistence.getObjects("agentTypeNameHere", "Person");
return Joiner.on(",").join(allPersons.values());
}

How to Get Shared TeaObject Along with All the References
A TeaObject has references to all its members. When you get a TeaObject from the database, you have
the option to get the high-level object or you can request the object with all the references included
(Closure).

To retrieve a TeaObject Closure use the following code:
@TeaOperation(name = "getJohnClosure", description = "getJohnClosure")
public String getJohnClosure() throws IOException {
TeaPersistence persistence = ShareReaderAgent.server.getPersistence();
Map<String, JSONObject> johnClosure =
persistence.getObjectClosure("ShareWriterAgent", "Person", "john");
return Joiner.on(",").join(johnClosure.values());
}

The object returned by this method is in JSON format. Below is an example that is returned by the
sample code above:
[
{
 "@objectId":"ShareWriterAgent::Person:Peter",
 "name":"Peter",
 "description":"Peter Person",
 "key":"Peter",
 "config":{
 "status":"Single",
 "address":"3303 Hillview Avenue"
},
 "members":[
 "ShareWriterAgent::Person:Adam",
 "ShareWriterAgent::Person:Sarah"
],
 "references":[
 {
 "name":"cousins",
 "elements":[
 "ShareWriterAgent::Person:Brian",
 "ShareWriterAgent::Person:Anna"
]
 },
 {
 "name":"parent",
 "elements":[
 "ShareWriterAgent::Person:John"
]
 },

43

TIBCO® Enterprise Administrator Developer's Guide

 {
 "name":"cars",
 "elements":[
 "ShareWriterAgent::Car:BMW"
]
 }
]
 },
 {
 "@objectId":"ShareWriterAgent::Person:Adam",
 "name":"Adam",
 "description":"Adam Person",
 "key":"Adam",
 "config":{
 "status":"Single",
 "address":"3303 Hillview Avenue"
 }
 },
 {
 "@objectId":"ShareWriterAgent::Person:Sarah",
 "name":"Sarah",
 "description":"Sarah Person",
 "key":"Sarah",
 "config":{
 "status":"Single",
 "address":"3303 Hillview Avenue"
 }
 },
 {
 "@objectId":"ShareWriterAgent::Person:Brian",
 "name":"Brian",
 "description":"Brian Person",
 "key":"Brian",
 "config":{
 "status":"Single",
 "address":"3303 Hillview Avenue"
 }
 },
 {
 "@objectId":"ShareWriterAgent::Person:Anna",
 "name":"Anna",
 "description":"Anna Person",
 "key":"Anna",
 "config":{
 "status":"Single",
 "address":"3303 Hillview Avenue"
 }
 },
 {
 "@objectId":"ShareWriterAgent::Person:John",
 "name":"John",
 "description":"John Person",
 "key":"John",
 "config":{
 "status":"Single",
 "address":"3303 Hillview Avenue"
 }
 },
 {
 "@objectId":"ShareWriterAgent::Car:BMW",
 "name":"BMW",
 "description":"BMW Car",
 "key":"BMW",
 "config":{
 "color":"blue",
 "license":"6VHM435"
 }
 }
]

44

TIBCO® Enterprise Administrator Developer's Guide

How to Unshare a TeaObject
It is a good practice to unshare a shared object after the purpose for sharing it is complete.

Below is an example of how to unshare a TeaObject after it has been shared:
@TeaOperation(name = "unsharePerson", description = "Unshare a Person object")
public void unsharePerson() throws IOException {
 // Person implements TeaObject and has objectTypeName="Person" in this instance
 // the key="John"
final Person person = new Person("John", "Public John Person");
 //teaAgentServer is an instance of com.tibco.tea.agent.server.TeaAgentServer or
 // com.tibco.tea.agent.server.TeaAgentServlet
final TeaPersistence persistence = teaAgentServer.getPersistence();
persistence.unshare(person);
}

45

TIBCO® Enterprise Administrator Developer's Guide

Object Type Definition: Overview

Within your agent code, you can define an object type using either of two implementation styles—
interface style or annotation style. Your choice of style depends on the characteristics of the product that
the agent manages.

Aspect Interface Style Annotation Style

Defining Object
Types

Define an object type by defining a
class that implements interfaces such
as TopLevelTeaObject, TeaObject or
SingletonTeaObject.

Define a class, then annotate it as an
object type using TeaObjectType or
TeaObjectTypes.

Representing
Product Objects

To represent an object in the product,
your agent code creates a Java
instance of a corresponding class.

To represent an object in the product,
your agent code can use an object
identifier that indexes into a database.

Objects in the
Agent Library

Your agent code can pass these Java
instances to the agent library through
a provider object.

The agent library calls the interface
methods of these instances.

Your agent code and the
agent library share access to
these instances, which could
affect memory
management.

Your agent code passes only object
identifiers to the agent library.

Advantages Java coding style is straightforward. Object identifiers are inexpensive
strings.

One database query can retrieve many
objects.

Disadvantages Instantiating many objects can be
costly. If a product has many
managed objects, then the agent
instantiates many Java objects to
represent them.

Translating between object identifier
strings and object information adds an
additional layer of complexity to your
agent code.

Choosing a Style Appropriate for products with
relatively few managed objects

Appropriate for rapid prototyping

Appropriate for products with many
managed objects

Appropriate for products that already
store objects in a database (including a
flat-file database or a non-persistent
database)

46

TIBCO® Enterprise Administrator Developer's Guide

Interface Style

In interface style, agent code models a managed object type by defining a class that implements
interfaces such as TopLevelTeaObject, TeaObject or SingletonTeaObject.

A separate class represents each object type that you identified in your analysis of the product.

For example, in an oversimplified analysis of a car, you might identify managed objects representing
the car itself, its body, engine and wheels. Your agent would model these managed objects with four
corresponding classes:

● The Car class would implement the interface TopLevelTeaObject, because this class represents the
product itself.

● The CarBody and CarEngine classes would implement the interface SingletonTeaObject, because
each car has only one body and one engine.

● The CarWheel class would implement the interface TeaObject, because each car has more than one
wheel.

Your agent code creates Java instances of these classes to represent each managed object instance in the
product. For example, the agent would instantiate one Car, one CarBody, one CarEngine, and four
instances of CarWheel.

Defining an Object Type in Interface Style
To define an object type in interface style, your agent code models a managed object as a Java class that
implements appropriate interfaces. Then it registers an instance, which lets the agent library call the
interface methods.
We present the general task of defining an object type that can have more than one instance. Singleton
object types and top-level object types are special cases; to see how they differ from this general case,
see Defining a Singleton Object Type in Interface Style and Defining a Top-Level Object Type in
Interface Style.

Procedure

1. Define a class that models the managed object type. Your class must implement the interface
TeaObject.
For example, when modeling a car, we could define a class to represent the wheels.
public class CarWheel implements TeaObject {

 public String getName() {
 // Return the name of the wheel instance,
 // for example, "Wheel 1"
 }

 public String getDescription() {
 // Return the description of the wheel instance,
 // for example, "Front-Left Wheel"
 }

 public String getKey() {
 // Return the key that corresponds to the wheel instance,
 // for example, "Wheel 1"
 }
}

2. Define a corresponding provider class that implements the interface TeaObjectProvider.
public class CarWheelProvider implements TeaObjectProvider<CarWheel> {

 public String getTypeName() {
 // Return the name of the wheel object type.
 return "Wheel";

47

TIBCO® Enterprise Administrator Developer's Guide

 }

 public String getTypeDescription() {
 // Return the description of the wheel object type.
 return "Car wheel";
 }

 public TeaConcept getConcept() {
 // Return the concept type of wheels.
 return TeaConcept.RESOURCE;
 }

 public CarWheel getInstance(final String key) {
 // Return the wheel instance corresponding to the key argument.
 // For example, look-up the key in a hash table.
 ...
 }

}

3. Register an instance of the provider class.
CarAgentServer server = ...
// Register other instances, including the top-level object type.
CarWheelProvider myCarWheelProvider = new CarWheelProvider;
server.registerInstance(myCarWheelProvider);
 ...
server.start();

What to do next

To model aspects of object types in interface style, see these topics:

● Modeling State in Interface Style
● Modeling Configuration in Interface Style
● Modeling Members in Interface Style
● Defining Operations
● Defining References for Object Types with Interfaces

Defining a Singleton Object Type in Interface Style
Defining a singleton object type is a special case of defining an object type. The difference is that a
singleton object type does not require a provider. Alternatively, we might say that its unique instance is
its own provider.

Because a singleton is its own provider, the SingletonTeaObject interface subsumes the other provider
methods (namely, getTypeName, getTypeDescription and getConcept).

Because it is a singleton, it needs no getInstance method.

Procedure

1. Define a class that models the managed object type. Your class must implement the interface
SingletonTeaObject.
For example, when modeling a car, we could define a singleton class to represent the engine.
public class CarEngine implements SingletonTeaObject {

 public String getName() {
 // Return the name of the engine instance;
 return "Engine";
 }

 public String getDescription() {
 // Return the description of the engine instance;
 return "Car Engine";

48

TIBCO® Enterprise Administrator Developer's Guide

 }

 public String getKey() {
 // Return the key that corresponds to the engine instance;
 // for example, "Engine"
 }

 // These methods give the singleton functionality
 // that would otherwise be in the provider.

 public String getTypeName() {
 // Return the name of the engine object type.
 return "Engine";
 }

 public String getTypeDescription() {
 // Return the description of the engine object type.
 return "Car Engine";
 }

 public TeaConcept getConcept() {
 // Return the concept type of the driver.
 // In our model, it's a process that steers the car.
 return TeaConcept.RESOURCE;
 }

}

2. Register the singleton instance of the class.
CarAgentServer server = ...
// Register other instances, including the top-level object type.
CarEngine myCarEngine = new CarEngine;
server.registerInstance(myCarEngine);
 ...
server.start();

Notice that instead of registering the provider, we register the unique instance of the engine class.

Defining a Top-Level Object Type in Interface Style
Defining a top-level object type is a special case of defining a singleton type, with two differences: First,
a top-level object type does not require a getConcept method, because its concept is self-evident (it is
always TeaConcept.TOP_LEVEL). Second, TopLevelTeaObject extends the WithMembers interface, so
you must implement the getMemebers method.

Procedure

1. Define a class that models the managed object type. Your class must implement the interface
TopLevelTeaObject.
For example, when modeling a car, the top-level is the car itself.
public class Car implements TopLevelTeaObject {

 public String getName() {
 // Return the name of the car instance;
 return "Car";
 }

 public String getDescription() {
 // Return the description of the car instance;
 return "Car";
 }

 public String getKey() {
 // Return the key that corresponds to the car instance;
 return "Car";
 }

 // These methods give the top-level object functionality

49

TIBCO® Enterprise Administrator Developer's Guide

 // that would otherwise be in the provider.

 public String getTypeName() {
 // Return the name of the car object type.
 return "Car";
 }

 public String getTypeDescription() {
 // Return the description of the car object type.
 return "Car";
 }

 public Collection<BaseTeaObject> getMembers() {
 // Return the main parts of the car.
 }

}

2. Register the unique instance of the class.
CarAgentServer server = ...
Car myCar = new Car;
server.registerInstance(myCar);
// Register other instances.
 ...
server.start();

Notice that instead of registering the provider, we register the unique instance of the car class.

Access to Instances
Your agent code can give the agent library access to your object instances. The agent library can call
methods of those instances. You can either register a single instances, or register a provider that lets the
agent library request instances on demand.

Access to Instances

Instance Registration

Your stand-alone agent code can register a specific instance by calling TeaAgentServer.registerInstance
(green arrow in the diagram above).

Your servlet agent code can register an instance by including it in the array that is the value of the
servlet's getObjectInstances method.

50

TIBCO® Enterprise Administrator Developer's Guide

On-Demand Access though Providers

Your agent code can also allow access to instances on demand by registering a provider instance. That
is, your agent code:

1. defines an object type class (in interface style) that implements TeaObject

2. defines a corresponding provider class that implements TeaObjectProvider<T extends TeaObject>

3. instantiates a provider object

4. registers the provider object (orange arrow in the diagram)

After this preparation, the agent library can call TeaObjectProvider<T>.getInstance to gain access to any
instance of that object type (red arrow in the diagram).

For more information, see Provider

Access to your instances within the agent library could affect memory management.

Provider Interface

A provider is an object within your agent code that translates instance keys into the corresponding Java
objects.

When an agent defines an object type using the interface style , and that object type has more than one
instance, then the agent must also define a corresponding provider.

Each such object type requires a separate provider class. (Top level object types and singleton object
types do not require providers. Alternatively, one might say that for these types the single instance
serves as its own provider.)

A provider class implements the interface TeaObjectProvider.

The getInstance method of this interface translates from instance keys to Java instances. Recall that the
TIBCO Enterprise Administrator server refers to a managed object using an object ID; when the agent
library receives an ID, it calls this provider method to obtain the actual Java instance that represents
that managed object.

Other methods of the provider interface return information about the object type; for example,
getTypeName. (For object types that have only one instance, the agent code defines these other
methods on the object type class. For example, getConcept is part of the SingletonTeaObject interface.)

Your agent code must create an instance of the provider, and register it with the agent library.

If needed, you can register the Object provider for an interface/class that extends/implements the
TeaObject interface. In this Object provider, you can choose to return instances of objects that
implement this interface. For example, consider an object graph where clusters can have multiple
machine, each machine can have multiple processes. Each process can have engines and an engine can
have multiple cache/query/inference. In this example, the object provider for the engine can be
registered and this object provider can return instances of cache/query/inference. The engine interface is
implemented by cache, query, and inference.

Defining References for Object Types with Interfaces
References allow users to navigate from one object to related objects. To model relationships other than
membership, you can expose a method as a reference. That is, define a method that returns the set of
related objects, and annotate it as a @TeaReference.
When defining the source object type using interface style, define references as explained in this task.

To model a member relationship, implement the WithMembers interface.

51

TIBCO® Enterprise Administrator Developer's Guide

Procedure

1. Declare the method signature.
The method cannot have any parameters, and it must return an array or java.util.Collection of
objects that implement com.tibco.tea.agent.api.BaseTeaObject.
For example, in TIBCO ActiveMatrix, administrators can distribute an application to a set of nodes.
In the agent, the getNodes() method returns an array or java.util.Collection of those nodes. The
Node class implements the BaseTeaObject interface.
 public Node[] getNodes(){
 ...
}

public Collection<Node> getNodes(){
 ...
}

2. Annotate the method as a reference using @TeaReference.
@TeaReference(name = "nodes")
public Node[] getNodes(){
 ...
}

@TeaReference(name = "nodes")
public Collection<Node> getNodes(){
 ...
}

If the reference type class defines more than one object type, then include the objectType attribute,
to distinguish among them.

52

TIBCO® Enterprise Administrator Developer's Guide

Annotation Style

In annotation style, the agent models a managed object type with virtual objects rather than Java
instances. Annotations such as @TeaObjectType encapsulate information about the object types.
Annotations such as @TeaGetInfo indicate methods that interact with the server, providing information
about the virtual objects.

Defining an Object Type in Annotation Style
In annotation style, agent code models a managed object type by defining a class, and marking it with
annotations, such as @TeaObjectType.

Procedure

1. Annotate the object type class as @TeaObjectType. Supply the required attributes—name,
description and concept.

@TeaObjectType(name="TOMCAT_SERVER",
 description="Tomcat Server"
 concept=TeaConcept.PROCESS,)
public class TomcatServerManager {
 ...
}

2. Define a method that translates from an object key to basic information about the object, and
annotate that method as @TeaGetInfo.
This method must return an instance of AgentObjectInfo.

@TeaObjectType(name="TOMCAT_SERVER",
 description="Tomcat Server"
 concept=TeaConcept.PROCESS,)
public class TomcatServerManager {

 @TeaGetInfo
 public AgentObjectInfo getInfo(@KeyParam final String key) {
 Server server = lookupTomcatServer(key);
 AgentObjectInfo result = new AgentObjectInfo();
 result.setName(server.getName());
 result.setDesc(server.getDescription);
 return result;
 }

 Server lookupTomcatServer(String key) {
 ... // domain specific implementation
 }
}

For top-level object types, this method does not accept any arguments. (An object key would be
superfluous because a top-level type can have only one instance.)

3. If the object type has state, define a method that returns the current state of an instance, and
annotate it as @TeaGetStatus.
For details, see Modeling State in Annotation Style

4. If the object type has configuration, define a method that returns the configuration, and annotate it
as @TeaGetConfig.
For details, see Modeling Configuration in Annotation Style

5. If the object type can contain members, define a method that returns the members, and annotate it
as @TeaGetMembers.
For details, see Modeling Members in Annotation Style

53

TIBCO® Enterprise Administrator Developer's Guide

What to do next

Annotations:

To model aspects of object types in annotation style, see these topics:

● Modeling State in Annotation Style
● Modeling Configuration in Annotation Style
● Modeling Members in Annotation Style
● Defining Operations
● Defining References for Object Types with Annotations

Defining Multiple Object Types on One Class
In annotation style, you can use one Java class to model two or more managed object types.

Procedure

1. Annotate the class as @TeaObjectTypes, and include within it a separate @TeaObjectType
annotation for each of the object types that the class can represent.

For example,
@TeaObjectTypes({
 @TeaObjectType(name = "TOMCAT_SERVER",
 concept = TeaConcept.PROCESS,
 description = "Tomcat Server"),
 @TeaObjectType(name = "TOMCAT_WEBAPP",
 concept = TeaConcept.APPLICATION,
 description = "Tomcat Web Application") })
public class TomcatServerManager {
 ...
}

2. For each object type, define a method that translates from an object key to basic information about
the object, and annotate that method as @TeaGetInfo. You must include the objectType attribute in
the annotation, to distinguish the object type to which each such method applies.
@TeaObjectTypes({
 @TeaObjectType(name = "TOMCAT_SERVER",
 concept = TeaConcept.PROCESS,
 description = "Tomcat Server"),
 @TeaObjectType(name = "TOMCAT_WEBAPP",
 concept = TeaConcept.APPLICATION,
 description = "Tomcat Web Application") })
public class TomcatServerManager {

 @TeaGetInfo(objectType = "TOMCAT_SERVER")
 AgentObjectInfo getServerInfo(@KeyParam final String key) {
 ...
 }

 @TeaGetInfo(objectType = "TOMCAT_WEBAPP")
 AgentObjectInfo getWebappInfo(@KeyParam final String key) {
 ...
 }
}

3. Similarly, include the objectType attribute when modeling aspects such as state, configuration,
members, operations and references.

54

TIBCO® Enterprise Administrator Developer's Guide

Defining References for Object Types with Annotations
References allow users to navigate from one object to related objects. To model relationships other than
membership, you can expose a method as a reference. That is, define a method that returns the set of
related objects, and annotate it as a @TeaReference.
When defining the source object type using annotation style, define references as explained in this task.

To model a member relationship, use the @TeaGetMembers annotation.

Procedure

1. Define a reference method that accepts an object key as its parameter, and returns an array or
java.util.Collection of the related objects as instances of
com.tibco.tea.agent.types.AgentObjectIdentifier.
The agent library invokes this reference method in context of the source object, and supplies its
object key as the parameter. Annotate that parameter using @KeyParam. Top-level and singleton
object types can omit this parameter (and its annotation), because only one such object can exist.
For example, in TIBCO Enterprise Messaging System, administrators can define a set of queues. The
getQueues method returns an array or java.util.Collection of AgentObjectIdentifier references that
represent those queues.
public AgentObjectIdentifier[] getQueues(
 @KeyParam final String key){
 ...
}

public Collection<AgentObjectIdentifier> getQueues(
 @KeyParam final String key){
 ...
}

2. Annotate the method as a reference using @TeaReference.
For example, the getQueues method is marked as a reference using the TeaReference annotation.
@TeaReference(name = "queues",
 referenceType = "queueType",
 objectType = "serverType")
public AgentObjectIdentifier[] getQueues(@KeyParam final String key){
 ...
}

@TeaReference(name = "queues",
 referenceType = "queueType",
 objectType = "serverType")
public Collection<AgentObjectIdentifier> getQueues(@KeyParam final String key){
 ...
}

Include the referenceType attribute to indicate the type of element that the object identifiers
represent.
If the source class defines more than one object type, then include the objectType attribute, to
distinguish the TeaObjectType to which the reference method applies (as the source object).

55

TIBCO® Enterprise Administrator Developer's Guide

Aspects for Object Types—Interfaces and Annotations

Supplemental interfaces and annotations let you model aspects of managed objects—such as states,
configuration and references.

The results of your managed objects analysis indicate the aspects of each object type (see Aspects of
Managed Objects). When defining an object type in interface style, implement these interfaces to model
those aspects. When defining an object type in annotation style, use the corresponding annotations to
model those aspects.

Aspect

Interface

com.tibco.tea.agent.api

Annotation

com.tibco.tea.agent.annotations

States WithStatus TeaGetStatus

Configuration WithConfig TeaGetConfig

Members
(containment
relationship)

WithMembers TeaGetMembers

In contrast, to model operations and references you must use an annotation—even in interface style.
See Defining Operations, Defining References for Object Types with Interfaces and Defining References
for Object Types with Annotations.

Modeling State in Interface Style
To model a managed object that has states, implement the supplemental interface
com.tibco.tea.agent.api.WithStatus. WithStatus requires that you implement one method, getStatus,
which returns the current state of a managed object.

See also States Aspect.

Prerequisites

The object is defined in interface style.

Procedure

● Implement the WithStatus interface in your managed object type.
The status method must return an instance of the class com.tibco.tea.agent.types.AgentObjectStatus.
AgentObjectStatus is a standard format for encapsulating state within agents. It has three fields:

state
Required. The state name.

desc
Optional. An interpretive description of the state.

uptime
Optional. The length of time that the managed object has been in this state.
public class TomcatServer implements TeaObject, WithStatus
 ...
 public AgentObjectStatus getStatus() {
 ...
 }
}

56

TIBCO® Enterprise Administrator Developer's Guide

Modeling Configuration in Interface Style
To model a managed object that has configuration, implement the supplemental interface
com.tibco.tea.agent.api.WithConfig<CONFIG>. WithConfig is a generic interface. It requires that you
implement one method, getConfig, which returns a configuration object.

See also Configuration Aspect.

Prerequisites

The container object is defined in interface style.

Procedure

1. Define a configuration bean that encapsulates all the parameters of the managed object.
For example, the configuration of a radio could include changeable settings (such as the frequency
and volume) and unchanging attributes (such as model and serial number).
public class RadioConfig {

 private long frequency;
 private int volume;
 private string model;
 private string serial;

 // Constructors. Get and set methods for each field.
 ...
}

2. Implement the WithConfig<CONFIG> interface in your managed object type. Substitute your
configuration class as the generic type parameter CONFIG.
public class Radio implements TopLevelTeaObject, WithConfig<RadioConfig> {
 ...
 public RadioConfig getConfig() {
 ...
 }
}

3. Declare that the getConfig method returns an instance of your configuration class.
public class Radio implements TopLevelTeaObject, WithConfig<RadioConfig> {
 ...
 public RadioConfig getConfig() {
 ...
 }
}

Modeling Members in Interface Style
To model a managed object that contains other managed objects, implement the supplemental interface
com.tibco.tea.agent.api.WithMembers.
Members indicates a containment relationship. Model any other type of relationship using
@TeaReference. See also References Aspect.

Prerequisites

The container object is defined in interface style.

Procedure

1. Implement the WithMembers interface in your managed object type.
public class TomcatServer implements TeaObject, WithMembers
 ...
 public Collection<BaseTeaObject> getMembers() {

57

TIBCO® Enterprise Administrator Developer's Guide

 }
}

2. Implement the getMembers method to return the set of member objects.
getMembers must return a generic collection of BaseTeaObject (or any compatible type).
For example, the members of a Tomcat server are the web applications that run in the server.
public class TomcatServer implements TeaObject, WithMembers
 ...
 public Collection<BaseTeaObject> getMembers() {
 final Collection<BaseTeaObject> members = new ArrayList<BaseTeaObject>();
 for (final WebApp wapp : this.getWebApps()) {
 members.add(wapp);
 }
 return members;
 ...
 }
}

Implementing this method allows the Tomcat agent to supply the members when the TIBCO
Enterprise Administrator server requests them.

Modeling State in Annotation Style
To model a managed object that has states, implement a method the returns the current state, and
annotate that method as @TeaGetStatus.

See also States Aspect.

Prerequisites

The object is defined in annotation style. Top-level object types cannot have state.

Procedure

● Implement a method to get the state. Annotate it as @TeaGetStatus.
The status method must return an instance of the class com.tibco.tea.agent.types.AgentObjectStatus.
AgentObjectStatus is a standard format for encapsulating state within agents. It has three fields:
state
Required. The state name.

desc
Optional. An interpretive description of the state.

uptime
Optional. The length of time that the managed object has been in this state.
@TeaGetStatus
AgentObjectStatus getStatus(@KeyParam final String key) {
 AgentObjectStatus result = new AgentObjectStatus();
 ...
 return result;
 }

Modeling Configuration in Annotation Style
To model a managed object that has configuration, implement a method that returns a configuration
object, and annotate that method as @TeaGetConfig

See also Configuration Aspect.

Prerequisites

The object is defined in interface style.

58

TIBCO® Enterprise Administrator Developer's Guide

Procedure

1. Define a configuration bean that encapsulates all the parameters of the managed object.
For example, the configuration of a radio could include changeable settings (such as the frequency
and volume) and unchanging attributes (such as model and serial number).
public class RadioConfig {

 private long frequency;
 private int volume;
 private string model;
 private string serial;

 // Constructors. Get and set methods for each field.
 ...
}

2. Define a method that gets the current configuration, returning it as an instance of your
configuration class.
 public RadioConfig getConfig() {
 ...
 }

3. Annotate that method as @TeaGetConfig.
@TeaGetConfig
 public RadioConfig getConfig() {
 ...
 }

Modeling Members in Annotation Style
To model a managed object that contains other managed objects, implement a method that returns an
array or java.util.Collection of members, and annotate that method as @TeaGetMembers.
Members indicates a containment relationship. Model any other type of relationship using
@TeaReference. See also References Aspect.

Prerequisites

The container object and the member object are both defined in annotation style.

Procedure

● Implement a method to get the members. Annotate it as @TeaGetMembers.
The method must return either an array or java.util.Collection of AgentObjectIdentifier instances.
 @TeaGetMembers
 AgentObjectIdentifier[] getMembers(@KeyParam final String key) {
 ...
 }

 @TeaGetMembers
 Collection<AgentObjectIdentifier> getMembers(@KeyParam final String key) {
 ...
 }

com.tibco.tea.agent.types.AgentObjectIdentifier is a standard format for virtual objects within
agents.

59

TIBCO® Enterprise Administrator Developer's Guide

Defining Operations

To expose a method of an object type as an operation, annotate it as @TeaOperation. End users of
TIBCO Enterprise Administrator server can invoke operations.

Annotations declare operations and their components. The TIBCO Enterprise Administrator server uses
that information in its user interfaces.

Procedure

1. Declare the method signature.
An operation method can take parameters. An operation can return either a simple type or an object
that conforms to the Java bean specification.
For example, a Tomcat agent could support a create() method to add a new server to the Tomcat
cluster.
public void create(
 final String name,
 final Integer port,
 Integer ajpPort,
 Integer shutdownPort)
 ...

If multiple agents manage the same object type, they must expose the same set of
operations. Furthermore, corresponding operations must have identical names and
method signatures. This restriction ensures that users can invoke an operation on either
agent (selecting it from a drop-down menu in the GUI).

If multiple versions of an agent must coexist simultaneously, do not modify the method
signature of an existing operation in the new version of the agent.

2. Annotate the method as a @TeaOperation.
In our continuing example, we use the annotation to rename the operation and to supply a
description string—both become part of the product's GUI in the TIBCO Enterprise Administrator
server. We also supply a method type, indicating that this operation effects changes in the product.
@TeaOperation(name = "create server",
 description = "Create a Tomcat server instance",
 methodType = MethodType.UPDATE)
public void create(
 final String name,
 final Integer port,
 Integer ajpPort,
 Integer shutdownPort)
 ...

3. Optional. Annotate the permissions that this operation requires.
@TeaOperation(name = "create server",
 description = "Create a Tomcat server instance",
 methodType = MethodType.UPDATE)
@TeaRequires(value = TomcatAgent.LIFECYCLE_PERMISSION)
public void create(
 ...

Users that have any of the required permissions for the object can execute the operation.
If you omit the @TeaRequires annotation, the default requirement is for the minimum permission,
which is read.
Define permissions using the @TeaPermission annotation.

4. Annotate the method's parameters as parameters of the operation.

60

TIBCO® Enterprise Administrator Developer's Guide

Annotation Description

@KeyParam If one of the parameters receives an object key, then annotate that parameter with
@KeyParam. The server automatically supplies the target object as the argument of
this parameter.

Top-level and singleton object types can omit this annotation, because they have
only one instance.

@TeaParam Annotate each parameter with a parameter name, an optional description and an
optional defaultValue.

The name attribute is required because Java does not preserve parameter names at
run time.

The defaultValue attribute of TeaParam is optional. If you choose to provide it, its
value should be provided in the JSON format.

@TeaOperation(name = "create server",
 description = "Create a Tomcat server instance",
 methodType = MethodType.UPDATE)
public void create(
 @TeaParam(name = "name",
 description = "Name of the Tomcat instance")
 final String name,
 @TeaParam(name = "port",
 description = "Port for HTTP connector")
 final Integer port,
 @TeaParam(name = "ajpport",
 defaultValue = "-1",
 description =
 "Port for AJP connector.
 If value is -1, agent randomly picks a port.")
 Integer ajpPort,
 @TeaParam(name = "shutdownport",
 defaultValue = "-1",
 description =
 "Port for shutting down tomcat.
 If value is -1, agent randomly picks a port.")
 Integer shutdownPort)
 ...

@TeaOperation(name = "changePort", objectType = "server",
 description = "Change the server port")
@TeaRequires(value = { TomcatAgent.UPDATE_PERMISSION })
public void changePort(
 @KeyParam final String key,
 @TeaParam(name = "port", description = "Change to this port.")
 final int port)
 ...

At this stage, these annotations suffice to expose these operations in the default GUI and the shell
UI. The operation bar on the object displays a button that creates a server. That button opens a
default form so the user can enter argument values.

5. Prepare the return value.
An operation method can return a value to the TIBCO Enterprise Administration server. The form
of that value could require preparation within the agent code.

Return Type Description

TeaObject No further preparation. The agent library automatically translates the
TeaObject instance to JSON format before returning it to the server.

Map<String,

Object>

No further preparation. If the operation returns a map of maps, the agent
library automatically converts it to JSON format before returning it to the
server.

61

TIBCO® Enterprise Administrator Developer's Guide

Return Type Description

Java Object The agent library uses Jackson to serialize the Java object to JSON format
before returning it to the server. Two options are available:

● Annotate the Java class using Jackson or JAXB annotation.
● Arrange translation using the Jackson databinding API.

The agent library does not support Jackson's org.json module.

Adding Developer Notes
Within agent code, agent developers can include developer notes for GUI developers. For example, when
changing the agent, the agent developer can include a developer note so the GUI developer can change
the GUI accordingly. We recommend mentioning the version in which each such change occurs.
Developer notes appear when viewing API documentation in developer mode.

Procedure

● Add developer notes at any level within the agent code.
The form for adding a note depends on the level to which the note applies.

Level Description

TeaAgentServer Call the method withDocumentation on your agent's server instance
(before registering the instance). Supply your notes as a string
argument.

TeaAgentServlet In your class that extends TeaAgentServlet, override the
getDeveloperNotes method to return your notes as a string.

TeaObjectType
Interface Style

In your class that extends BaseTeaObject, implement the
withDocumentation interface. Code the getDeveloperNotes method to
return your notes as a string.

TeaObjectType
Annotation Style

In the annotation @TeaObjectType, supply the attribute
developerNotes="my_notes".

TeaOperation In the annotation @TeaOperation, supply the attribute
developerNotes="my_notes".

TeaParam In the annotation @TeaParam, supply the attribute
developerNotes="my_notes".

 private static void setupTomcatAgent(final TomcatAgentConfig
tomcatAgentConfig)
 throws Exception {
 final TeaAgentServer server = new TeaAgentServer("tomcat", "7.0.42",
 tomcatAgentConfig.getAgentInfo(), tomcatAgentConfig.getPort(),
 "/tomcatagent", true);
 server.withDocumentation("Compiled and tested against agent libr V5.");
 server.registerInstance(new TomcatAgent(tomcatAgentConfig, server));
 server.registerInstance(new TomcatServer(tomcatAgentConfig, server));
 ...

@TeaObjectType(name = TomcatAgentUtil.SERVER,
 concept = TeaConcept.PROCESS, description = "Tomcat Server",
 developerNotes="Unchanged in V5.")
public class TomcatServer {

 private final TomcatAgentConfig tomcatAgentConfig;
 private final TeaAgentServer teaAgentServer;

62

TIBCO® Enterprise Administrator Developer's Guide

 public TomcatServer(final TomcatAgentConfig tomcatAgentConfig,
 final TeaAgentServer server) {
 this.tomcatAgentConfig = tomcatAgentConfig;
 this.teaAgentServer = server;
 }

 // http://host:port/tomcatagent/server/{key}/changeport?port=8080
 @Customize(value = "label:Change port;icon:edit_16x16.png")
 @TeaOperation(name = "changePort", objectType = "server",
 description = "Change the server port",
 developerNotes="From v4 onward, throws IOException.")
 @TeaRequires(value = { TomcatAgent.UPDATE_PERMISSION })
 public void changePort(@KeyParam final String key,
 @TeaParam(name = "port", description = "",
 developerNotes="In V5, added validation that value is in range
[1000-2000].")
 @Customize(value = "label=Port") final int port)

Specifying the Availability of TeaOperations in TIBCO Enterprise
Administrator Clients

Users can connect to the TEA server using one of three clients - the TEA Web User Interface, the Shell,
and Python scripts. However, not all TEA operations can be supported in all clients. When coding a
method that is annotated with TeaOperation, the agent developer can specify which clients expose that
operation.

To do so, in the TeaOperations annotation, supply the attribute hideFromClients, which can have one
or more of the following values:

ANY - operation is not available to any client

PYTHON - operation not available from the Python client

SHELL - not available from the Shell

WEB_UI - not available in the Web User Interface

If you do not specify this attribute, the operation will be exposed in all clients.

Example - using a single value

@TeaOperation(name = NAME, description = "Ping agent",

hideFromClients={ClientType.ANY})

Example - using multiple values

@TeaOperation(name = NAME, description = "Ping agent",

hideFromClients={ClientType.SHELL, ClientType.PYTHON})

The internal attribute has been deprecated. Use the hideFromClients attribute instead.

If the TeaOperations name contains an invalid character, the operation will not be available in the
Python binding. You can retrieve a list of omitted operations at the respective object types. For
example, you can retrieve the list of omitted operations for a provisional product and it's members as
follows :
>>> import tibco.tea
>>> tea = tibco.tea.EnterpriseAdministrator()
>>> prod = tea.product_with_provisional_api(<product_name>)
>>> prod.omitted_operations
>>> prod.members[<member_name>].omitted_operations

63

TIBCO® Enterprise Administrator Developer's Guide

Passing Data Streams to Operation Methods
TeaOperation methods can accept data streams (such as file data) from the server. The default GUI
makes it easy to select a file and pass its data content to an agent method.

Procedure

1. Define an operation with a parameter of type javax.activation.DataSource, and annotate it as a
@TeaParam.

@TeaOperation(name = "upload", description = "Upload File")
public void uploadFile(
 @TeaParam(name = "filepath", description = "File to Upload")
 final DataSource fileDataSource)
 throws IOException {
 ...
}

The default GUI lets a user select a file from the local file system. The server passes the file's
contents to the agent as an argument to the operation method. The agent specifies this behavior
with the example code shown in bold above—specifically, the parameter type.

2. Use the data stream in the method body.
In this example, the method writes the data stream to a temporary file, effectively transferring the
data from the user's host computer to the agent's host computer.
{
 byte[] buffer = new byte[8 * 1024];
 String name = fileDataSource.getName();
 FileOutputStream writerStream = new FileOutputStream(name, true);
 final InputStream inputStream = fileDataSource.getInputStream();
 int read;
 while((read = inputStream.read(buffer)) > 0)
 {
 writerStream.write(buffer, 0, read);
 }
 inputStream.close();
 writerStream.flush();
 writerStream.close();
}

Customizing Parameters of an Operation in the Shell Interface
You can modify an operation's usage syntax in the shell interface. Operations can accept named or
positional parameters. You can shorten a named parameter by defining an alias.
In the shell interface, an operation can accept two kinds of parameters:

● Named parameters. Users specify each parameter as a flag (such as -aa value). Users can supply
named parameters in any order relative to one another. Named parameters precede all positional
parameters.

● Positional parameters. Users supply positional parameters in a specific order, parallel to the order of
parameters in the operation method signature.

Prerequisites

You have already annotated the operation's parameters with @TeaParam. You have specified the name
attribute, as required.

Procedure

1. Determine the syntax of each parameter.

64

TIBCO® Enterprise Administrator Developer's Guide

Specify that syntax as the value of the usage attribute within the @TeaParam annotation. Supply a
value enumerated by AgentParamUsage.

Value Description

NAMED Named parameter.

POSITIONAL Positional parameter.

LEGACY Backward compatibility. When usage is absent, this is the default behavior.

The usage attribute is new in release 1.2.0. In earlier releases the combination of
name and alias attributes determined whether the parameter syntax was
positional or named. To preserve that behavior in later releases, supply this value.

Definition
public String testA(
 @TeaParam(name = "aa", description = "AA parameter",
 usage = AgentParamUsage.POSTITIONAL)
 final long[] greetings)

Resulting Usage
shell> testA [12 15]

2. Optional. Specify a parameter alias.
Sometimes the name of a parameter is too long to use as an option flag. You can supply a shorter
flag as the value of the alias attribute within the @TeaParam annotation.

Alias is available only for named parameters; it has no effect on positional parameters.
Definition
public String testB(
 @TeaParam(name = "awkwardly_long_parameter",
 description = "A parameter with a long name",
 usage = AgentParamUsage.NAMED,
 alias="bb")
 final long[] greetings)

Resulting Usage
shell> testB -awkwardly_long_parameter [12 15]
shell> testB --awkwardly_long_parameter [12 15]
shell> testB -bb [12 15]
shell> testB --bb [12 15]

Getting the User Name of the Logged In User
In the TIBCO Enterprise Administrator, when a currently logged in user invokes an operation on the
product through its Agent, the name of the logged in user who is invoking this operation can be made
available to the Agent.
This can be done by adding a parameter whose type is com.tibco.tea.agent.api.TeaPrincipal. No
TeaParam annotation is needed for this method parameter. In the method code, the getName() method
of the TeaPrincipal class can be invoked to get the name of the user who invoked the operation.

Procedure

● Pass the TeaPrincipal as a parameter in the uploadFile method:
@TeaOperation(name = "upload", description = "Upload File")
public void uploadFile(
@TeaParam(name = "filepath", description = "File to Upload")
final DataSource fileDataSource, TeaPrincipal teaPrincipal)
throws IOException
{ String userName = teaPrincipal.getName(); ... }

65

TIBCO® Enterprise Administrator Developer's Guide

Object ID

Every object addressable by the TIBCO Enterprise Administrator server must have a unique object ID.
The object ID must identify an agent and an object managed by that agent.

All TIBCO Enterprise Administrator object IDs have the following structure:
<agentID>:<agentType>:<agentVersion>:<objectType>:<objectKey>

The agentId, agentType, agentVersion, objectType and objectKey tokens are URL encoded and the
character colon ':' is allowed in those tokens.

Object ID tokens

agentID

Specifies the agent that owns a requested object or collection.

Ensure that the Agent IDs are reproducible using only the sort of information that external
applications use to identify related objects. For example, an EMS server would base its Object id either
on the JNDI name of the connection factory or on the connection URL (possibly with a well-known,
hard-coded prefix such as "jndi:" or "url:"). Avoid using Agent IDs that contain random numbers,
internal-use-only keys or other difficult-to-reproduce information. Agent developers must address
this issue to support pivoting.

An effective agent ID must not begin with "_". All strings beginning with "_" are reserved for TIBCO
Enterprise Administrator.

agentType

Name of the Agent type.

Agent type names must not begin with "_". All strings beginning with "_" are reserved for TIBCO
Enterprise Administrator.

agentTypeVersion
Version of the Agent type.

objectType

Name of the Object type.

Object type names must not begin with "_". All strings beginning with "_" are reserved for TIBCO
Enterprise Administrator. The name "agent" is reserver for use by TIBCO Enterprise Administrator.

objectKey

A key to show details about a specific object instance.

The object key is an opaque string. The pair (agentID, objKey) must be unique among all objects that
share the same pair (agent type, object type).

An effective object key should not begin with "_". All strings beginning with "_" are reserved for
TIBCO Enterprise Administrator.

66

TIBCO® Enterprise Administrator Developer's Guide

Solution

A solution defines a set of managed objects that can be managed by agents other than the one defining
the solution.

A solution can contain objects defined by the agent and can have links to other objects. A Solution must
be registered before an agent is started.

For example,
final TeaSolution solution = new TeaSolution("sampleSolution", "This is my sample
solution");
 // Add tomcat reference
 final TeaObjectHardLink hl = new TeaObjectHardLink() {

 @Override
 public String getName() {
 return "Tomcat";
 }

 @Override
 public String getDescription() {
 return "Link to tomcat";
 }

 @Override
 public String getObjectID() {
 return "Tomcat:::server:t1";
 }
 };
 solution.addMembers(devNode, platformapp, hl);
 server.registerSolution(solution);
 server.start();

Customizing the Solution

The setCustomization method takes a String parameter to customize the UI for the solution. The
following snippet shows an example of customizing the solution:

solution.setCustomization("{ " +
"\"solutionName\": \"SampleProductAgent Solution\"," +
"\"title\": \"SampleProductAgent\"," +
"\"subtitle\": \"SampleSolution\"," +
"\"columns\": [" +
"{ \"label\": \"name\", \"expr\": \"name\", \"entityLink\": true }," +
"{ \"label\": \"agent name\", \"expr\": \"agentId\"}," +
"{ \"label\": \"type\", \"expr\": \"type.name\" }," +
"{ \"label\": \"description\", \"expr\": \"desc\" }," +
"{ \"label\": \"status\", \"expr\": \"status.state\" }" +
"]" +
"}");

The String passed to the method can customize the following:

● Solution Name
● Title
● Subtitle
● Columns of the table

67

TIBCO® Enterprise Administrator Developer's Guide

Permissions

TIBCO Enterprise Administrator permits access to objects and operations based on permissions,
privileges, roles and requirements.

Key terms

User
Users are entities that need access to the system. Each user might need a different level of access.
Users can be assigned to one or more roles. TIBCO Enterprise Administrator does not manage users;
instead, it maps user information from external systems (such as an LDAP).

Group
A group is a subset of users within an organization. A user can belong to multiple groups and a group
can contain multiple users. Groups simplify the administration of access. Instead of specifying the
access permissions for each user, administrators specify access permissions for the groups to which
users belong.

Realm
A security realm comprises mechanisms for protecting TIBCO Enterprise Administrator resources. A
realm contains users and groups, and their security credentials. TIBCO Enterprise Administrator
supports two kinds of realms: an internal database within the server (which is the factory default) and
an LDAP. In an internal database realm, information about users and groups is stored in a file. In an
LDAP realm, the information exists on an LDAP server, and the TIBCO Enterprise Administrator
server requests that information from the LDAP server.

Permission
A permission is a string that TIBCO Enterprise Administrator uses to enforce access control. The agent
determines the granularity of the permissions that it defines. For example, you could define a
permission UpdateConfig which applies to only one operation. In contrast, the built-in permission
full_control applies to all agents.

Privilege
A privilege is a collection of permissions. Define privileges to simplify the administrator's task of
assigning permissions to users and groups.

Role
A role is a collection of privileges. Administrators assign roles to users or groups. A user receives all
the permissions in all the privileges in all its roles.

Defining Permissions and Requirements

You can define permissions with the @TeaPermission and @TeaPermissions annotations.

For example:
@TeaObjectType(name = TomcatAgentUtil.TOMCAT, concept = TeaConcept.TOP_LEVEL,
 description = "Tomcat TIBCO Enterprise Administrator SDK Agent")
 @TeaPermissions({
 @TeaPermission(name = TomcatAgent.LIFECYCLE_PERMISSION,
 desc = "Permission to create/start/stop server, webapp"),
 @TeaPermission(name = TomcatAgent.UPDATE_PERMISSION,
 desc = "Permission to update configurations of server, webapp") })

 public class TomcatAgent {
 ...
 }

Use the @TeaRequires annotation to specify the permissions that a user needs to execute each
operation. If an operation method does not require any permissions, then any user can invoke that
operation.

68

TIBCO® Enterprise Administrator Developer's Guide

Effective Permissions

The server uses this algorithm to compute the set of privileges that apply to a user:

1. Gather all the roles assigned to the user.

2. Gather all the roles assigned to groups to which the user belongs.

3. Gather all the privileges from all those roles.

4. Gather all the permissions from all those privileges.

Built-In Permissions

These permissions are built into the server, and are always available:

TeaPermission.READ
Read-only permission.

TeaPermission.FULL_CONTROL
Full access to all objects and all operations.

Roles
Roles are the central mechanism that administrators use to allot permissions to users. A role is a
collection of privileges. When an administrator assigns a role to a user or group, the user or group
receives all the permissions in the role.

Agent code can define roles using annotations. Registering an agent with the server makes all the roles
that it defines available on the server. A role remains available until the administrator unregisters the
last agent that defines the role.

If the server already contains a role with a given name, then any subsequent definition of a role with
the same name has no effect.

(Administrators can also define roles directly on the server.)

This example defines two roles—one for Tomcat administrators and one for regular users:
@TeaRoles({
 @TeaRole(name = "Tomcat Admin", desc = "Manage all tomcat servers",
 privileges = { @TeaPrivilege(permissions =
 { TeaPermission.FULL_CONTROL }) }),
 @TeaRole(name = "Tomcat User", desc = "Read only access to all tomcat
 servers", privileges = { @TeaPrivilege(permissions = {
 TeaPermission.READ, TomcatAgent.UPDATE_PERMISSION }) })
 })

public class TomcatServer {

 @TeaRequires(TeaPermission.FULL_CONTROL)
 public void changePort(@KeyParam final String key,
 @TeaParam(name = "port", description = "New port number to use")
 @Customize(value = "label=Port")
 final int port) throws TeaIllegalArgumentException {
 // code
 }
}

TeaRole

@TeaRole defines a role. A role becomes available in the TIBCO Enterprise Administrator server only
after the administrator registers an agent of a specific agent type for the first time. The role remains
until the administrator unregisters the last agent of that agent type. If the role is already available on
the server, the server ignores the redundant definition.

69

TIBCO® Enterprise Administrator Developer's Guide

TeaRoles
@TeaRoles groups multiple roles that apply to the same object type class.

TeaPrivilege
@TeaPrivililge defines a privilege within a role, specifying its set of permissions.
You can specify these elements within @TeaPrivilege:

permissions
A list of permissions that are applicable to this role.

objectType
The object type to which a privilege applies. When absent, the default value is all.

70

TIBCO® Enterprise Administrator Developer's Guide

User Interface Customization

The UI can be customized using an external file.

The file format of the customization file is JSON. If the customization file is provided as a part of the
custom static resource, the file must be named customization.json and placed in the top-level folder.
The file should contain a single object. The object members are individual customization rules, where
the member name is the selected attribute and the member value is the customization value. See the
section, Running TIBCO Enterprise Administrator SDK Agent Library in Server mode.

If there are errors in the customization.json file, you will not be able to register agents. In such cases,
stop the TIBCO Enterprise Administrator server, delete the data folder, restart the server, and then
register the agent.

Java/C++ style comments (both '/'+'*' and '//') are supported in customization.json file.

Syntax for the customization rules:
<Object Type Name>#<Operation Name>#<Method Type>.<Parameter Name>

Syntax for the customization of references:
<Object Type Name>@<TeaReference Name>

The following is an example for customizing the references in the EMS sample provided with the
product:
 "EMS" : {
 "label": "TIBCO Enterprise Messaging Service",
 "app" : {
 "name": "ems-app",
 "modules": {
 "$strap.directives": "/tea/vendor/angularstrap/angular-
strap.min.js",
 "ems": "scripts/ems.js"
 }
 },
 "views": {
 "default": {
 "template": "partials/ems.html",
 "app": "ems-app"
 }
 }
 },

 "EMS#registerEmsServer#UPDATE": {
 "label": "Register EMS Server"
 },

 "EMS#registerEmsServer#UPDATE.serverName": {
 "label": "EMS Server Name"
 },

 "EMS@members": {
 "title": "Servers",
 "columns": [
 { "label": "name", "expr": "name", "entityLink": true },
 { "label": "version", "expr": "config.versionInfo" },
 { "label": "status", "expr": "status.state" }
]
 },
 "server@queues": {
 "title": "Queues",
 "columns": [
 { "label": "name", "expr": "name", "entityLink": true },
 { "label": "pending message count", "expr":
"config.pendingMessageCount" },
 { "label": "pending message size", "expr":

71

TIBCO® Enterprise Administrator Developer's Guide

"config.pendingMessageSize" }
]
 },
 "server@topics": {
 "title": "Topics",
 "columns": [
 { "label": "name", "expr": "name", "entityLink": true },
 { "label": "pending message count", "expr":
"config.pendingMessageCount" },
 { "label": "pending message size", "expr":
"config.pendingMessageSize" }
]
 }
}

code explanation:

● "EMS@members": is the reference for the object type server

● "title": "Servers": is the custom title which can also be defined using the "label" flag

● "columns": indicates the number of columns. In this case, it is 3.

— "label": is the title of the column.

— "expr": is the content in the column.

— "entityLink" is a toggle that can be either true or false. Indicates that a cell can be displayed
as a link to an entity page.

The following additional properties can be set:

● "collapsed": this property can be set on a reference. If set, the panel containing the reference will
be collapsed, on display.

● "referenceOrderIs": is the order in which a reference is displayed. For example,
"referenceOrderIs": ["foo", "bar"] indicates that "foo" is displayed before "bar".

● "confirm": this property can be set on an operation. If set to false, the confirmation dialog is
skipped.

@Customize(value="confirm:false") is not applicable for operations on TopLevelObject type.

Usage

{
 "CustomUI" : {
 "app" : {
 "name": "custom",
 "modules": {
 "dependency" : "scripts/dependency.module.js",
 "test" : "scripts/test.module.js"
 },
 "libraries" : ["scripts/test.library.js"],
 "stylesheets" : ["css/test.css", "css/test1.css"]
 },
 "views" : {
 "default": {
 "template": "mypage.html",
 "app": "custom"
 }
 }
 },
 "CustomApp" : {
 "views" : {
 "default": {
 "template": "mygrouppage.html",
 "app": "custom"

72

TIBCO® Enterprise Administrator Developer's Guide

 }
 }
 }
}

where the customization properties are as follows:

Property Description

app Configures an AngularJS application.

The app property is only supported by an
instance of TopLevelObject.The property takes
the following values:

1. name: defines the name of the application,
will default to the name of the
TopLevelObject.

2. libraries: an array of paths of javascript files.
Paths are relative to the static resource folder.
Libraries are loaded before the modules get
loaded. They are loaded in the order they
occur in the array.

3. modules: is a map that maps module names
to the path of the javascript file that point to
the module. Paths are relative to the static
resource folder. Modules are loaded after
libraries.

4. stylesheets: an array of paths of css files.
Paths are relative to the static resource folder.
Stylesheets are loaded before the app is
initialized and they maintain the order of the
array.

views Applies to all object types. The value taken by
this property is a Map. The map maps the view
to the view definition as an object. The view
definition contains the following properties:

1. template: path to the HTML partial to load in
the page. Paths are relative to the static
resource folder.

2. app: name of the app defined by the agent.

label Applies to all object types. The value is the name
of the object to be displayed on the UI. The label
of the TopLevelObject is used as the product
name.

Configuring multiple .js files in customization.js

Use an array to configure more than one .js file in the customization.js file. For example, in the EMS
sample provided above, you would configure multiple files as follows:
"ems": ["scripts/ems.js", "scripts/ems1.js", "scripts/ems2.js"]

73

TIBCO® Enterprise Administrator Developer's Guide

The files must be listed in the correct order of dependency. In the example above, ems.js is the main
file, so it should be mentioned first in the array. ems2.js is dependent on ems1.js, so ems2.js must be
placed after ems1.js. If there are no dependencies, the files can be listed in any order.

Selecting a Specific Version of the TIBCO Enterprise Administrator UI
Library

TIBCO Enterprise Administrator allows you to set the tea_version attribute in the
customization.json file which automatically allows you to use the versions of AngularJS,
AngularStrap, and Bootstrap supported in TIBCO Enterprise Administrator.

Prerequisites

The tea_version attribute is available in TIBCO Enterprise Administrator 2.0 and later.

The angular_version attribute has been deprecated in TEA 2.0. The agents developed using the 1.3 or
earlier version of the agent library can be used with TIBCO Enterprise Administrator 2.0 server without
any modifications.

Procedure

● In the static resources folder of the agent, edit the file customization.json. Within the app
definition, set the attribute tea_version.
For example, the customization.json file for the Tomcat sample would be:
{
 "tomcat": {
 "app": {
 "name": "tomcat-app",
 "modules": {
 "$strap.directives": "/tea/vendor/angularstrap/angular-strap.min.js",
 "tomcat": "scripts/tomcat.js"
 },
 "tea_version": "2.0"
 },
 }
 }

Setting the tea_version attribute to 2.0 will use the following versions of these software:

Software Version

AngularJS 1.2.14

AngularStrap 2.1.0

Bootstrap 3.2.0

Keep the following in mind:

● If the user interface has not been customized, the latest versions of AngularJS, AngularStrap,
and Bootstrap supported by TEA get loaded.

● If the user interface has been customized and you set the attribute tea_version=2.0, the latest
versions of AngularJS, AngularStrap, and Bootstrap supported by TEA get loaded.

● If the user interface has been customized and you have used the angular_version attribute,
the specified version of AngularJS(supported by TEA), AngularStrap v0.7.8, and Bootstrap
v2.3.2 get loaded.

● If the user interface has been customized and neither the tea_version nor the angular_version
attribute is set, the AngularJS v1.0 , AngularStrap v0.7.8, and Bootstrap v2.3.2 get loaded.

74

TIBCO® Enterprise Administrator Developer's Guide

Linking Across Two Products
You can allow the agent of one product to cross-link to an object contributed by another agent. For
example, assuming that TIBCO ActiveMatrix and TIBCO Enterprise Message Service Agents are
registered with the TIBCO Enterprise Administrator server, when looking at an TIBCO ActiveMatrix
configuration, a TIBCO Enterprise Administrator operator can click the configured TIBCO Enterprise
Message Service link and see the Enterprise Message Service management screens. In other words,
TIBCO Enterprise Administrator operators can seamlessly access an asset by seamlessly traversing
different products whose Agents are registered with the TIBCO Enterprise Administrator server.

You can achieve cross product linking using the teaObjectService.load javascript API (through
customized User Interface from the agent code and TeaObjectHardLink API (TeaReference returning
instances of TeaObjectHardLink object) provided by the TIBCO Enterprise Administrator Agent
library. This will cause a link (to the object being linked to) to appear in the TIBCO Enterprise
Administrator User Interface. If the agent whose object is being linked to is not registered or the object
that is being linked to is unreachable, the link for the object will behave according to how you have
customized it to behave in your Agent code.
The teaObjectService.isProductRegistered javascript API can be used to figure out if a particular
product is registered with the TIBCO Enterprise Administrator server or not. This can be used to solve
a use case where an agent wants to leverage an operation contributed by another product. If this
product is not registered then the link for the object will behave according to how you have customized
it to behave in your Agent code.

Prerequisites

The following procedure is an example that assumes that the Agents of both TIBCO ActiveMatrix and
the TIBCO Enterprise Message Service are registered with the TIBCO Enterprise Administrator server.

Procedure

1. Use the teaObjectService.load (in the agent code where you customize the TIBCO Enterprise
Administrator User Interface) function to retrieve TeaObject to be linked by passing ObjectId. For
example,
teaObjectService.load(
{agentId: "ems", agentType: "EMSAgent", objectType: "server", objectKey:
"s1"}).then(function (object)
 {
 $scope.emsServer1.teaObject=object;
 },function (object)
 {
 $scope.emsServer1.errorMessage=object.message;
 });

2. Use the TeaObjectHardLink interface (java-side of TIBCO Enterprise Administrator Agent) to create
the link (to the object being linked to) to appear in the TIBCO Enterprise Administrator User
Interface. For example,
@Customize("label:EMS Queues")
 @TeaReference(name = "queues")
 public BaseTeaObject[] getEmsQueues() {
 final TeaObjectHardLink hl1 = new TeaObjectHardLink() {

 @Override
 public String getName() {
 return "sample";
 }

 @Override
 public String getDescription() {
 return "Sample queue";
 }

 @Override

75

TIBCO® Enterprise Administrator Developer's Guide

 public String getObjectID() {
 return "ems:EMSAgent::queue:s1%3Asample";
 }
 };
 final TeaObjectHardLink hl2 = new TeaObjectHardLink() {

 @Override
 public String getName() {
 return "doesNotExist";
 }

 @Override
 public String getDescription() {
 return "This queue does not exist";
 }

 @Override
 public String getObjectID() {
 return "ems:EMSAgent::queue:s1%3AdoesNotExist";
 }
 };
 return new BaseTeaObject[] {hl1, hl2};
 }

3. Use the teaObjectService.isProductRegistered javascript API (in the agent code where you
customize the TIBCO Enterprise Administrator User Interface) to figure out if the product is
registered with the TIBCO Enterprise Administrator server or not. For example,
teaObjectService.isProductRegistered(
{agentTypeName: "EMSAgent", agentTypeVersion: "0.13"}).then(function (object) {
 $scope.emsProduct=true;
 }, function(object) {
 $scope.emsProduct=false;
 ...
 ...

76

TIBCO® Enterprise Administrator Developer's Guide

Reference to Customize the User Interface

You can use the AngularJS concepts to customize the user interface. AngularJS offers services, filters,
and directives to customize the UI.

Services
teaLocation, teaObjectService, teaScopeDecorator, and teaAuthService are some of the services that can
help with UI customization.

teaLocation
This service is available under tea. services. The teaLocation service parses the URL in the browser
address bar (based on AngularJS $location) and makes the URL available to your application. Changes
to the URL in the address bar are reflected into teaLocation service. Use teaLocation to navigate from
one page or view to another.

Do not to directly edit AngularJS $location in your application.

URLs in TIBCO Enterprise Administrator have the following form:http://localhost:8777/tea/
view/{agentType}/{objectType}/{viewName}[?{query}]

Dependencies

● $rootScope
● $window
● $location
● teaObjectService
● $log

Methods

goto
The goto function causes the browser to navigate to a TIBCO Enterprise Administrator screen that is
registered by the specified agent and which displays a particular view of a particular type of object.

Parameters

● params – {object} – Parameters object containing the following properties ([propKey] indicates
that a property is optional):

— agentType - {string} - The agent name. Used to set agent token in the URL.
— objectType - {string} - The object type. Used to set objType token in the URL.
— [viewName] - {string} - The view name. Used to set objView token in the URL. If no view is

specified, the view name will be '_'. This property is optional.
— [query] - {object} - Query object. Specifies name-value pairs that will be added as query

parameters within the URL. This property is optional.

Properties

info

This object allows the implementers of statelessly navigable TIBCO Enterprise Administrator screens to
bind to the information that was provided in the URL, without having to hard-code the URL structure
everywhere.

77

TIBCO® Enterprise Administrator Developer's Guide

Parameters appearing in teaLocation.info will have been automatically URL-decoded. TIBCO
Enterprise Administrator does not impose any limitations on the characters being used in object keys,
query parameters, etc. The query string may contain any valid UTF-8 character. As a result, screen
developers should not need to implement URL encoding or decoding for these parameters, as this is
provided by teaLocation.

Returns

● {object} – object with the following properties:

— agentType - {string} - The agent type token in the URL.
— objectType - {string} - The object type token in the URL.
— viewName - {string} - The view name token in the URL. If no view is specified, the view

name will be '_'. This property is optional.
— query - {object} - the query token from the URL, as name-value pairs.

Events

teaLocationChangedSuccess
Broadcasted when the change of URL has been processed by teaLocation.
Type: broadcast
Target: root scope

Parameters

● event - {object} - Synthetic event object.
● newInfo - {object} - info property that represents information about the new URL. See

teaLocation.info for more information about the attributes of this object.
● oldInfo - {object} - info property that represents information about the old URL. See

teaLocation.info for more information about the attributes of this object.

Usage

The goto method facilitates linking from one screen to another. It allows the implementers of TIBCO
Enterprise Administrator screens to support pivoting to related objects, without having to hard-code
the URL structure everywhere and without needing to know details of how TIBCO Enterprise
Administrator accomplishes the link.

teaLocation.goto() will automatically URL-encode the query string parameters. TIBCO Enterprise
Administrator does not impose any limitations on the characters being used in object keys, query
parameters, etc. The query string may contain any valid UTF-8 character. As a result, screen developers
should not need to implement URL encoding or decoding for these parameters, as this is provided by
teaLocation.

Example

One of the BusinessWorks screens within TIBCO Enterprise Administrator displays details about an
AppNode. This screen contains a table of Apps that are associated with the AppNode. Each row in the
table shows a very brief summary view of one App. The first column in the table shows the App's
unique ID from the BusinessWorks object model. This value is rendered as a link. If the user clicks on
the link, TIBCO Enterprise Administrator navigates to the TIBCO Enterprise Administrator screen that
displays details about a single App.

One of the BusinessWorks screens within TIBCO Enterprise Administrator displays details about a
process. This screen contains a table of SAP Adapter Endpoints that are associated with the process.
Each row in the table shows a very brief summary view of one SAP Adapter Endpoint, with
information retrieved from BusinessWorks's own process model. The first column in the table shows

78

TIBCO® Enterprise Administrator Developer's Guide

the SAP Adapter Endpoint's ID. This value is rendered as a link. If the user clicks on the link, TIBCO
Enterprise Administrator navigates to the screen that displays details about a single SAP Adapter
Endpoint. Note that this screen is not contributed to TIBCO Enterprise Administrator by the
BusinessWorks agent, but rather by the SAP Adapter agent. The information about this agent - agent
name, agent version, available object types, available views, etc - is published as a spec by the Adapters
team and used by the BusinessWorks team when developing the BusinessWorks UI.

teaObjectService
This is a service available under tea.services. The objectService is a factory which creates TeaObjects
providing data from TIBCO Enterprise Administrator Server and agents.

Dependencies

● $q
● $http
● $rootScope

Methods

load
The load function causes the browser to emit an AJAX call to the server to retrieve a TIBCO Enterprise
Administrator object.

Parameters

● paramsObject – {object} – Parameters object containing the following properties ([propKey]
indicates that a property is optional):

— agentType - {string} - The agent type name. Used to set agent type token in the Object ID.

— objectType - {string} - The object type. Used to set objType token in the Object ID.

— [agentID] – {string} – The agent ID. Used to set agentID in the Object ID. Not needed if
there is only one agent of a given agentType.

— [objectKey] – {string} – The object key. Used to set objectKey in the Object ID. Not needed
if the object is a singleton.

Returns

{Promise} – Returns a promise that will be resolved with the object requested as TeaObject

loadPath
The loadPath function causes the browser to emit an AJAX call to the server to retrieve a TeaObject.

Parameters

path – {string} – path of the object following members relation from the root object.
Returns

{Promise} – Returns a promise that will be resolved with the object requested as TeaObject

loadType
The loadType function causes the browser to emit an AJAX call to the server to retrieve a TeaObject
type.

Parameters

typeName – {string} – typeName string following the format agentType:agentVersion:objectType.
Returns

79

TIBCO® Enterprise Administrator Developer's Guide

{Promise} – Returns a promise that will be resolved with the object requested as TeaObjectType

invoke
The invoke method invokes an operation on an object. An AJAX call is made to the server that uses
object meta-data to invoke the object operation on the agent managing this object.

Parameters

paramsObject – {object} – Parameters object containing the following properties ([propKey]
indicates that a property is optional):

● agentType – {string} – The agent type name. Used to set agent type token in the Object ID.

● objectType – {string} – The object type. Used to set objType token in the Object ID.

● [agentID] – {string} – The agent ID. Used to set agentID in the Object ID. Not needed if there is
only one agent of a given agentType.

● [objectKey] – {string} – The object key. Used to set objectKey in the Object ID. Not needed if
the object is a singleton.

● operation – {string} – String parameter defining the operation name to invoke

● methodType – {string} – String parameter defining the method type i.e. READ, UPDATE or
DELETE

● params – {object} – Object parameter defining arguments of the operation invocation.

requireHeaders - {boolean} - If this parameter is true, then the returned Promise will be resolved
with object containing response and http headers.

Returns

{Promise} – Returns a promise that will be resolved with the response object of the operation.

query
The query method queries the agent and retrieves an array of TeaObject instances. An AJAX call is
made to the server that uses object meta-data to retrieve the object data from the agent managing the
specified type of object.

The intended use case for this query is to support lists.

The query operation invokes the agent READ operation named query on the given object. That
operation can be defined using standard mechanism to define object operations inside TIBCO
Enterprise Administrator agents.

Parameters

paramsObject – {object} – Parameters object containing the following properties ([propKey]
indicates that a property is optional):

● agentType – {string} – The agent type name. Used to set agent type token in the Object ID.

● objectType – {string} – The object type. Used to set objType token in the Object ID.

● [agentID] – {string} – The agent ID. Used to set agentID in the Object ID. Not needed if there is
only one agent of a given agentType.

● [objectKey] – {string} – The object key. Used to set objectKey in the Object ID. Not needed if
the object is a singleton.

● params – {object} – Object parameter defining arguments of the operation invocation.

Returns

{Promise} – Returns a promise that will be resolved with the objects requested as Array<TeaObject>

80

TIBCO® Enterprise Administrator Developer's Guide

reference
The reference operation queries the agent and retrieves an array of TeaAgent instances. An AJAX call
is made to the server that uses object meta-data to retrieve the object data from the agent managing
the specified type of object.

The intended use case for this reference is to support relationship lists. query needs parameters while
reference is named. A reference is navigable which means that the TIBCO Enterprise Administrator
server can retrieve the list of objects based only on meta-data. This allows the reference results to be
indexed.
Parameters

paramsObject – {object} – Parameters object containing the following properties ([propKey]
indicates that a property is optional):

● agentType – {string} – The agent type name. Used to set agent type token in the Object ID.

● objectType – {string} – The object type. Used to set objType token in the Object ID.

● [agentID] – {string} – The agent ID. Used to set agentID in the Object ID. Not needed if there is
only one agent of a given agentType.

● [objectKey] – {string} – The object key. Used to set objectKey in the Object ID. Not needed if
the object is a singleton.

● reference – {string} – String parameter defining the name of the reference to retrieve.

Returns

{Promise} – Returns a promise that will be resolved with the objects requested as Array<TeaObject>

isProductRegistered
The isProductRegistered function causes the browser to send an AJAX call to the server to check
whether the product is registered with the TIBCO Enterprise Administrator server.

Parameters

● paramsObject – {object} – Parameters object containing the following properties:

— agentTypeName - {string} - The agent type name of the product.

— agentTypeVersion - {string} - The agentTypeVersion of the product.

Returns {Promise} – Returns a promise that will be resolved with a boolean value indicating whether
the product is registered or not.

Usage

The typical usage of the object service is to retrieve objects needed to render the view.

teaAuthService
This is a service available under tea.services. TIBCO Enterprise Administrator provides teaAuthService,
which is an Angular service that can retrieve a list of privileges associated with a specific user.

teaAuthService provides authorization services. Currently, the only public API is thelistPrivileges
method.

Dependencies:

1. $q

2. $http

81

TIBCO® Enterprise Administrator Developer's Guide

Methods

The only method currently available in this service is the listPrivileges method.

listPrivileges
Returns the list of privileges associated with the current user.

Parameters

None.

Returns

{Promise} – Returns a promise that is resolved with the response object of the listPrivileges operation.
The response object is a list. Each entry in the list has the following properties:

Property Type Description

product String The name of the product that
defined this permission.

objectType String The object type

permissions Object A Map object with the name of
the property as the key. The
value object has the following
properties:

1. productName: String. The
name of the product that
defined this permission

2. name: String. The name of
the permission

3. desc: String. The description
of the permission

Usage

myModule.controller('MyController', function ($scope, teaAuthService) {
 teaAuthService.listPrivileges().then(function(data) {
 // this callback will be called asynchronously
 // when the response is available.

 }, function(error) {
 // called asynchronously if an error occurs.
 });
});

teaScopeDecorator
This is a service available in the module tea.services. The teaScopeDecorator service decorates the scope
with a TeaObject based on the current URL. It also attaches several utility methods that are useful in the
teaMasthead directive and elsewhere.

Dependencies

● teaLocation

82

TIBCO® Enterprise Administrator Developer's Guide

● teaObjectService
● $q
● $http
● $modal

Methods

goto
The goto function offers a simplified way to call teaLocation.goto.

Parameters

object {TeaObject} – The object to navigate to.

reload
The reload function causes the scope's TeaObject to be reloaded from scratch. This can be important in
an "onSuccess" function as passed to openOperation.

Parameters

object {TeaObject} – The object to navigate to.

goToProduct
The goToProduct function navigates to the current product's top-level object.

getStatusClass
The getStatusClass function should be used to set the class for styling object.status. If the state is
"running" or "started" (case insensitive), the function returns tea-status-ok, otherwise it returns tea-
status-error.

Parameters

object {TeaObject} – The object whose status is to be displayed
Returns

{String} – tea-status-ok or tea-status-error

openOperation
The openOperation function opens a modal dialog with a form for invoking an operation on the
current object.

Parameters

● operationName {String} – Name of the operation

● defaultValues {String[]} – (optional) default values for the operation parameters

● onSuccess {Function} – A function to call upon successful completion of the operation call. By
default, scope.reload is called.

● validatorfn {Function(paramName, paramValue)} – (optional) A function which validates the
form's parameter values. This function takes two parameters, name and value, to be validated. The
function returns an error message in case the validation fails. If the validation passes, it does not
return anything.

openOperationWithResponseHeaders

83

TIBCO® Enterprise Administrator Developer's Guide

The openOperationWithResponseHeaders function opens a modal dialog with a form for invoking an
operation on the current object.

Parameters

● operationName {String} – Name of the operation

● defaultValues {String[]} – (optional) default values for the operation parameters

● onSuccess {Function} – A function to call upon successful completion of the operation call. By
default, scope.reload is called.

getReference
The getReference function offers a simplified way to call teaObjectService.getReference.

Parameters

● object {TeaObject} – The object containing the reference

● refName {String} – The name of the reference

● onReferenceDo {Function} – The function that will be executed as a promise, passed the
Array<TeaObject> returned by teaObjectService.getReference

Usage

myModule.controller('MyController', function ($scope, teaScopeDecorator) {
 teaScopeDecorator($scope);

 // TeaObject now available under $scope.object

 // functions $scope.openOperation, $scope.goto, $scope.goToProduct,
 // $scope.getReference, and $scope.getStatusClass available
});

Directives
Placement of objects in a window can be customized with the use of directives such as teaPanel,
teaMastHead, teaAttribute, teaLongAttribute, and teaConstraint.

teaPanel
This is a directive available under tea.directives. The teaPanel builds a custom panel using the nested
elements as panel content.

Usage

<tea-panel class="span7" title="'Tomcat'" name="'Web Application'">
 <table class="tea-table">
 <thead>
 <tr>
 <th>Name</th>
 <th>Url</th>
 <th>Status</th>
 </tr>
 </thead>
 <tbody>
 <tr ng-repeat="webapp in webapps">
 <td class="highlight"><a ng-
click="goto(webapp)">{{webapp.name}}</td>
 <td>{{webapp.config.path}}</td>
 <td class="status"
 ng-class="webapp.status.state == 'RUNNING' |conditional:'tea-status-
ok':'tea-status-error'">
 {{webapp.status.state|lowercase}}
 </td>

84

TIBCO® Enterprise Administrator Developer's Guide

 </tr>
 </tbody>
 </table>
</tea-panel>

Directive Details

The directive creates a new scope.

Customization

The following types are supported:

● fixed: If a directive is set to be fixed, you cannot resize or collapse the panel.
● titleLink: This attribute makes the title of a panel a hyperlink. You can provide the link in the value

of the attribute.

Nested Directives

This directive supports the nested directive teaPanelActions.
<tea-panel-actions>
 Register
</tea-panel-actions>

teaMasthead
This is a directive available under tea.directives. The teaMasthead builds a masthead for the page. The
masthead is used to define entities.

Usage

<tea-masthead title="'Tomcat Server'"
 subtitle="object.name">

 <tea-masthead-attributes>
 <tea-attribute ng-repeat="(name, value) in object.config"
label="{{name}}">{{value}}</tea-attribute>
 </tea-masthead-attributes>

 <tea-masthead-long-attributes>
 <tea-long-attribute label="Description">{{object.desc}}</tea-long-attribute>
 </tea-masthead-long-attributes>

 <tea-masthead-actions>
 <a ng-repeat="operation in object.type.operations | filter:isPublic"
class="tea-action-btn"
 ng-click="openOperation(operation.name)">{{operation.label}}
 </tea-masthead-actions>
</tea-masthead>

Parameters

● title - {string}:Title of the page.

● subtitle - {string} :Subtitle of the page.

Customization

● teaMastheadAttributes: Attributes that are rendered in the first column of the masthead. This
should be used with teaAttribute directive only.

● teaMastheadLongAttributes: Long attributes that are rendered in the second column of the
masthead. This should be used with teaLongAttribute directive only.

● teaMastheadActions: Action buttons that are rendered in the masthead. This should be used with
HTML anchors using the class tea-action-btn only. Operations on the current TeaObject can be
performed using the openOperation function provided by teaScopeDecorator.

85

TIBCO® Enterprise Administrator Developer's Guide

● teaMastheadConstraints: Constraints that are rendered in the masthead. This should be used with
teaConstraint directive only.

● teaMastheadStatus: Status that is rendered just below the title and name.
<tea-masthead-status>

 {{object.status.state|lowercase}}

</tea-masthead-status>

Directive Details

This directive creates a new scope.

teaAttribute
This is a directive available under tea.directives. The teaAttribute formats an attribute with a label and
content.

Usage

<tea-attribute label="Version">{{object.config.version}}</tea-attribute>

Parameters

● label - {string}: Label of the attribute.

Directive

This directive creates a new scope.

teaLongAttribute
This is a directive available under tea.directives. The teaLongAttribute formats an attribute with a label
and content. This directive includes support for long text.

Usage

<tea-long-attribute label="Description">{{object.desc}}</tea-long-attribute>

Parameters

● label - {String} Label of the attribute.

Directive Details

This directive creates a new scope.

teaConstraint
This is a directive available under tea.directives. The teaConstraint formats constraints on a label.

Usage

<tea-constraint label="Contraint1"></tea-constraint>

Parameters

● label - {string} label of the constraint.

Directive Details

This directive creates a new scope.

86

TIBCO® Enterprise Administrator Developer's Guide

Types
The types of objects used for UI customization include TeaObject, TeaObjectType, Typewritten,
TeaParam, and TeaReference.

TeaObject
This is a type available in the module tea. TeaObject is an object managed by TIBCO Enterprise
Administrator. Instances of this class are retrieved using teaObjectService.

Properties

Property Returns

path {String} - Path to access the object.

name {String} - Name of the object

desc {String} - Detailed description of the object.

status {Object} - An object representing the status of this object. The status object
always has a state property defined.

config {Object} - An object representing the configuration of this object.

type {TeaObjectType} – The type of this object.

agentID {String} – ID of the agent that manages this object.

key {String} – Key of the object.

objectId {String} – Identifier of the object

TeaObjectType
This is a type available in the module tea. TeaObjectType is a type of TeaObject.

Properties

Property Returns

type {String} - Fully qualified type name that is <agent identifier>:<agent
version>:type name.

name {String} - Name of the type.

concept {String} - The kind of concept this type represents.

desc {String} - A detailed description of the type.

operations {Array.<TeaOperation>} – An array of operations.

references {Array.<TeaReference>} – An array of references.

87

TIBCO® Enterprise Administrator Developer's Guide

Methods

Name of the Method Parameters Returns

getOperation name - {String} : Name of
the attribute.

{TeaOperation} : Operation
with the given name.

getReference name - {String} : Name of
the reference.

{TeaReference} : Reference
with the given name.

TeaOperation
This is a type available in the module tea. This is an operation applicable to a TeaObject.

Properties

Property Returns

name {String} - Name of the operation.

desc {String} - A detailed description of the operation.

params {Array.<TeaParam>} – An array of operation parameters.

type {String} - One of the following operation type : READ, UPDATE, DELETE.

returnType {String} – One of the following type of return value: 'string', 'number',
'boolean', 'object', 'reference'.

TeaParam
This is a type available in the module tea. A parameter defined on TeaOperation.

Properties

Property Returns

name {String} - Name of the parameter.

desc {String} - A detailed description of the parameter.

type {String} – Type of the parameter. Supported values are: string, number,
boolean, object and agentId. Specify the agentId to select the agent to
be invoked when the target object is managed by multiple agents.

optional {boolean} – Is set to true if the parameter is required for the operation;false
otherwise.

88

TIBCO® Enterprise Administrator Developer's Guide

TeaReference
This is a type available in the module tea. A reference defined by TeaObjectType.

Property Returns

name {String} - Name of the reference.

type {String} - The type ID of the elements of the reference.

multiplicity {boolean} – Is set to true if the reference is defined to have multiple
targets;false otherwise.

89

TIBCO® Enterprise Administrator Developer's Guide

Error Handling in Agents and Custom User Interfaces

When an agent cannot complete an operation, the operation method throws an exception. The error
result propagates back through the server to the browser GUI. Code your agent and custom GUI so that
errors help the user understand and correct the problem.

Consider these recommendations as you design and code your agent's handling of errors in operation
calls:

● Code operation methods to throw appropriate and helpful exceptions.

— Choose the exception class that best characterizes the situation.
— Choose an HTTP status code that gives useful information.
— In the error string, explain the reason the operation could not complete correctly, and suggest

recovery strategies for the end user.
— Use wording that end users understand.

● Code custom GUI elements to extract error information:

— Extract the HTTP status code. The GUI can use it to select an appropriate response action.
— Extract the error string. The GUI can display it to the user.

● Code custom GUI elements to respond appropriately to errors. Consider these possible responses:

— Display the error string.
— Display other information.
— Navigate to a different GUI page. For example, if the managed object that the current page

represents no longer exists, consider navigating to a page that lists all objects of its type.
— Let the user choose from a set of recovery options.

Coding Exceptions in Agent Operations
When an operation method throws an exception, you can either use the implicit status code associated
with the exception class, or encode the HTTP status code explicitly.

Procedure

1. Create and throw an exception object.
final String errorMessage = MessageFormat.format(
 "Cannot start web application ''{0}'' because it is already running.",
 tomcatWebAppConfig.getName());
throw new TeaIllegalStateException(errorMessage);

2. Optional. Supply an explicit status code (which overwrites the implicit status code).
You must not supply 303 as an explicit status code. Status 303 has special meaning for the server.
throw new TeaIllegalStateException("Too many requests").withHttpStatusCode(429);

3. Optional. Supply an explicit exit code for the shell interface.
In the shell interface an operation returns an exit code when it returns in error. When constructing
the exception in your operation method, you may supply a positive integer as the shell exit code.

If you do not supply an explicit exit code, the shell command returns an implicit exit code that is
appropriate to the return status of the operation.

90

TIBCO® Enterprise Administrator Developer's Guide

Exceptions and Implicit HTTP Status Codes
When your agent code throws an exception, the agent library catches it. The library implicitly maps
certain exception classes to corresponding status codes.

Exception & Usage
HTTP Status
Code

TeaIllegalArgumentException

For example, a numeric value to an operation is out of range.

400

TeaIllegalStateException

For example, the operation attempts to stop a process that is not running.

409

TeaException

Throw this exception when an operation cannot complete for other reasons.

550

javax.ws.rs.core.Response.Status.NOT_FOUND

The agent library throws this exception when the GUI passes an object key for
which a referent no longer exists in the agent.

404

javax.ws.rs.core.Response.Status.INTERNAL_SERVER_ERROR

The agent library throws this exception when your agent throws any
unexpected exception (for example, a runtime exception).

500

Extracting Error Information in the GUI
Code your custom UI error function to extract information from the error response.
When an operation method throws an exception, the agent library sends error information to the
server, which in turn sends it back to the browser that invoked the operation. Your JavaScript code can
extract fields from the error information.

Procedure

● Code the error response to extract the message, details and status fields from the error, as
needed.
function(data) {
 // Success response
 ...
 },
function(error) {
// Error response
 // Get the error message
 var errorMessage = error.message;
 // Get the error details
 var errorDetails = error.details;
 // Get the error status code
 var errorStatusCode = error.status;

 // Use this information
 ...
 });
}

91

TIBCO® Enterprise Administrator Developer's Guide

Receive Agent Registration Notifications

An agent can store the server URL which is used to register itself with the TIBCO Enterprise
Administrator server. This is especially useful when you have a failover mechanism in place. When the
secondary agent comes up, the agent can use the URL information that is stored to register with TIBCO
Enterprise Administrator.

The agent must implement the TeaAgentRegistrationListener interface to send the URL information
from the TIBCO Enterprise Administrator server to the agent.
public interface TeaAgentRegistrationListener
extends EventListener{
void onAgentRegistered(TeaServerInfo event);
}

Sample Code that Implements TeaAgentRegistrationListener

The following is a sample code snippet that shows how a standalone agent API adds the
AgentRegistrationListener. It is assumed that you have created an instance of TeaAgentServer as
follows:
TeaAgentServer server = new TeaAgentServer("HelloWorldAgent", "1.1",
"Hello World Agent", 1234, "/helloworldagent", true);

//Add AgentRegistrationListener to the server.
server.addEventListener(new SampleAgentRegistrationListener());

The following is a sample code snippet that shows how a servlet API adds the
AgentRegistrationListener. It is assumed that SampleTeaAgentServlet extends TeaAgentServlet and
you have an instance of it.

SampleTeaAgentServlet servlet = new SampleTeaAgentServlet();

//Add AgentRegistrationListener to servlet
servlet.addEventListener(new SampleAgentRegistrationListener());

The following class implements TeaAgentRegistrationListener:

import com.tibco.tea.agent.api.TeaAgentRegistrationListener;
import com.tibco.tea.agent.api.TeaServerInfo;

public class SampleAgentRegistrationListener implements
TeaAgentRegistrationListener {

@Override
public void onAgentRegistered(TeaServerInfo serverInfo) {
 System.out.println("TeaServerInfo Event Tea Server URL :" +
serverInfo.getServerUrl()); }

}

92

TIBCO® Enterprise Administrator Developer's Guide

Notify Agents about Session Timeouts

TIBCO Enterprise Administrator can notify agents about HTTP session timeouts when a session expires
or when a user logs out. To receive session timeout notifications, an agent must implement the
TeaSessionListener interface.

The agent must implement the TeaSessionListener, add the listener, and pass the session ID to a
TeaOperation.

TeaSessionListener

public interface TeaSessionListener
extends EventListener{
void onSessionDestroyed(TeaSessionEvent event);
}

You can access the session id using an instance of TeaSessionEvent.

Sample code that Implements TeaSessionListener

package com.tibco.tea.agent;
import java.io.IOException;
import java.util.Collection;
import java.util.Collections;

import com.tibco.tea.agent.annotations.TeaOperation;
import com.tibco.tea.agent.annotations.TeaParam;
import com.tibco.tea.agent.api.BaseTeaObject;
import com.tibco.tea.agent.api.TopLevelTeaObject;
import com.tibco.tea.agent.server.TeaAgentServer;
import com.tibco.tea.agent.api.TeaSession;
import com.tibco.tea.agent.api.*;

public class HelloWorldAgent implements TopLevelTeaObject{
 private static final String NAME = "hw";
 private static final String DESC = "Hello World";

 @Override
 public String getDescription() {
 return DESC;
 }

 @Override
 public String getName() {
 return NAME;
 }

 @Override
 public Collection<BaseTeaObject> getMembers() {
 return Collections.EMPTY_LIST;
 }

 @Override
 public String getTypeDescription() {
 return "Top level type for HelloWorld";
 }

 @Override
 public String getTypeName() {
 return "HelloWorldTopLevelType";
 }

 @TeaOperation(name = NAME, description = "Send greetings")
 public String helloworld(
 @TeaParam(name = "greetings", description = "Greeting parameter")
 final String greetings, final TeaSession session) throws IOException {

93

TIBCO® Enterprise Administrator Developer's Guide

System.out.println("Input====="+greetings);
 System.out.println("Session Id ====="+session.id());
 return "Hello " + greetings;
 }

 public static void main(final String[] args) throws Exception {
 TeaAgentServer server = new TeaAgentServer("HelloWorldAgent", "1.1","Hello
World Agent", "localhost", 1234,
 "/helloworldagent", true);
 server.setAgentId("test");
 server.registerInstance(new HelloWorldAgent());
 server.addEventListener(new HelloSessionListener());
 server.start();
 server.autoRegisterAgent("http://localhost:8777/tea");
 System.out.println("Agent Started at with changes: http://localhost:1234/
helloworldagent");

 }

 public static class HelloSessionListener implements TeaSessionListener {

 public void onSessionDestroyed(final TeaSessionEvent event) {
 String id = event.getTeaSession().id();
 System.out.println("Session destroyed " + id);
 }

 }

}

94

TIBCO® Enterprise Administrator Developer's Guide

TIBCO Enterprise Administrator Server Services

With the 1.1.0 version, the TIBCO Enterprise Administrator server exposes HTTP services that can be
used by a client to communicate with TIBCO Enterprise Administrator server through HTTP.

LDAP Realm Configurations
The HTTP services offered by the TIBCO Enterprise Administrator server can be used to retrieve LDAP
realm configurations, query them, and notify agents about the changes in the configurations.

TIBCO Enterprise Administrator can query for LDAP realm configurations using the HTTP services.
However, the agent must provide the following details:

1. The administrator credentials to handle Basic authentication

2. HTTP URL: http://[tea-server-hostname]:[port]/teas/task

3. HTTP Method: PUT

4. HTTP Request Headers: Content-Type: application/json

Retrieve All LDAP Realm Configurations
The example shows the sample responses obtained based on the realms configured on the LDAP
server.

Before proceeding with the example, ensure that the following conditions are met:

1. The TIBCO Enterprise Administrator server is running.

2. Provide the administrator credentials to handle Basic authentication.

3. HTTP URL: http://[tea-server-hostname]:[port]/teas/task

4. HTTP Method: PUT

5. HTTP Request Headers: Content-Type: application/json

The following is the sample request body to retrieve all LDAP realm configurations:

{
 "operation":"getLdapRealmConfigs",
 "methodType":"READ",
 "objectId":"tea:tea::realms:"
}

When there are LDAP realms available, they are returned as an Array of Maps against the result key.
The following is the sample response when there are realms available on the LDAP server:

{ "agentId" : "tea",
 "error" : null,
 "id" : "21cc6a2a66-14399518403-21",
 "operation" : "getldaprealmconfigs",
 "progress" : 100,
 "progressStatus" : "DONE",
 "result" : [{ "bindPassword" : "secret",
 "bindUserDN" : "uid=admin,ou=system",
 "description" : "acme description",
 "groupIdAttribute" : "cn",
 "groupSearchBaseDN" : "ou=Special Groups,dc=example,dc=com",
 "groupSearchExpression" : "cn={0}",
 "groupUsersAttribute" : "uniquemember",
 "groups" : [],
 "realmName" : "acme",
 "searchTimeOut" : 10005,
 "serverUrl" : "ldap://acme.na.tibco.com:10389/",

95

TIBCO® Enterprise Administrator Developer's Guide

 "subGroupsAttribute" : "uniquemember",
 "userIdAttribute" : "uid",
 "userPasswordAttribute" : "userPassword",
 "userSearchBaseDN" : "ou=Special Users,dc=example,dc=com",
 "userSearchExpression" : "(&(uid={0})(objectclass=*))",
 "users" : []
 },
 { "bindPassword" : "password",
 "bindUserDN" : "cn=Directory Manager",
 "description" : "SunONE description",
 "groupIdAttribute" : "cn",
 "groupSearchBaseDN" : "ou=groups,dc=policy,dc=tibco,dc=com",
 "groupSearchExpression" : "cn={0}",
 "groupUsersAttribute" : "uniquemember",
 "groups" : [],
 "realmName" : "SunONE",
 "searchTimeOut" : 10000,
 "serverUrl" : "ldap://10.97.107.23:389",
 "subGroupsAttribute" : "uniquemember",
 "userIdAttribute" : "uid",
 "userPasswordAttribute" : "userPassword",
 "userSearchBaseDN" : "ou=people,dc=policy,dc=tibco,dc=com",
 "userSearchExpression" : "(&(uid={0})(objectclass=*))",
 "users" : []
 }
],
 "returnType" : null,
 "status" : "DONE",
 "timeCreated" : 622351252380946,
 "timeFinished" : 622351333309405,
 "userId" : "admin"
}

The following is the sample response when there are no realms configured on the LDAP server:

{ "agentId" : "tea",
 "error" : null,
 "id" : "21cc6a2a66-14399518403-25",
 "operation" : "getldaprealmconfigs",
 "progress" : 100,
 "progressStatus" : "DONE",
 "result" : [],
 "returnType" : null,
 "status" : "DONE",
 "timeCreated" : 622707877203368,
 "timeFinished" : 622707877656611,
 "userId" : "admin"
}

Retrieve LDAP Configurations by Providing the Realm Name
The example shows the sample responses when provided with a valid and an invalid realm name.

Before proceeding with the example, ensure that the following conditions are met:

1. The TIBCO Enterprise Administrator server is running.

2. Provide the administrator credentials to handle Basic authentication.

3. HTTP URL: http://[tea-server-hostname]:[port]/teas/task

4. HTTP Method: PUT

5. HTTP Request Headers: Content-Type: application/json

This example considers 'acme' to be the realm name that is passed to retrieve the LDAP configuration.
In this case the sample request body is:

 {
 "operation":"getRealmConfig",
 "methodType":"READ",

96

TIBCO® Enterprise Administrator Developer's Guide

 "objectId":"tea:tea::realm:acme"
 }

The following is the sample response if the realm name is valid:

{ "agentId" : "tea",
 "error" : null,
 "id" : "21cc6a2a66-14399518403-20",
 "operation" : "getrealmconfig",
 "progress" : 100,
 "progressStatus" : "DONE",
 "result" : { "bindPassword" : "secret",
 "bindUserDN" : "uid=admin,ou=system",
 "description" : "acme description",
 "groupIdAttribute" : "cn",
 "groupSearchBaseDN" : "ou=Special Groups,dc=example,dc=com",
 "groupSearchExpression" : "cn={0}",
 "groupUsersAttribute" : "uniquemember",
 "groups" : [],
 "realmName" : "acme",
 "searchTimeOut" : 10005,
 "serverUrl" : "ldap://acme.na.tibco.com:10389/",
 "subGroupsAttribute" : "uniquemember",
 "userIdAttribute" : "uid",
 "userPasswordAttribute" : "userPassword",
 "userSearchBaseDN" : "ou=Special Users,dc=example,dc=com",
 "userSearchExpression" : "(&(uid={0})(objectclass=*))",
 "users" : []
 },
 "returnType" : null,
 "status" : "DONE",
 "timeCreated" : 621835579957612,
 "timeFinished" : 621835580561226,
 "userId" : "admin"
}

The following is the sample response if the realm name is invalid:
"Managed object with ID 'tea:tea:1.1.0:realm:acme' not found"

Notify Changes Related to LDAP Realm Configurations
To listen to changes made on the LDAP configurations on the TIBCO Enterprise Administrator server,
the agent must implement the com.tibco.tea.agent.api.TeaLdapConfigurationListener interface. On
implementing the interface, the agent gets a notification when there is an addition, modification, or
deletion of an LDAP configuration on the TIBCO Enterprise Administrator server.

The following steps ensure that changes to the LDAP realm configurations on the TIBCO Enterprise
Administrator server are notified to the agent:

1. The TIBCO Enterprise Administrator server is running.

2. At least one LDAP realm configuration is created on the TIBCO Enterprise Administrator server.

3. The agent has implemented the com.tibco.tea.agent.api.TeaLdapConfigurationListener interface.

4. The agent is registered with the TIBCO Enterprise Administrator server.

In the steps mentioned earlier, if the TIBCO Enterprise Administrator server is not running, whenever
the server starts, every agent in the Running mode receives the LDAP realm configurations.

When an agent is reconnected to the server or when the agent is in the Running mode, the agent
receives notifications about the updates on the LDAP realm configurations.

97

TIBCO® Enterprise Administrator Developer's Guide

The TeaLdapConfigurationListener Interface

The interface implementation must be registered with com.tibco.tea.agent.server.TeaAgentServer using
the addEventListener() method. This is usually included as a part of the agent setup code block. The
following is a snippet from TeaLdapConfigurationListener.java:

public interface TeaLdapConfigurationListener extends java.util.EventListener {

 public void onRealmAdded(final TeaLdapConfigurationEvent
 ldapConfigurationEvent);

 public void onRealmUpdated(final TeaLdapConfigurationEvent
 ldapConfigurationEvent);

 public void onRealmDeleted(final TeaLdapConfigurationEvent
 ldapConfigurationEvent);

}

As a consumer of such an event, you can examine the
com.tibco.tea.agent.api.TeaLdapConfigurationEvent.TYPE to retrieve the
com.tibco.tea.agent.api.LdapRealmConfig instance from the event object.

com.tibco.tea.agent.api.LdapRealmConfig is available only for
com.tibco.tea.agent.api.TeaLdapConfigurationEvent.TYPE.ADD and
com.tibco.tea.agent.api.TeaLdapConfigurationEvent.TYPE.UPDATE types and not for the
com.tibco.tea.agent.api.TeaLdapConfigurationEvent.TYPE.DELETE type of event. Refer to API
documents of these classes for additional details.

The sample Tomcat Agent shipped with TIBCO Enterprise Administrator server contains a sample
implementation of the interface in TomcatAgentLdapConfigListener and its registration using the
addEventListener() method in TomcatAgentLauncher.

98

TIBCO® Enterprise Administrator Developer's Guide

Upgrading Agents and Agent Coexistance

To upgrade an agent that was built using an older version of the agent library, you need to stop the
agent, point its CLASSPATH to the new version of the agent library, and restart the agent.
There are a few limitations that you must keep in mind when upgrading an existing agent to a newer
version. Consider a scenario where you have a version of an agent installed. Later, you upgrade to a
newer version of the agent. Assuming the Agent ID and the Agent URL do not change, the following
holds true:

● The UI rendered depends on the newer version of the agent.
● The name of the Agent Type does not change.
● When upgrading an agent, the Permissions, ObjectTypes and Roles that were defined by the older

version of the agent must be carried forward. This ensures agent backward compatibility. If you do
not carry forward the Permissions, ObjectTypes and Roles, the agent will fail to register with the
server. However, you can remove operations from child objects and also remove solutions without
causing disruptions in agent backward compatibility.

● You can add child objects, solutions, roles, or operations to Top Level objects.
● Old agents are not running.
● Downgrade is supported.

Agent Type and Version Coexistence

Consider a scenario when two different versions of agents are managing two different versions of the
product. Then the following holds true:

● The Agent Type name is the same.
● The Agent ID or Agent URL must be different.
● The information must be merged from different agents.
● The Permissions, ObjectTypes and Roles that were defined by the older version of the agent must be

carried forward. This ensures agent backward compatibility. If you do not carry forward the
Permissions, ObjectTypes and Roles, the agent will fail to register with the server.

● Operations on shared objects do not change.
● The UI displays the latest TopLevelTeaObject.
● Only nondestructive changes are allowed on Operations of the TopLevelTeaObject.
● If your first agent has four solutions and the second one has only three, the second agent will

display all four solutions.
● If you delete some operations in the second agent, the deleted operations will continue to display in

the second agent but cannot be invoked from the second agent.
● When invoking the operations for the TopLevel object, you must select the agent version from

where you want to invoke it. When you click on the link for the operation the resulting dialog will
prompt you to select the agent version from where you want the operation invoked.

● The GroupBy Type operation on the server goes to the correct version of the object.

99

TIBCO® Enterprise Administrator Developer's Guide

Troubleshooting

Problem
Given an agent URL, the TIBCO Enterprise Administrator server resolves the URL to a specific IP
address. When you run TIBCO Enterprise Administrator on laptops, they tend to switch between
networks based on your location. In such cases, the TIBCO Enterprise Administrator server is unable
to reach the agent.

Solution
Avoid using hostName of the machine when you construct an instance of TeaAgentServer. Use 0.0.0.0
or localhost if you anticipate agent machine or the TIBCO Enterprise Administrator server machine to
switch between networks.

100

TIBCO® Enterprise Administrator Developer's Guide

API Reference Pages

The Java API Reference includes detailed information for each class and method of the agent developer
Java API.

Java API Reference pages

If you want to access the documents locally, download the tibco-enterprise-administrator-
sdk-2-2-0_documentation.zip to DOC_HOME folder. Javadocs is now accessible from the following
path: DOC_HOME/doc/api/javadoc/index.html.

101

TIBCO® Enterprise Administrator Developer's Guide

https://docs.tibco.com/pub/tea-sdk/2.2.0/doc/api/javadoc/index.html

	Contents
	Figures
	TIBCO Documentation and Support Services
	TIBCO® Enterprise Administrator Concepts
	TIBCO Enterprise Administrator SDK Architecture
	Components of TIBCO Enterprise Administrator

	Running the HelloWorld Sample
	The HelloWorld Sample: Lessons for Agent Developers

	Enabling Developer Mode
	Reloading an Agent during Iterative Development
	Developer Documentation
	Viewing the Structural Overview Diagram of an Agent

	Exposing the Agent API to Python Scripts
	Setting SSL Properties on the Agent
	SSL Properties

	Support for IPv6 Addresses in TEA
	Setting up TIBCO Enterprise Administrator Agent Library
	Running TIBCO Enterprise Administrator Agent Library in the Server mode
	Running TIBCO Enterprise Administrator Agent Library in the Servlet mode
	Agent ID

	Configuring TIBCO Enterprise Administrator Agent for Auto-Registration
	Auto-Registering in the Server Mode
	Auto-Registering in the Servlet Mode

	Unregistering an Agent
	Developing an Agent
	Managed Objects
	Aspects of Managed Objects
	Configuration
	States
	Operations
	References

	Concept Types of Managed Objects
	Product (Top Level Object)
	Application
	Process
	Access Point
	Resource
	Group

	Support for POJOs
	Limitations of POJO

	Analyzing a System of Managed Objects
	Example Analysis of Managed Objects for Tomcat

	Sharing Data and Resources (TeaObjects) Between Agents
	How to Share a TeaObject
	How to Get Shared TeaObjects
	How to Get Shared TeaObject Along with All the References
	How to Unshare a TeaObject

	Object Type Definition: Overview
	Interface Style
	Defining an Object Type in Interface Style
	Defining a Singleton Object Type in Interface Style
	Defining a Top-Level Object Type in Interface Style
	Access to Instances
	Provider Interface

	Defining References for Object Types with Interfaces

	Annotation Style
	Defining an Object Type in Annotation Style
	Defining Multiple Object Types on One Class

	Defining References for Object Types with Annotations

	Aspects for Object Types—Interfaces and Annotations
	Modeling State in Interface Style
	Modeling Configuration in Interface Style
	Modeling Members in Interface Style
	Modeling State in Annotation Style
	Modeling Configuration in Annotation Style
	Modeling Members in Annotation Style

	Defining Operations
	Adding Developer Notes
	Specifying the Availability of TeaOperations in TIBCO Enterprise Administrator Clients
	Passing Data Streams to Operation Methods
	Customizing Parameters of an Operation in the Shell Interface
	Getting the User Name of the Logged In User

	Object ID
	Solution
	Permissions
	Roles

	User Interface Customization
	Selecting a Specific Version of the TIBCO Enterprise Administrator UI Library
	Linking Across Two Products

	Reference to Customize the User Interface
	Services
	teaLocation
	teaObjectService
	teaAuthService
	teaScopeDecorator

	Directives
	teaPanel
	teaMasthead
	teaAttribute
	teaLongAttribute
	teaConstraint

	Types
	TeaObject
	TeaObjectType
	TeaOperation
	TeaParam
	TeaReference

	Error Handling in Agents and Custom User Interfaces
	Coding Exceptions in Agent Operations
	Exceptions and Implicit HTTP Status Codes
	Extracting Error Information in the GUI

	Receive Agent Registration Notifications
	Notify Agents about Session Timeouts
	TIBCO Enterprise Administrator Server Services
	LDAP Realm Configurations
	Retrieve All LDAP Realm Configurations
	Retrieve LDAP Configurations by Providing the Realm Name
	Notify Changes Related to LDAP Realm Configurations

	Upgrading Agents and Agent Coexistance
	Troubleshooting
	API Reference Pages

