Class RLinkOut


  • public final class RLinkOut
    extends java.lang.Object
    Stores the result of RLink model prediction. Immutable class.
    • Field Summary

      Fields 
      Modifier and Type Field Description
      static double RLINK_THRESHOLD
      The threshold between "true" and "false" labels used to train models
    • Constructor Summary

      Constructors 
      Constructor Description
      RLinkOut​(double score, double confidence)
      Creates object that stores the given score and confidence.
      RLinkOut​(double score, double confidence, double[] significance)
      Creates object that stores the given score, confidence and feature significance values.
    • Field Detail

      • RLINK_THRESHOLD

        public static final double RLINK_THRESHOLD
        The threshold between "true" and "false" labels used to train models
        See Also:
        Constant Field Values
    • Constructor Detail

      • RLinkOut

        public RLinkOut​(double score,
                        double confidence)
        Creates object that stores the given score and confidence.
        Parameters:
        score - - prediction score.
        confidence - - prediction confidence.
      • RLinkOut

        public RLinkOut​(double score,
                        double confidence,
                        double[] significance)
        Creates object that stores the given score, confidence and feature significance values.
        Parameters:
        score - - prediction score.
        confidence - - prediction confidence.
        significance - - significance of each feature. May be empty or null if significance values have not been calculated.
    • Method Detail

      • toString

        public java.lang.String toString()
        Overrides:
        toString in class java.lang.Object
      • getScore

        public double getScore()
        Returns:
        prediction score
      • getLabel

        public static boolean getLabel​(double rlinkScore)
        Returns:
        the predicted label (according to natural RLink threshold)
      • getLabel

        public boolean getLabel()
        Returns:
        the predicted label (according to natural RLink threshold)
      • correctPrediction

        public boolean correctPrediction​(boolean actualLabel)
        Returns:
        if the predicted label matches the actualLabel
      • correctPrediction

        public boolean correctPrediction​(boolean actualLabel,
                                         double threshold)
        Do not use custom thresholds for model training!
        Returns:
        if the predicted label (determined according to specified threshold) matches the actualLabel.
      • getConfidence

        public double getConfidence()
        Gets the prediction confidence. It indicates how well the model was trained for the given feature values.
        Returns:
        prediction confidence. The value is in the range of [0; 1]. If no confidence was requested, or if the requested confidence measure is not supported by the model, the value is RLink.NO_CONFIDENCE_MEASURE.
      • getSignificance

        public double[] getSignificance()
        Gets the significance of each model feature value. Each significance value (between 0.0 and 1.0) is the relative importance of the model feature value in determining the prediction score and label. Feature values with high significance were considered relevant in making the decision, querylets with low scores were not relevant. The sum of all significance values is 1.0.
        Returns:
        the significance of each feature value in making the prediction. The returned array is empty if significance values have not been calculated (the predicted label is false).