GLM, GRM, and ANOVA More Results - Planned Comps Tab
Select the Planned comps tab of the GLM More Results or the ANOVA More Results dialog box to access options to perform a priori (planned) comparisons between the means in the design. Note that complex a priori hypotheses can also be tested via the Estimate option, on the Summary tab (see the Between effects group box). A discussion of the rationale and applications of planned comparisons and post-hoc tests is provided in the Contrast analysis and post-hoc tests topic. Note that these options are only available if the current design contains effects for categorical predictor variables, or within (repeated measures) effect.
- Effect
- Select the desired effect from all of those effects in the current design in the Effect drop-down box. A priori planned comparisons are performed on the marginal means (least squares, see below) for effects involving only categorical predictor variables.
- Planned comparisons of Least Squares means
- Use the options in this group box to compute planned comparisons of the least squares means for the current model. The contrast coefficients can be entered Separately for each factor in the current Effect (see above), or Together as a vector simultaneously for all factors (see below). When there are continuous predictors (covariates) in the model, the least squares means used in the comparison are computed from the covariates at their means (regardless of the selection in the Covariate values group box on the Means tab).
- Specify contrasts for LS means
- Click the Specify contrasts for LS means button to display the respective contrast specification dialog box for the chosen Effect. If you specified to enter the contrast coefficients Separately for each factor (see below), the contrast specification dialog box will allow you to enter the contrast coefficients for each factor; if you specified to enter the contrast coefficients Together (contrast vector), the contrast specification dialog box will prompt you to enter a matrix (or vector) of contrast coefficients for all levels of the chosen effect (the respective contrast specification dialog box will show and label all levels of the respective effect in the dialog box).
Depending on the type of Effect that you have selected (e.g., a main effect, within-subject effect, interactions, etc.) and the option buttons you have selected in the Enter contrasts separately or together and/or the Contrasts for dependent variables group boxes various contrast specification dialog boxes will be displayed. See the Specify Contrasts for this Factor, Specify Contrasts, Contrast for Between Group Factors, Enter Contrasts for this Factor, Repeated Measures, Contrasts for Within-Subject Factors, and Contrasts for Dependent Variables dialog box topics for further details.
- Compute
- After you specify your contrasts for least squares (via the Specify contrasts for LS means button, see above), click the Compute button to produce three spreadsheets: the Between contrast coefficients spreadsheet, Contrast estimates spreadsheet, and the Univariate or Multivariate test of significance for planned comparisons spreadsheet.
Enter contrasts. Use the options in the Enter contrasts group box to specify how you want to enter the contrasts when you click the Specify contrasts for LS means button (see above). Select the Separately for each factor option button to enter the contrast coefficients for each factor in the current Effect. Select the Together (contrast vector) option button to enter the contrast coefficients for each cell in the current Effect (combination of factor levels for the factors in the current Effect).
Note: the method of computing the results for the planned comparison is actually identical, regardless of how the contrast coefficients were entered, and any contrast specified via the separately method can also be represented via the together method (but not vice versa). Specifically, when Separately for each factor is selected, the Kronecker Product (see the STATISTICA Visual Basic function MatrixKroneckerMultiply) of the specified matrices of contrast coefficients for each factor will be applied to the set of least squares means for the respective chosen Effect.Note: separately for each factor. This method of specifying contrasts is most convenient when you want to explore interaction effects, for example, to test partial interactions within the levels of other factors. Suppose you had a three-way design with factors A, B, and C, each at 2 levels (so the design is a 2x2x2 between group full factorial design), and you found a significant three-way interaction effect. Recall that a three-way interaction effect can be interpreted as a two-way interaction, modified by the level of a third factor. Suppose further that the original hypothesis for the study was that a two-way interaction effect exists at level 1 of C, but no such effect exists at level 2 of factor C. Entering contrast coefficients Separately for each factor, you could enter the following coefficients:For factor A: 1 -1
For factor B: 1 -1
For factor C: 1 0
The Kronecker product of these vectors shows which least squares means in the design are compared by this hypothesis:
Levels, Factor C 1 2 Levels, Factor B 1 2 1 2 Levels, Factor A 1 2 1 2 1 2 1 2 Coefficients 1 -1 -1 1 0 0 0 0 Thus, this hypothesis tests the A by B interaction within level 1 of factor C.
Note: Together (contrast vectors). This method of specifying contrasts can be used to compare any set of least squares means in the current Effect. In the table shown above, you could specify directly the contrast vector shown in the row labeled Coefficients. You could also compare any set of least squares means within the three-way interaction. For example:This set of coefficients cannot be set up in terms of main effects and interactions of factors (i.e., via option button Separately for each factor), and could only be specified via the Together option button.
- Contrasts for dependent variables
- Use the options in the Contrasts for dependent variables group box to determine if you are able to specify a set of contrast matrices for the dependent measures after you click the Specify contrasts for LS means button (see above). Select the Yes option button if you want to specify a set of contrast matrices for the dependent measures. Select the No option button, if you do not want to. Note that these options are only available if the current design involves multiple dependent variables, or, in case of within subject (repeated measures) designs, multiple dependent measures.
- Display least squares means
- Click the Display least squares means button to display a spreadsheet with the least squares means for the currently selected Effect; see also the Means tab.
- Multivariate tests
- Use the options in the Multivariate tests group box to select the specific multivariate tests statistics that are to be reported in the respective results spreadsheets. For descriptions of the different multivariate tests statistics, refer to the
Multivariate designs topic in the
Introductory Overview. These options are only available if the current design is multivariate in nature, i.e., if there are multiple dependent measures, or a within-subject (repeated measures) design with effects that have more than 2 levels (and hence, multivariate tests for those effects can be computed).
See also GLM - Index.