GRM Introductory Overview - Building Models via Best-Subset Regression
All-possible-subset regression can be used as an alternative to or in conjunction with stepwise methods for finding the "best" possible submodel.
Neter, Wasserman, and Kutner (1985) discuss the use of all-possible-subset regression in conjunction with stepwise regression: "A limitation of the stepwise regression search approach is that it presumes there is a single "best" subset of X variables and seeks to identify it. As noted earlier, there is often no unique "best" subset. Hence, some statisticians suggest that all possible regression models with a similar number of X variables as in the stepwise regression solution be fitted subsequently to study whether some other subsets of X variables might be better." (p. 435). This reasoning suggests that after finding a stepwise solution, the "best" of all the possible subsets of the same number of effects should be examined to determine if the stepwise solution is among the "best." If not, the stepwise solution is suspect.
All-possible-subset regression can also be used as an alternative to stepwise regression. Using this approach, one first decides on the range of subset sizes that could be considered to be useful. For example, one might expect that inclusion of at least 3 effects in the model is necessary to adequately account for responses, and also might expect there is no advantage to considering models with more than 6 effects. Only the "best" of all possible subsets of 3, 4, 5, and 6 effects are then considered.
The number of possible submodels increases very rapidly as the number of effects in the whole model increases, and as subset size approaches half of the number of effects in the whole model. The amount of computation required to perform all-possible-subset regression increases as the number of possible submodels increases, and holding all else constant, also increases very rapidly as the number of levels for effects involving categorical predictor increases, thus resulting in more columns in the design matrix X. For example, all possible subsets of up to a dozen or so effects could certainly theoretically be computed for a design that includes two dozen or so effects all of which have many levels, but the computation would be very time consuming (e.g., there are about 2.7 million different ways to select 12 predictors from 24 predictors, i.e., 2.7 million models to evaluate just for subset size 12). Simpler is generally better when using all-possible-subset regression.
Other GRM Introductory Overview Topics
A detailed discussion of univariate and multivariate ANOVA techniques can also be found in the Introductory Overview of the ANOVA/MANOVA module; a discussion of Multiple Regression methods is provided in the Overviews. Discussion of the ways in which the linear regression model is extended by the general linear model can be found in the Introductory Overview of the GLM module.