MachineLearningSVM Members

These members are related to Support Vector Machine dialog.

Functions

Name Description
Cancel -
OK Return value: Integer.

Properties

Name Description
Application Returns application object. Return value: Object. This property is read only.
ApplyCrossV Select this option to apply v-fold cross-validation. Return/assignment value: Integer.
ApplySampling Divides the data set into training and test samples. Return/assignment value: Integer.
CParameter Capacity parameter (for Classification Type 1, Regression Type 1, and Regression Type 2 SVM models). Return/assignment value: Double.
CacheSize Specifies the cache size. Return/assignment value: Integer.
CasewiseDeletionOfMD Casewise deletion of missing data (MD). Return/assignment value: Integer.
ClassType1 Classification SVM type 1. Return/assignment value: Integer.
ClassType2 Classification SVM type 2. Return/assignment value: Integer.
CodeForTrainingSample Code for training sample. Return/assignment value: String.
Coefficient Coefficient parameter (for polynomial and sigmoid kernels). Return/assignment value: Double.
CrossVSeed Specifies the random number generator seed to be used in the process of (randomly) grouping the data into v folds. Return/assignment value: Integer.
Degree Degree parameter (for polynomial kernels). Return/assignment value: Integer.
DeltaC Specifies the increase in the value of the capacity parameter when performing the cross-validation grid search. Return/assignment value: Double.
DeltaEpsilon Specifies the increase in the value of the epsilon parameter when performing the cross-validation grid search. Return/assignment value: Double.
DeltaNu Specifies the increase in the value of the nu parameter when performing the cross-validation grid search. Return/assignment value: Double.
EpsilonParameter Epsilon parameter (for Regression SVM Type 1). Return/assignment value: Double.
Gam Gamma parameter (for polynomial, RBF and sigmoid kernels). Return/assignment value: Double.
LinearKernel Linear kernel. Return/assignment value: Integer.
MaxNoOfIterations Maximum number of iterations for SVM training. Return/assignment value: Integer.
MaximumC Specifies the maximum value of the capacity parameter to start with in the cross-validation grid search. Return/assignment value: Double.
MaximumEpsilon Specifies the maximum value of the epsilon parameter to start with in the cross-validation grid search. Return/assignment value: Double.
MaximumNu Specifies the maximum value of the nu parameters to start with in the cross-validation grid search. Return/assignment value: Double.
MeanSubstitutionOfMD Mean substitution of missing data (MD). Return/assignment value: Integer.
MinimumC Specifies the minimum value of the capacity parameter to start with in the cross-validation grid search. Return/assignment value: Double.
MinimumEpsilon Specifies the minimum value of the epsilon parameter to start with in the cross-validation grid search. Return/assignment value: Double.
MinimumNu Specifies the minimum value of the nu parameters to start with in the cross-validation grid search. Return/assignment value: Double.
NValue The number of first N cases to be used as the training sample. Return/assignment value: Integer.
Name Return value: String. This property is read only.
NuParameter Nu parameter (for Classification Type 2 and Regression SVM Type 2). Return/assignment value: Double.
Parent Returns the parent of the object. Return value: Object. This property is read only.
PenaltyList Enter individual numbers separated by spaces (e.g. 1 2 5) to define class penalties for imbalanced data. Return/assignment value: String.
PolyKernel Polynomial kernel. Return/assignment value: Integer.
PredictorCodes Predictor codes. Return/assignment value: String.
RBFKernel Radial Basis Function (RBF) kernel. Return/assignment value: Integer.
RegressionType1 Regression SVM type 1. Return/assignment value: Integer.
RegressionType2 Regression SVM type 2. Return/assignment value: Integer.
ResponseCodes Response codes. Return/assignment value: String.
ResultsCode Assignment value: Variant.
ResultsOption Assignment value: Integer.
ResultsOutputFields Assignment value: Variant.
ResultsSaveFileName Assignment value: String.
ResultsSelection Assignment value: Variant.
ResultsSelectionOption Assignment value: Variant.
ResultsValues Assignment value: Variant.
ResultsVariables Assignment value: Variant.
SamplingVariable Specifies the sample variable for dividing the data set into train and testing samples. Return/assignment value: String.
ScaleInputs Scale continuous inputs. Return/assignment value: Integer.
ScaleOutputs Scale continuous outputs. Return/assignment value: Integer.
SeedForRandomSampling Specifies the random number generator seed to be used in the process of (randomly) dividing the data into train and test samples. Return/assignment value: Integer.
ShrinkData Shrinks data for computational efficiency. Return/assignment value: Integer.
SigmoidKernel Sigmoid kernel. Return/assignment value: Integer.
SizeOfTrainingSample Specifies the percentage of the valid cases (determined by case selection conditions) in the data set that will be used to form the training set. Return/assignment value: Double.
StoppingAccuracy Specifies the target error at which training is stopped. Return/assignment value: Double.
UseFirstNCases Selects the first N valid cases [determined by the case selection conditions (see case selections)] of the data set as the training sample. The remaining cases will be used for testing. Return/assignment value: Integer.
UsePenalty Select whether to apply class penalty for imbalanced data. Return/assignment value: Integer.
UseRandomSampling Generates the training and test samples randomly. Return/assignment value: Integer.
UseSubsetvariable Generates the training and test samples from a subsample (subset) variable. Return/assignment value: Integer.
VValue Specifies the number of folds used to perform the cross-validation. Return/assignment value: Integer.
Variables Select variables for the analysis. Return/assignment value: String.