Discriminant Function Analysis Introductory Overview - Interpreting a Two-Group Discriminant Function
In the two-group case, discriminant function analysis can also be thought of as (and is analogous to) multiple regression (see Multiple Regression; the two-group discriminant analysis is also called Fisher linear discriminant analysis after Fisher, 1936; computationally all of these approaches are analogous). If we code the two groups in the analysis as 1 and 2, and use that variable as the dependent variable in a multiple regression analysis, then we would get results that are analogous to those we would obtain via Discriminant Analysis. In general, in the two-group case we fit a linear equation of the type:
Group = a + b1*x1 + b2*x2 + ... + bm*xm
where a is a constant and b1 through bm are regression coefficients. The interpretation of the results of a two-group problem is straightforward and closely follows the logic of multiple regression: Those variables with the largest (standardized) regression coefficients are the ones that contribute most to the prediction of group membership.