Exponential Smoothing - Seasonal and Non-seasonal Models With or Without Trend

The discussion above in the context of simple exponential smoothing introduced the basic procedure for identifying a smoothing parameter, and for evaluating the goodness-of-fit of a model. In addition to simple exponential smoothing, more complex models have been developed to accommodate time series with seasonal and trend components. The general idea here is that forecasts are not only computed from consecutive previous observations (as in simple exponential smoothing), but an independent (smoothed) trend and seasonal component can be added. The STATISTICA Time Series module follows the two-way classification system proposed by Gardner (1985), who discusses the different models in terms of seasonality (none, additive, or multiplicative) and trend (none, linear, exponential, or damped).

Element Name Description
Additive and multiplicative seasonality Many time series data follow recurring seasonal patterns (see also Classical Seasonal Decomposition). For example, annual sales of toys will probably peak in the months of November and December, and perhaps during the summer (with a much smaller peak) when children are on their summer break. This pattern will likely repeat every year, however, the relative amount of increase in sales during December may slowly change from year to year. Thus, it may be useful to smooth the seasonal component independently with an extra parameter, usually denoted as δ (Delta). Seasonal components can be additive in nature or multiplicative. For example, during the month of December the sales for a particular toy may increase by 1 million dollars every year. Thus, we could add to our forecasts for every December the amount of 1 million dollars (over the respective annual average) to account for this seasonal fluctuation. In this case, the seasonality is additive. Alternatively, during the month of December the sales for a particular toy may increase by 40%, that is, increase by a factor of 1.4. Thus, when the sales for the toy are generally weak, then the absolute (dollar) increase in sales during December will be relatively weak (but the percentage will be constant); if the sales of the toy are strong, then the absolute (dollar) increase in sales will be proportionately greater. Again, in this case the sales increase by a certain factor, and the seasonal component is thus multiplicative in nature (i.e., the multiplicative seasonal component in this case would be 1.4). In plots of the series, the distinguishing characteristic between these two types of seasonal components is that in the additive case, the series shows steady seasonal fluctuations, regardless of the overall level of the series; in the multiplicative case, the size of the seasonal fluctuations vary, depending on the overall level of the series.

The seasonal smoothing parameter δ. In general the one-step-ahead forecasts are computed as (for no trend models, for linear and exponential trend models a trend component is added to the model; see below):

Additive model.

Forecastt = St + It-p

Multiplicative model.

Forecastt = St*It-p

In this formula, St stands for the (simple) exponentially smoothed value of the series at time t, and It-p stands for the smoothed seasonal factor at time t minus p (the length of the season). Thus, compared to simple exponential smoothing, the forecast is "enhanced" by adding or multiplying the simple smoothed value by the predicted seasonal component. This seasonal component is derived analogous to the St value from simple exponential smoothing as:

Additive model.

It = It-p + δ*(1-α)*et

Multiplicative model.

It = It-p + δ*(1-α)*et/St

Put in words, the predicted seasonal component at time t is computed as the respective seasonal component in the last seasonal cycle plus a portion of the error (et ; the observed minus the forecast value at time t). Considering the formulas above, it is clear that parameter δ can assume values between 0 and 1. If it is zero, then the seasonal component for a particular point in time is predicted to be identical to the predicted seasonal component for the respective time during the previous seasonal cycle, which in turn is predicted to be identical to that from the previous cycle, and so on. Thus, if δ is zero, a constant unchanging seasonal component is used to generate the one-step-ahead forecasts. If the δ parameter is equal to 1, then the seasonal component is modified "maximally" at every step by the respective forecast error (times 1-α, which we will ignore for the purpose of this brief introduction). In most cases, when seasonality is present in the time series, the optimum δ parameter will fall somewhere between 0 (zero) and 1(one).

Linear, exponential, and damped trend To remain with the toy example above, the sales for a toy can show a linear upward trend (e.g., each year, sales increase by 1 million dollars), exponential growth (e.g., each year, sales increase by a factor of 1.3), or a damped trend (during the first year sales increase by 1 million dollars; during the second year the increase is only 80% over the previous year, i.e., $800,000; during the next year it is again 80% less than the previous year, i.e., $800,000 * .8 = $640,000; etc.). Each type of trend leaves a clear "signature" that can usually be identified in the series; shown below in the brief discussion of the different models are icons that illustrate the general patterns. In general, the trend factor may change slowly over time, and, again, it may make sense to smooth the trend component with a separate parameter (denoted γ [Gamma] for linear and exponential trend models, and φ [Phi] for damped trend models).
The trend smoothing parameters g (linear and exponential trend) and f (damped trend) Analogous to the seasonal component, when a trend component is included in the exponential smoothing process, an independent trend component is computed for each time, and modified as a function of the forecast error and the respective parameter. If the γ parameter is 0 (zero), than the trend component is constant across all values of the time series (and for all forecasts). If the parameter is 1, then the trend component is modified "maximally" from observation to observation by the respective forecast error. Parameter values that fall in-between represent mixtures of those two extremes. Parameter φ is a trend modification parameter, and affects how strongly changes in the trend will affect estimates of the trend for subsequent forecasts, that is, how quickly the trend will be "damped" or increased.